Multithreading Architectures

Joel Emer
Computer Science & Artificial Intelligence Lab
M.I.T.

MIT 6.5900 Fall 2022 L11-1

Pipeline Hazards

0 Lt1 12 13 .t4 15 .16 .17 .18 .19 t10 t11 12 t13 114

LW r1, 0(r2)

LW r5, 12(r1) E
ADDI r5, r5, #12
SW 12(r1), r5 :

e Each instruction may depend on the previous one

What can be done to cope with this?

e Even bypassing, speculation and finding something
else to do (via O-0-0) does not eliminate all delays

October 17, 2022 MIT 6.5900 Fall 2022 L18-2

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

Take instructions from different programs

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 M 2 13 14 15 16 17 .8 . 19

T1: LW r1, 0(r2) FID|X|[M WE% Prior instruction in
T2:ADD 7,11, 14 i [E[DIXIMIWE | @ 2fhread alays
T3: XORI r5, r4, H#H12 FID|IX|M back before next
T4: SW 0(r7), r5 FIDIX : instruction in

T1: LW r5, 12(r1) DEE il

October 17, 2022 MIT 6.5900 Fall 2022 L18-3

CDC 6600 Peripheral Processors
(Cray, 1964)

First commercial multithreaded hardware

10 “virtual” I/O processors

Fixed interleave on simple pipeline

Pipeline has 100ns cycle time

Each virtual processor executes one instruction every 1000ns

October 17, 2022 MIT 6.5900 Fall 2022 L18-4

Simple Multithreaded Pipeline

|>'><

- > <

select

Have to carry thread select down pipeline to ensure
correct state bits read/written at each pipe stage

October 17, 2022 MIT 6.5900 Fall 2022 L18-5

Multithreading Costs

e Each thread needs its own user architectural state
- PC
- GPRs (CDC6600 PPUs - accumulator-based architecture)

e Also, needs its own system architectural state
- Virtual memory page table base register
— Exception handling registers

e Other costs?

e Appears to software (including OS) as multiple,
albeit slower, CPUs

October 17, 2022 MIT 6.5900 Fall 2022 L18-6

Thread Scheduling Policies

e Fixed interleave (CDC 6600 PPUs, 1965)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

e Software-controlled interleave (7I ASC PPUs, 1971)
— OS allocates S pipeline slots among N threads

— Hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

e Hardware-controlled thread scheduling (HEP, 1982)

— Hardware keeps track of which threads are ready to go
— Picks next thread to execute based on hardware priority scheme

October 17, 2022 MIT 6.5900 Fall 2022 L18-7

Denelcor HEP
(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
— 120 threads per processor
— 10 MHz clock rate

- Up to 8 processors
— Precursor to Tera MTA (Multithreaded Architecture)

October 17, 2022 MIT 6.5900 Fall 2022 L18-8

Tera MTA (1990-97)

e Up to 256 processors
e Up to 128 active threads per processor

e Processors and memory modules populate a sparse
3D torus interconnection fabric

e Flat, shared main memory
— No data cache
— Sustains one main memory access per cycle per processor

e GaAs logic in prototype, 1KW/processor @ 260MHz
- CMOS version, MTA-2, 50W/processor

October 17, 2022 MIT 6.5900 Fall 2022 L18-9

MTA Architecture

e Each processor supports 128 active hardware threads
- 1 x 128 = 128 stream status word (SSW) registers,
- 8 x 128 = 1024 branch-target registers,
- 32 x 128 = 4096 general-purpose registers

e Three operations packed into 64-bit instruction (short VLIW)
— One memory operation,
— One arithmetic operation, plus
— One arithmetic or branch operation

e Thread creation and termination instructions

e Explicit 3-bit “lookahead” field in instruction gives number of
subsequent instructions (0-7) that are independent of this one
— Allows fewer threads to fill machine pipeline
— Used for variable-sized branch delay slots

October 17, 2022 MIT 6.5900 Fall 2022 L18-10

MTA Pipeline

October 17, 2022

[1ssuePool || InstFetch e Every cycle, one
> instruction from one
W / l \ active thread is
M A c launched into pipeline
e Instruction pipeline
Y — ol is 21 cycles long
o o
g < W e Memory operations
2 g incur ~150 cycles of
= el Tw latency
Retry Pool : : .
__RetyPool | Assuming a single thread issues one
instruction every 21 cycles, and clock
rate is 260 MHz...
[Interconnection Network] _ _
What is single thread performance?
Memory pipeline Effective single thread issue rate

is 260/21 = 12.4 MIPS

MIT 6.5900 Fall 2022 L18-11

Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications
with large data sets and low locality
- No data cache

- Many parallel threads needed to hide large memory
latency

Other applications are more cache friendly
- Few pipeline bubbles when cache getting hits

— Just add a few threads to hide occasional cache miss
latencies

- Swap threads on cache misses

October 17, 2022 MIT 6.5900 Fall 2022 L18-12

Multithreading Design Choices

e Fine-grained multithreading
— Context switch among threads every cycle

e Coarse-grained multithreading
— Context switch among threads every few cycles, e.g., on:
e Function unit data hazard,
e L1 miss,
e L2 miss...

e Why choose one style over another?

e Choice depends on
— Context-switch overhead
— Number of threads supported (due to per-thread state)
— Expected application-level parallelism...

October 17, 2022 MIT 6.5900 Fall 2022 L18-13

TX-2: Multi-sequence computer
(Wes Clark, Lincoln Labs, 1956)

32 Instruction sequences (threads) with
e a fixed priority order among the threads, and

e executes many instructions in a thread - switches mediated by:
— Instruction “break”/"dismiss” bits
— Attention request from I/0

Start-Over

In-out alarms

Arithmetic alarms (overflows, etc.)
Magnetic tape units (multiple)
High-speed printer
Analog-to-digital converter
Paper tape readers (multiple)
Light pen

Display (multiple)

Memory Test Computer

TX-0

Digital-to-analog converter
Paper tape punch
Flexowriters (multiple)

*Main sequences (three)

October 17, 2022 MIT 6.5900 Fall 2022 L18-14

MIT Alewife (1990)

e Modified SPARC chips

— Register windows hold different
thread contexts

e Up to four threads per node

e Thread switch on local cache
MmISS

October 17, 2022 MIT 6.5900 Fall 2022 L18-15

IBM PowerPC RS64-1V (2000)

e Commercial coarse-grain multithreading CPU

e Based on PowerPC with quad-issue in-order five-
stage pipeline

e Each physical CPU supports two virtual CPUs

e On L2 cache miss, pipeline is flushed and execution

switches to second thread

— Short pipeline minimizes flush penalty (4 cycles), small
compared to memory access latency

— Flush pipeline to simplify exception handling

October 17, 2022 MIT 6.5900 Fall 2022 L18-16

Superscalar Machine Efficiency

Issue width

Instruction
issue
Completely idle cycle
(vertical waste)
Time
Patrtially filled cycle,
ie., IPC<4

(horizontal waste)

e Why horizontal waste?
e Why vertical waste?

October 17, 2022 MIT 6.5900 Fall 2022 L18-17

Vertical Multithreading

Issue width

Instruction
issue
Second thread interleaved
cycle-by-cycle
Time
Patrtially filled cycle,
ie. IPC <4

(horizontal waste)

e What is the effect of cycle-by-cycle interleaving?
- removes vertical waste, but leaves some horizontal waste

October 17, 2022 MIT 6.5900 Fall 2022

L18-18

Chip Multiprocessing

~Issue width

Time

e What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— |leaves some vertical waste, and
— caps peak throughput of each thread.

October 17, 2022 MIT 6.5900 Fall 2022 L18-19

Ideal Superscalar Multithreading
[Tullsen, Eggers, Levy, UW, 1995]

Issue width

Time

e Interleave multiple threads to multiple issue slots
with no restrictions

October 17, 2022 MIT 6.5900 Fall 2022 L18-20

0O-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

e Add multiple contexts and fetch engines and allow instructions
fetched from different threads to issue simultaneously

e Utilize wide out-of-order superscalar processor issue queue to
find instructions to issue from multiple threads

e OOO instruction window already has most of the circuitry
required to schedule from multiple threads

e Any single thread can utilize whole machine

October 17, 2022 MIT 6.5900 Fall 2022 L18-21

Basic Out-of-order Pipeline

Fetch Decode Queue Reg Execute Dcache Reg Retire
/Map Read /Store Write
Buffer

A 4

Regs Regs

Dcache

[¥% |

Thread-
blind

A
v

[EV8 — Microprocessor Forum, Oct 1999]
October 17, 2022 MIT 6.5900 Fall 2022 L18-22

SMT Pipeline

Fetch Decode Queue Reg Execute Dcache Reg Retire
/Map Read /Store Write
Buffer

—> D_* Dcache Regs

[EV8 — Microprocessor Forum, Oct 1999]
October 17, 2022 MIT 6.5900 Fall 2022 L18-23

Icount Choosing Policy

Fetch from thread with the least instructions in flight.

Why does this enhance throughput?

October 17, 2022 MIT 6.5900 Fall 2022 L18-24

Why Does Icount Make Sense?

Assuming latency (L) is unchanged with the addition of threading.
For each thread i with original throughput T, (and 4 threads):

October 17, 2022 MIT 6.5900 Fall 2022 L18-25

SMT Fetch Policies (Locks)

e Problem: _
Spin looping thread consumes resources

e Solution:

Provide quiescing operation that allows a

thread to sleep until a memory location
changes

Load and start

loop: f watching 0(r2)
ARM r1, 0(r2)
BEQ rl, got it

QUIESCE *“*--_ Inhibit scheduling of
BR loop

thread until activity
observed on 0(r2)

got it:

October 17, 2022 MIT 6.5900 Fall 2022 L18-26

Adaptation to parallelism type

For regions with high thread For regions with low thread level
level parallelism (TLP) entire parallelism (TLP) entire machine
machine width is shared by all width is available for instruction
threads level parallelism (ILP)
Issue width Issue width
Time Time 38

October 17, 2022 MIT 6.5900 Fall 2022 L18-27

Pentium-4 Hyperthreading (2002)

e First commercial SMT design (2-way SMT)
- Hyperthreading == SMT

e Logical processors share nearly all resources of the
physical processor
— Caches, execution units, branch predictors

e Die area overhead of hyperthreading ~ 5%

e When one logical processor is stalled, the other can

make progress

— No logical processor can use all entries in queues when two
threads are active

e Processor running only one active software thread
runs at approximately same speed with or without
hyperthreading

October 17, 2022 MIT 6.5900 Fall 2022 L18-28

Pentium-4 Hyperthreading

Front End
L2 Cache Uop
Access . {?rueueE Decode : QueueE Fill . Queue

...... Decode _.....

Resource divided Resource shared
between logical CPUs between logical CPUs

[Intel Technology Journal, Q1 2002]
October 17, 2022 MIT 6.5900 Fall 2022 L18-29

Pentium-4 Branch Predictor

e Separate return address stacks per thread
Why?

e Separate first-level global branch history table
Why?

e Shared second-level branch history table, tagged
with logical processor IDs

October 17, 2022 MIT 6.5900 Fall 2022 L18-30

Pentium-4 Hyperthreading
Execution Pipeline

Uop
Queue Rename

Register

Queue Sched Read Execute L1 Cache

‘fﬁ*ﬂg

: Registers

[Intel Technology Journal, Q1 2002]

October 17, 2022

MIT 6.5900 Fall 2022

Store

5

L1 D-Cache

Register
Write

_ i Re-Order
Registers

Retire

Bufter

L18-31

Summary: Multithreading Styles

Thread 1 2= context switch code Thread 2
Proceszsor
Irtermpt, esocepion, or 06 all mtuxnf':rmnem:eptlﬂnT

Thread 1 Thread 2 Thread = Thread 1
Coarse- gralned
Mult:lthreaded

Cache mmss Cache nuss T Cache muss T
e
Fine-grained

Multithreaded

(FMT)

D)
Simultaneous
Multithreaded
(SMT)
Execution T
Thits Time

October 17, 2022 MIT 6.5900 Fall 2022

L18-32

Thank you!

MIT 6.5900 Fall 2022 L11-33

	Slide Number 1
	Pipeline Hazards
	Multithreading
	CDC 6600 Peripheral Processors�(Cray, 1964)
	Simple Multithreaded Pipeline
	Multithreading Costs
	Thread Scheduling Policies
	Denelcor HEP�(Burton Smith, 1982)
	Tera MTA (1990-97)
	MTA Architecture
	MTA Pipeline
	Coarse-Grain Multithreading
	Multithreading Design Choices
	TX-2: Multi-sequence computer�(Wes Clark, Lincoln Labs, 1956)
	MIT Alewife (1990)
	IBM PowerPC RS64-IV (2000)
	Superscalar Machine Efficiency
	Vertical Multithreading
	Chip Multiprocessing
	Ideal Superscalar Multithreading �[Tullsen, Eggers, Levy, UW, 1995]
	O-o-O Simultaneous Multithreading�[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]�
	Basic Out-of-order Pipeline
	SMT Pipeline
	Icount Choosing Policy
	Why Does Icount Make Sense?
	SMT Fetch Policies (Locks)
	Adaptation to parallelism type
	Pentium-4 Hyperthreading (2002)
	Pentium-4 Hyperthreading�Front End
	Pentium-4 Branch Predictor
	Pentium-4 Hyperthreading�Execution Pipeline
	Summary: Multithreading Styles
	Slide Number 33

