
L11-1MIT 6.5900 Fall 2022

Joel Emer
Computer Science & Artificial Intelligence Lab

M.I.T.

Multithreading Architectures

MIT 6.5900 Fall 2022

Pipeline Hazards

• Each instruction may depend on the previous one

October 17, 2022

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M WD D D
F D X M WD D DF F F

F DD D DF F F

t9 t10 t11 t12 t13 t14

What can be done to cope with this?

• Even bypassing, speculation and finding something
else to do (via O-O-O) does not eliminate all delays

L18-2

MIT 6.5900 Fall 2022

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

October 17, 2022

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7), r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file

Take instructions from different programs

L18-3

MIT 6.5900 Fall 2022

CDC 6600 Peripheral Processors
(Cray, 1964)

• First commercial multithreaded hardware
• 10 “virtual” I/O processors
• Fixed interleave on simple pipeline
• Pipeline has 100ns cycle time
• Each virtual processor executes one instruction every 1000ns

October 17, 2022 L18-4

MIT 6.5900 Fall 2022

Simple Multithreaded Pipeline

Have to carry thread select down pipeline to ensure
correct state bits read/written at each pipe stage

October 17, 2022

+1

2 Thread
select

PC
1PC

1PC
1PC

1
I$ IR GPR1GPR1GPR1GPR1

X

Y

2

D$

L18-5

MIT 6.5900 Fall 2022

Multithreading Costs

• Each thread needs its own user architectural state
– PC
– GPRs (CDC6600 PPUs – accumulator-based architecture)

• Also, needs its own system architectural state
– Virtual memory page table base register
– Exception handling registers

• Other costs?

• Appears to software (including OS) as multiple,
albeit slower, CPUs

October 17, 2022 L18-6

MIT 6.5900 Fall 2022

Thread Scheduling Policies
• Fixed interleave (CDC 6600 PPUs, 1965)

– Each of N threads executes one instruction every N cycles
– If thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots among N threads
– Hardware performs fixed interleave over S slots, executing

whichever thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982)
– Hardware keeps track of which threads are ready to go
– Picks next thread to execute based on hardware priority scheme

October 17, 2022 L18-7

MIT 6.5900 Fall 2022

Denelcor HEP
(Burton Smith, 1982)

First commercial machine to use hardware threading in main CPU
– 120 threads per processor
– 10 MHz clock rate
– Up to 8 processors
– Precursor to Tera MTA (Multithreaded Architecture)

October 17, 2022 L18-8

MIT 6.5900 Fall 2022

Tera MTA (1990-97)

• Up to 256 processors
• Up to 128 active threads per processor
• Processors and memory modules populate a sparse

3D torus interconnection fabric
• Flat, shared main memory

– No data cache
– Sustains one main memory access per cycle per processor

• GaAs logic in prototype, 1KW/processor @ 260MHz
– CMOS version, MTA-2, 50W/processor

October 17, 2022 L18-9

MIT 6.5900 Fall 2022

MTA Architecture
• Each processor supports 128 active hardware threads

– 1 x 128 = 128 stream status word (SSW) registers,
– 8 x 128 = 1024 branch-target registers,
– 32 x 128 = 4096 general-purpose registers

• Three operations packed into 64-bit instruction (short VLIW)
– One memory operation,
– One arithmetic operation, plus
– One arithmetic or branch operation

• Thread creation and termination instructions

• Explicit 3-bit “lookahead” field in instruction gives number of
subsequent instructions (0-7) that are independent of this one
– Allows fewer threads to fill machine pipeline
– Used for variable-sized branch delay slots

October 17, 2022 L18-10

MIT 6.5900 Fall 2022

MTA Pipeline

October 17, 2022

A

W

C

W

M

Inst Fetch

M
em

or
y

Po
ol

Retry Pool

Interconnection Network

W
rit

e
Po

ol

W

Memory pipeline

Issue Pool • Every cycle, one
instruction from one
active thread is
launched into pipeline

• Instruction pipeline
is 21 cycles long

• Memory operations
incur ~150 cycles of
latency

Assuming a single thread issues one
instruction every 21 cycles, and clock
rate is 260 MHz…

What is single thread performance?

Effective single thread issue rate
is 260/21 = 12.4 MIPS

L18-11

MIT 6.5900 Fall 2022

Coarse-Grain Multithreading

Tera MTA designed for supercomputing applications
with large data sets and low locality
– No data cache
– Many parallel threads needed to hide large memory

latency

Other applications are more cache friendly
– Few pipeline bubbles when cache getting hits
– Just add a few threads to hide occasional cache miss

latencies
– Swap threads on cache misses

October 17, 2022 L18-12

MIT 6.5900 Fall 2022

Multithreading Design Choices

• Fine-grained multithreading
– Context switch among threads every cycle

• Coarse-grained multithreading
– Context switch among threads every few cycles, e.g., on:

• Function unit data hazard,
• L1 miss,
• L2 miss…

• Why choose one style over another?

• Choice depends on
– Context-switch overhead
– Number of threads supported (due to per-thread state)
– Expected application-level parallelism…

October 17, 2022 L18-13

MIT 6.5900 Fall 2022

TX-2: Multi-sequence computer
(Wes Clark, Lincoln Labs, 1956)

• Start-Over
• In-out alarms
• Arithmetic alarms (overflows, etc.)
• Magnetic tape units (multiple)
• High-speed printer
• Analog-to-digital converter
• Paper tape readers (multiple)
• Light pen
• Display (multiple)
• Memory Test Computer
• TX-O
• Digital-to-analog converter
• Paper tape punch
• Flexowriters (multiple)
• *Main sequences (three)

October 17, 2022

32 Instruction sequences (threads) with
• a fixed priority order among the threads, and
• executes many instructions in a thread - switches mediated by:

– Instruction “break”/”dismiss” bits
– Attention request from I/O

L18-14

MIT 6.5900 Fall 2022

MIT Alewife (1990)

• Modified SPARC chips
– Register windows hold different

thread contexts

• Up to four threads per node
• Thread switch on local cache

miss

October 17, 2022 L18-15

MIT 6.5900 Fall 2022

IBM PowerPC RS64-IV (2000)

• Commercial coarse-grain multithreading CPU
• Based on PowerPC with quad-issue in-order five-

stage pipeline
• Each physical CPU supports two virtual CPUs
• On L2 cache miss, pipeline is flushed and execution

switches to second thread
– Short pipeline minimizes flush penalty (4 cycles), small

compared to memory access latency
– Flush pipeline to simplify exception handling

October 17, 2022 L18-16

MIT 6.5900 Fall 2022

Superscalar Machine Efficiency

• Why horizontal waste?
• Why vertical waste?

October 17, 2022

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

L18-17

MIT 6.5900 Fall 2022

Vertical Multithreading

• What is the effect of cycle-by-cycle interleaving?
– removes vertical waste, but leaves some horizontal waste

October 17, 2022

Issue width

Time

Second thread interleaved
cycle-by-cycle

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

L18-18

MIT 6.5900 Fall 2022

Chip Multiprocessing

• What is the effect of splitting into multiple processors?
– reduces horizontal waste,
– leaves some vertical waste, and
– caps peak throughput of each thread.

October 17, 2022

Issue width

Time

L18-19

MIT 6.5900 Fall 2022

Ideal Superscalar Multithreading
[Tullsen, Eggers, Levy, UW, 1995]

• Interleave multiple threads to multiple issue slots
with no restrictions

October 17, 2022

Issue width

Time

L18-20

MIT 6.5900 Fall 2022

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

• Add multiple contexts and fetch engines and allow instructions
fetched from different threads to issue simultaneously

• Utilize wide out-of-order superscalar processor issue queue to
find instructions to issue from multiple threads

• OOO instruction window already has most of the circuitry
required to schedule from multiple threads

• Any single thread can utilize whole machine

October 17, 2022 L18-21

MIT 6.5900 Fall 2022

Basic Out-of-order Pipeline

October 17, 2022

Fetch Decode
/Map

Queue Reg
Read

Execute Dcache
/Store
Buffer

Reg
Write

Retire

PC

Icache

Register
Map

Dcache
Regs Regs

Thread-
blind

[EV8 – Microprocessor Forum, Oct 1999]
L18-22

MIT 6.5900 Fall 2022

SMT Pipeline

October 17, 2022

Fetch Decode
/Map

Queue Reg
Read

Execute Dcache
/Store
Buffer

Reg
Write

Retire

Icache
Dcache

PC

Register
Map

Regs Regs

[EV8 – Microprocessor Forum, Oct 1999]
L18-23

MIT 6.5900 Fall 2022

Icount Choosing Policy

October 17, 2022

Why does this enhance throughput?

Fetch from thread with the least instructions in flight.

L18-24

MIT 6.5900 Fall 2022

Why Does Icount Make Sense?

N
T = --------

L

October 17, 2022

N/4
Ti/4 = --------

L

Assuming latency (L) is unchanged with the addition of threading.
For each thread i with original throughput Ti (and 4 threads):

L18-25

MIT 6.5900 Fall 2022

SMT Fetch Policies (Locks)
• Problem:

Spin looping thread consumes resources

• Solution:
Provide quiescing operation that allows a
thread to sleep until a memory location
changes

October 17, 2022

loop:
ARM r1, 0(r2)
BEQ r1, got_it
QUIESCE
BR loop

got_it:

Load and start
watching 0(r2)

Inhibit scheduling of
thread until activity
observed on 0(r2)

L18-26

MIT 6.5900 Fall 2022

Adaptation to parallelism type

October 17, 2022

For regions with high thread
level parallelism (TLP) entire
machine width is shared by all
threads

Issue width

Time

Issue width

Time

For regions with low thread level
parallelism (TLP) entire machine
width is available for instruction
level parallelism (ILP)

L18-27

MIT 6.5900 Fall 2022

Pentium-4 Hyperthreading (2002)

• First commercial SMT design (2-way SMT)
– Hyperthreading == SMT

• Logical processors share nearly all resources of the
physical processor
– Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~ 5%
• When one logical processor is stalled, the other can

make progress
– No logical processor can use all entries in queues when two

threads are active

• Processor running only one active software thread
runs at approximately same speed with or without
hyperthreading

October 17, 2022 L18-28

MIT 6.5900 Fall 2022

Pentium-4 Hyperthreading
Front End

October 17, 2022

[Intel Technology Journal, Q1 2002]

Resource divided
between logical CPUs

Resource shared
between logical CPUs

L18-29

MIT 6.5900 Fall 2022

Pentium-4 Branch Predictor

• Separate return address stacks per thread
Why?

• Separate first-level global branch history table
Why?

• Shared second-level branch history table, tagged
with logical processor IDs

October 17, 2022 L18-30

MIT 6.5900 Fall 2022

Pentium-4 Hyperthreading
Execution Pipeline

October 17, 2022
[Intel Technology Journal, Q1 2002]

L18-31

MIT 6.5900 Fall 2022

Summary: Multithreading Styles

October 17, 2022 L18-32

L11-33MIT 6.5900 Fall 2022

Thank you!

	Slide Number 1
	Pipeline Hazards
	Multithreading
	CDC 6600 Peripheral Processors�(Cray, 1964)
	Simple Multithreaded Pipeline
	Multithreading Costs
	Thread Scheduling Policies
	Denelcor HEP�(Burton Smith, 1982)
	Tera MTA (1990-97)
	MTA Architecture
	MTA Pipeline
	Coarse-Grain Multithreading
	Multithreading Design Choices
	TX-2: Multi-sequence computer�(Wes Clark, Lincoln Labs, 1956)
	MIT Alewife (1990)
	IBM PowerPC RS64-IV (2000)
	Superscalar Machine Efficiency
	Vertical Multithreading
	Chip Multiprocessing
	Ideal Superscalar Multithreading �[Tullsen, Eggers, Levy, UW, 1995]
	O-o-O Simultaneous Multithreading�[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]�
	Basic Out-of-order Pipeline
	SMT Pipeline
	Icount Choosing Policy
	Why Does Icount Make Sense?
	SMT Fetch Policies (Locks)
	Adaptation to parallelism type
	Pentium-4 Hyperthreading (2002)
	Pentium-4 Hyperthreading�Front End
	Pentium-4 Branch Predictor
	Pentium-4 Hyperthreading�Execution Pipeline
	Summary: Multithreading Styles
	Slide Number 33

