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The Shift to Multicore
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e Since 2005, improvements in system performance mainly due
to increasing cores per chip

e Why?  Technology scaling
Limited instruction-level parallelism
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Multicore Performance
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What factors may limit multicore performance?

« Limited application parallelism
« Memory accesses and inter-core communication
 Programming complexity
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Amdahl’s Law

¢ Speedup= til'newithout enhancement/ til'T]ewith enhancement
e Suppose an enhancement speeds up a fraction f of

a task by a factor of S

time,., = time 4 ( (1-f) + f/S )

Soveran = 1/ ( (1-f) + /S )

Corollary: Make the common case fast
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Amdahl’'s Law and Parallelism

e Say you write a program that can do 90% of the
work in parallel, but the other 10% is sequential

e What is the maximum speedup you can get by
running on a multicore machine?

Soveran = 1/ ( (1-f) + /S )

f — 0.9, S=OO - Sovera” — 10

What f do you need to use a 1000-core machine well?
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Communication Models

e Shared memory:
- Single address space
— Implicit communication by reading/writing memory
e Data
e Control (semaphores, locks, barriers, ..
- Low-level programming model: threads

e Message passing:
— Separate address spaces

- Explicit communication by send/rcv messages
e Data

e Control (blocking msgs, barriers, ...)

- Low-level programming model:
processes + inter-process communication (e.g., MPI)

e Pros/cons of each model?
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Coherence and Consistency

e Shared memory systems:
— Have multiple private caches for performance reasons
— Need to provide the illusion of a single shared memory

e Intuition: A read should return the most recently

written value
— What is "“most recent”?

e Formally:
— Coherence: What values can a read return?
e Concerns reads/writes to a single memory location
— Consistency: When do writes become visible to reads?
e Concerns reads/writes to multiple memory locations
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Cache Coherence Avoids Stale Data
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Cache Cache Cache Cache
S0 sosgs s] o

©® LDOxA D 2

©ST 3 > 0xA
© LD OxA > 2 (stale!)

e A cache coherence protocol controls cache contents
to avoid stale cache lines
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Implementing Cache Coherence

e Coherence protocols must enforce two rules:

- Write propagation: Writes eventually become visible to all processors

— Write serialization: Writes to the same location are serialized (all
processors see them in the same order)

e How to ensure write propagation?

- Write-invalidate protocols: Invalidate all other cached copies before
performing the write

- Write-update protocols: Update all other cached copies after
performing the write

e How to track sharing state of cached data and serialize
requests to the same address?

— Snooping-based protocols: All caches observe each other’s actions
through a shared bus (bus is the serialization point)

— Directory-based protocols: A coherence directory tracks contents of
private caches and serializes requests (directory is the serialization
point)
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Snooping-Based Coherence
(Goodman, 1983)

P
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Snooping-Based Coherence

e Bus provides serialization point
— Broadcast, totally ordered

e Controller
— One cache controller for each core “snoops” all bus transactions

— Controller
e Responds to requests from core and the bus
e changes state of the selected cache block
e generates bus transactions to access data or invalidate

e Snoopy protocol (FSM)
— State-transition diagram Processor Cache
— Actions Id/st ™/ )

e Handling writes:
— Write-invalidate
- Write-update .

State[Tag [Data

\. J

Sﬁc;op (observed bus transaction)
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A Simple Protocol: Valid/Invalid (VI)

e Assume write-
through caches

e [ransition

nomenclature:
\\ BusWr / -- triggering action /
! taken action(s)

PrWr / BusWr

PrRd / BusRd

/

/ ___ Actions
_/ Processor Read (PrRd)

Processor Write (PrWr)
PrWr / BusWr Bus Read (BusRd)
Bus Write (BusWr)
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Valid/Invalid Example

BusRd OxA | N

-<

__Tag | state | Data _

OxA Vv 2

O LD oxA
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Valid/Invalid Example

| BusRdOxA

-<

__Tag | state | Data _ | Tag | sState | Data
OxA Vv 2 OxA \Y 2

@ LD OxA

O LD oxA

Additional loads satisfied locally, without BusRd
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Valid/Invalid Example

BusWr OxA, 3 !

< >

" Tag | State | Data _
OxA AV 3 OxA I 2
O LD oxA
@ LD OxA
9 ST OxA
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Valid/Invalid Example

Main Memory

§ BusRd OxA

>

" Tag | state | Dpata _
OxA V 3 OxA \Y/ 3
O LD oxA
@ LD 0xA
T OXA
© ST ox OLD 0xA

VI Problems? EVery write updates main memory
" Every write requires broadcast & snoop

October 19, 2022 MIT 6.5900 Fall 2022 L12-16



Modified/Shared/Invalid (MSI)
Protocol

o Allows writeback caches + satisfying writes locally

PrRd /——O PrWr / --
—> Processor-initiated transitions
Bus-initiated transitions

\\ \\\
| BusRd / . Actions |
\
) BUswB Processor Read (PrRd)
| BusRdX Processor Write (PrWr)
PrWr / N | / BusWB
BusRdx \PrRd / \ Bus Read (BusRd)
\ -
,'Bu/?’RdX / Bus Read Exclusive
\ PrRd / —- (BusRdX)
-7 BusRd / -- Bus Writeback (BusWB)

October 19, 2022 MIT 6.5900 Fall 2022 L12-17



MSI Example

BusRd OxA | N

-<

__Tag | state | Data _

OxA S 2

O LD oxA
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MSI Example

| BusRdOxA

-<

__Tag | state | Data _ | Tag | sState | Data
OxA S 2 OxA S 2

@ LD 0xA

O LD oxA

Additional loads satisfied locally, without BusRd
(like in VI)
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MSI Example

BusRdX OxA | _

-<

" Tag | state | Data
OxA M 3 OxA I 2
O LD oxA
@ LD 0xA
9 ST OxA

Additional loads and stores from core 0 satisfied locally,
without bus transactions (unlike in VI)
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MSI Example

_BusWB OxA,3 | BusRdX OxA
" Tag | state | vata |[ Tog | state | pata _
OxA I 3 OxA M 10

© LD oxA
@ LD OxA
9 ST OxA

OST 0xA
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Cache interventions

Main Memory

BusWB OxA, 3 | BusRdX OxA

-< >

__Tag | state | Data _

OxA 3 OxA M 10

e MSI allows caches to serve writes without updating
memory, so main memory can have stale data

— Core 0’s cache needs to supply data
— But main memory may also respond!

e Cache must override response from main memory

=
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MSI Example

_BusRd 0xA | BuswB OxA, 10 _
 Tag | State | Data _  Tag | State | Data _
OxA S 10 OxA S 10

€ LD 0xA

€ LD OxA
9 ST OxA

9 ST OxA

© LD 0xA
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MSI Optimizations: Exclusive State

e Observation: Doing read-modify-write sequences

on private data is common
- What's the problem with MSI?

e Solution: E state (exclusive, clean)

— If no other sharers, a read acquires line in E instead of S
— Writes silently cause E->M (exclusive, dirty)
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MESI: An Enhanced MSI protocol

increased performance for private read-write data

: Modified Exclusive

Each cache line has a tag : 3
: Exclusive, unmodified

H LV m=<

Address tag : Shared
State : Invalid
bits PrRd / --
PrWr / -- =
PrRd /--
P T A
V. - BusRdX
/ == PrRd / BusRd
: if no other
! sharers
[

: @
PrRd / -- PrRd / BusRd

BusRd / - if other sharers
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MSI Optimizations: Owner State

e Observation: On M-S transitions, must write back
line!
- What happens with frequent read-write sharing?
— Can we defer the write after S?

e Solution: O state (Owner)

- O = S + responsibility to write back

— On M-S transition, one sharer (typically the one who had the
line in M) retains the line in O instead of S

— On eviction, O writes back line (or another sharer does S->0)

e MSI, MESI, MOSI, MOESI...

— Typically E if private read-write >> shared read-only (common)
— Typically O only if writebacks are expensive (main mem vs L3)
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Split-Transaction and Pipelined Buses

Atomic Transaction Bus

Delay

>

Simple, but low throughput! Time

Split-Transaction Bus
h [Resp3 |

e Supports multiple simultaneous transactions
— Higher throughput
— Responses may arrive out of order

o Often implemented as multiple buses (reg+resp)
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Non-Atomicity - Transient States

e Protocol must handle BusGnt /
lack of atomicity BusRd

e Two types of states
- Stable (e.g. MSI)

BusGnt /

— Transient BusInv
e Split + race
. BusRd /
transitions PrWF / BUSWB | \\
e More complex BusReq ,/\ BusRdX
<. \/ BusWB
h 1
\
|
BusGnt / \\Bu$RdX / --

BusRd

Bus Request e
(BusReq) PrRd /
Bus Grant BusReq
(BusGnt)
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Scaling Cache Coherence

e Can implement ordered interconnects that scale
better than buses...

broadcast broadcast
request down switch request down

/;itch
switc \ //\a itch
/

crossbar data network

Starfire E10000 (drawn W|th onIy elght processors for clarity).
A coherence request is unicast up to the root, where it is
serialized, before being broadcast down to all processors

e ... but broadcast is fundamentally unscalable
- Bandwidth, energy of transactions with 100s of cache snoops?
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Directory-Based Coherence
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e Route all coherence transactions through a directory
- Tracks contents of private caches - No broadcasts
— Serves as ordering point for conflicting requests - Unordered

networks
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Coherence and False Sharing

Performance Issue #1

state |blk addr |dataO | datal dataN

A cache block contains more than one word and cache
coherence is done at the block-level and not word-level

Suppose P, writes word, and P, writes word, and
both words have the same block address.

What can happen? The block may be invalidated (ping-pong)
many times unnecessarily because
addresses are in the same block.

How to address this problem?
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Coherence and Synchronization

Performance Issue #2

Processor 1

Processor 2

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

Processor 3

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

mutex=1

Cache coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex location
(non-atomically) and executing a swap only if it is found to be

zero (test&test&set).
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Coherence and Bus Occupancy
Performance Issue #3

« In general, an atomic read-modify-write instruction
requires two memory (bus) operations without
intervening memory operations by other processors

 In a multiprocessor setting, bus needs to be locked
for the entire duration of the atomic read and write
operation
— expensive for simple buses
= very expensive for split-transaction buses

« modern processors use
load-reserve
store-conditional
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Load-reserve & Store-conditional

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a): Store-conditional (a), R:
<flag, adr> « <1, a>; if <flag, adr> == <1, a>
R « M[a]; then cancel other procs’

reservation on a;

M[a] « <R>;

status « succeed;
else status « fail;

If the snooper sees a store transaction to the address

in the reserve register, the reserve bit is set to 0
e Several processors may reserve ‘a’ simultaneously
e These instructions are like ordinary loads and stores
with respect to the bus traffic

October 19, 2022 MIT 6.5900 Fall 2022 L12-34



Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions is not
necessarily reduced, but splitting an atomic instruction
into load-reserve & store-conditional:

e jncreases bus utilization (and reduces processor
stall time), especially in split-transaction buses

e reduces cache ping-pong effect because

processors trying to acquire a mutex do not have to
perform stores each time
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Thank you!

Next lecture: Directory-based
Cache Coherence
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