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Pipeline Hazards

• Each instruction may depend on the previous one

October 17, 2022

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M WD D D
F D X M WD D DF F F

F DD D DF F F

t9 t10 t11 t12 t13 t14

What can be done to cope with this?

• Even bypassing, speculation and finding something 
else to do (via O-O-O) does not eliminate all delays
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Multithreading

How can we guarantee no dependencies between 
instructions in a pipeline?

October 17, 2022

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7),  r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in 
a thread always 
completes write-
back before next 
instruction in 
same thread reads 
register file

Take instructions from different programs
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CDC 6600 Peripheral Processors
(Cray, 1964)

• First commercial multithreaded hardware
• 10 “virtual” I/O processors
• Fixed interleave on simple pipeline
• Pipeline has 100ns cycle time
• Each virtual processor executes one instruction every 1000ns
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Simple Multithreaded Pipeline

Have to carry thread select down pipeline to ensure 
correct state bits read/written at each pipe stage

October 17, 2022
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2 Thread 
select
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Multithreading Costs

• Each thread needs its own user architectural state
– PC
– GPRs (CDC6600 PPUs – accumulator-based architecture)

• Also, needs its own system architectural state
– Virtual memory page table base register
– Exception handling registers

• Other costs?

• Appears to software (including OS) as multiple, 
albeit slower, CPUs
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Thread Scheduling Policies
• Fixed interleave (CDC 6600 PPUs, 1965)

– Each of N threads executes one instruction every N cycles
– If thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots among N threads
– Hardware performs fixed interleave over S slots, executing 

whichever thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982)
– Hardware keeps track of which threads are ready to go
– Picks next thread to execute based on hardware priority scheme
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Denelcor HEP
(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
– 120 threads per processor
– 10 MHz clock rate
– Up to 8 processors
– Precursor to Tera MTA (Multithreaded Architecture)
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Tera MTA (1990-97)

• Up to 256 processors
• Up to 128 active threads per processor
• Processors and memory modules populate a sparse 

3D torus interconnection fabric
• Flat, shared main memory

– No data cache
– Sustains one main memory access per cycle per processor

• GaAs logic in prototype, 1KW/processor @ 260MHz
– CMOS version, MTA-2, 50W/processor
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MTA Architecture
• Each processor supports 128 active hardware threads

– 1 x 128 = 128 stream status word (SSW) registers, 
– 8 x 128 = 1024 branch-target registers, 
– 32 x 128 = 4096 general-purpose registers

• Three operations packed into 64-bit instruction (short VLIW)
– One memory operation,
– One arithmetic operation, plus
– One arithmetic or branch operation

• Thread creation and termination instructions

• Explicit 3-bit “lookahead” field in instruction gives number of 
subsequent instructions (0-7) that are independent of this one
– Allows fewer threads to fill machine pipeline
– Used for variable-sized branch delay slots
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MTA Pipeline

October 17, 2022
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Issue Pool • Every cycle, one 
instruction from one 
active thread is 
launched into pipeline

• Instruction pipeline 
is 21 cycles long

• Memory operations 
incur ~150 cycles of 
latency

Assuming a single thread issues one 
instruction every 21 cycles, and clock 
rate is 260 MHz…

What is single thread performance?

Effective single thread issue rate 
is 260/21 = 12.4 MIPS
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Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications 
with large data sets and low locality
– No data cache
– Many parallel threads needed to hide large memory 

latency

Other applications are more cache friendly
– Few pipeline bubbles when cache getting hits
– Just add a few threads to hide occasional cache miss 

latencies
– Swap threads on cache misses
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Multithreading Design Choices

• Fine-grained multithreading
– Context switch among threads every cycle

• Coarse-grained multithreading
– Context switch among threads every few cycles, e.g., on:

• Function unit data hazard,
• L1 miss, 
• L2 miss…

• Why choose one style over another?

• Choice depends on
– Context-switch overhead
– Number of threads supported (due to per-thread state)
– Expected application-level parallelism…
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TX-2: Multi-sequence computer
(Wes Clark, Lincoln Labs, 1956)

• Start-Over 
• In-out alarms
• Arithmetic alarms (overflows, etc.)
• Magnetic tape units (multiple)
• High-speed printer
• Analog-to-digital converter
• Paper tape readers (multiple)
• Light pen
• Display (multiple)
• Memory Test Computer
• TX-O
• Digital-to-analog converter
• Paper tape punch
• Flexowriters (multiple)
• *Main sequences (three)

October 17, 2022

32 Instruction sequences (threads) with
• a fixed priority order among the threads, and
• executes many instructions in a thread - switches mediated by:

– Instruction “break”/”dismiss” bits
– Attention request from I/O
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MIT Alewife (1990)

• Modified SPARC chips
– Register windows hold different 

thread contexts

• Up to four threads per node
• Thread switch on local cache 

miss
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IBM PowerPC RS64-IV (2000)

• Commercial coarse-grain multithreading CPU
• Based on PowerPC with quad-issue in-order five-

stage pipeline
• Each physical CPU supports two virtual CPUs
• On L2 cache miss, pipeline is flushed and execution 

switches to second thread
– Short pipeline minimizes flush penalty (4 cycles), small 

compared to memory access latency
– Flush pipeline to simplify exception handling
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Superscalar Machine Efficiency

• Why horizontal waste?
• Why vertical waste?

October 17, 2022

Issue width

Time

Completely idle cycle 
(vertical waste)

Instruction 
issue

Partially filled cycle, 
i.e., IPC < 4
(horizontal waste)
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Vertical Multithreading

• What is the effect of cycle-by-cycle interleaving?
– removes vertical waste, but leaves some horizontal waste

October 17, 2022

Issue width

Time

Second thread interleaved 
cycle-by-cycle

Instruction 
issue

Partially filled cycle, 
i.e., IPC < 4
(horizontal waste)
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Chip Multiprocessing

• What is the effect of splitting into multiple processors?
– reduces horizontal waste, 
– leaves some vertical waste, and 
– caps peak throughput of each thread.

October 17, 2022

Issue width

Time
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Ideal Superscalar Multithreading 
[Tullsen, Eggers, Levy, UW, 1995]

• Interleave multiple threads to multiple issue slots 
with no restrictions

October 17, 2022

Issue width

Time
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O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

• Add multiple contexts and fetch engines and allow instructions 
fetched from different threads to issue simultaneously

• Utilize wide out-of-order superscalar processor issue queue to 
find instructions to issue from multiple threads

• OOO instruction window already has most of the circuitry 
required to schedule from multiple threads

• Any single thread can utilize whole machine
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Basic Out-of-order Pipeline

October 17, 2022

Fetch Decode
/Map

Queue Reg
Read

Execute Dcache
/Store 
Buffer

Reg 
Write

Retire

PC

Icache

Register
Map

Dcache
Regs Regs

Thread-
blind

[ EV8 – Microprocessor Forum, Oct 1999]
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SMT Pipeline

October 17, 2022

Fetch Decode
/Map

Queue Reg 
Read

Execute Dcache
/Store 
Buffer

Reg 
Write

Retire

Icache
Dcache

PC

Register
Map

Regs Regs

[ EV8 – Microprocessor Forum, Oct 1999]
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Icount Choosing Policy

October 17, 2022

Why does this enhance throughput?

Fetch from thread with the least instructions in flight.
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Why Does Icount Make Sense?

N
T    =   --------

L

October 17, 2022

N/4
Ti/4    =   --------

L

Assuming latency (L) is unchanged with the addition of threading.
For each thread i with original throughput Ti (and 4 threads):
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SMT Fetch Policies (Locks)
• Problem:

Spin looping thread consumes resources

• Solution:
Provide quiescing operation that allows a
thread to sleep until a memory location 
changes

October 17, 2022

loop:
ARM r1, 0(r2)
BEQ r1, got_it
QUIESCE
BR loop

got_it:

Load and start 
watching 0(r2)

Inhibit scheduling of 
thread until activity 
observed on 0(r2)
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Adaptation to parallelism type 

October 17, 2022

For regions with high thread 
level parallelism (TLP) entire 
machine width is shared by all 
threads

Issue width

Time

Issue width

Time

For regions with low thread level 
parallelism (TLP) entire machine 
width is available for instruction 
level parallelism (ILP)
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Pentium-4 Hyperthreading (2002)

• First commercial SMT design (2-way SMT)
– Hyperthreading == SMT

• Logical processors share nearly all resources of the 
physical processor
– Caches, execution units, branch predictors

• Die area overhead of hyperthreading  ~ 5%
• When one logical processor is stalled, the other can 

make progress
– No logical processor can use all entries in queues when two 

threads are active

• Processor running only one active software thread 
runs at approximately same speed with or without 
hyperthreading
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Pentium-4 Hyperthreading
Front End

October 17, 2022

[ Intel Technology Journal, Q1 2002 ]

Resource divided 
between logical CPUs

Resource shared 
between logical CPUs
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Pentium-4 Branch Predictor

• Separate return address stacks per thread
Why?

• Separate first-level global branch history table
Why?

• Shared second-level branch history table, tagged 
with logical processor IDs
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Pentium-4 Hyperthreading
Execution Pipeline

October 17, 2022
[ Intel Technology Journal, Q1 2002 ]
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Summary: Multithreading Styles
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Thank you!
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