Cache Coherence

Joel Emer
Computer Science & Artificial Intelligence Lab
M.I.T.

October 19, 2022 MIT 6.5900 Fall 2022 L12-1

The Shift to Multicore

T T T T ry
10 | | “ Transistors
o b AMIA T] (thousands)
; ; IRV Yo |
5 L o ﬁ YOS S | Single-Thread
10 ; ; : ° @® o0
3 3 ““A 3 .Q_ Performance 3
104 b | | s AL AL B | (SpecINT x 10%)
| R L,
| Ad g u *‘ Frequency (MHz
1w A,,;A ol .G} } I‘ ““. . i ¥)
: . :
3 A 3 "L E 5 * Typical Power
10° | R ‘f: vivvv';;v;;&w;"v""f '.: . (V}\IIF;tts)
! e v H *
N . TR T el | Numberof
10 A . v D B4 Logical Cores
Loy Y Y T oy enen?®
100 _" z ’ ‘ "’ “mm" —
| I i |
1970 1980 1990 2000 2010 2020

Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K- Rupb I htps: //www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/]

e Since 2005, improvements in system performance mainly due
to increasing cores per chip

e Why? Technology scaling
Limited instruction-level parallelism

October 19, 2022 MIT 6.5900 Fall 2022 L12-2

Multicore Performance

-~ High-perf,

> expensive ? Cost/perf curve of

o core possible core designs

T

© /

()] /

| - !

5l N

- ,

7))

o

@) >
Performance

What factors may limit multicore performance?

« Limited application parallelism
« Memory accesses and inter-core communication
 Programming complexity

October 19, 2022 MIT 6.5900 Fall 2022 L12-3

Amdahl’s Law

¢ Speedup= til'newithout enhancement/ til'T]ewith enhancement
e Suppose an enhancement speeds up a fraction f of

a task by a factor of S

time,., = time 4 ((1-f) + f/S)

Soveran = 1/ ((1-f) + /S)

Corollary: Make the common case fast

October 19, 2022

time,,
(1-7)

time,., :
(1-f) f/S

MIT 6.5900 Fall 2022

L12-4

Amdahl’'s Law and Parallelism

e Say you write a program that can do 90% of the
work in parallel, but the other 10% is sequential

e What is the maximum speedup you can get by
running on a multicore machine?

Soveran = 1/ ((1-f) + /S)

f — 0.9, S=OO - Sovera” — 10

What f do you need to use a 1000-core machine well?

October 19, 2022 MIT 6.5900 Fall 2022 L12-5

Communication Models

e Shared memory:
- Single address space
— Implicit communication by reading/writing memory
e Data
e Control (semaphores, locks, barriers, ..
- Low-level programming model: threads

e Message passing:
— Separate address spaces

- Explicit communication by send/rcv messages
e Data

e Control (blocking msgs, barriers, ...)

- Low-level programming model:
processes + inter-process communication (e.g., MPI)

e Pros/cons of each model?

October 19, 2022 MIT 6.5900 Fall 2022 L12-6

Coherence and Consistency

e Shared memory systems:
— Have multiple private caches for performance reasons
— Need to provide the illusion of a single shared memory

e Intuition: A read should return the most recently

written value
— What is "“most recent”?

e Formally:
— Coherence: What values can a read return?
e Concerns reads/writes to a single memory location
— Consistency: When do writes become visible to reads?
e Concerns reads/writes to multiple memory locations

October 19, 2022 MIT 6.5900 Fall 2022 L12-7

Cache Coherence Avoids Stale Data

IIIIIIIIIIIIIIIIIIiHiIIHIHHHHIHIIIIIIIIIIIIIIIIII

Cache Cache Cache Cache
S0 sosgs s] o

©® LDOxA D 2

©ST 3 > 0xA
© LD OxA > 2 (stale!)

e A cache coherence protocol controls cache contents
to avoid stale cache lines

October 19, 2022 MIT 6.5900 Fall 2022 L12-8

Implementing Cache Coherence

e Coherence protocols must enforce two rules:

- Write propagation: Writes eventually become visible to all processors

— Write serialization: Writes to the same location are serialized (all
processors see them in the same order)

e How to ensure write propagation?

- Write-invalidate protocols: Invalidate all other cached copies before
performing the write

- Write-update protocols: Update all other cached copies after
performing the write

e How to track sharing state of cached data and serialize
requests to the same address?

— Snooping-based protocols: All caches observe each other’s actions
through a shared bus (bus is the serialization point)

— Directory-based protocols: A coherence directory tracks contents of
private caches and serializes requests (directory is the serialization
point)

October 19, 2022 MIT 6.5900 Fall 2022 L12-9

Snooping-Based Coherence
(Goodman, 1983)

P

October 19, 2022

Shared

Bus

A
Snoopy]
Cache |~ PhYSICEﬂ

Memory

Snoopy
Cache
Snoopy<§==€> - - DMA
Cache

Y

DISKS

Caches watch (snoop on) bus to keep all

processors’ view of memory coherent

MIT 6.5900 Fall 2022

L12-10

Snooping-Based Coherence

e Bus provides serialization point
— Broadcast, totally ordered

e Controller
— One cache controller for each core “snoops” all bus transactions

— Controller
e Responds to requests from core and the bus
e changes state of the selected cache block
e generates bus transactions to access data or invalidate

e Snoopy protocol (FSM)
— State-transition diagram Processor Cache
— Actions Id/st ™/)

e Handling writes:
— Write-invalidate
- Write-update .

State[Tag [Data

\. J

Sﬁc;op (observed bus transaction)

October 19, 2022 MIT 6.5900 Fall 2022 L12-11

A Simple Protocol: Valid/Invalid (VI)

e Assume write-
through caches

e [ransition

nomenclature:
\\ BusWr / -- triggering action /
! taken action(s)

PrWr / BusWr

PrRd / BusRd

/

/ ___ Actions
_/ Processor Read (PrRd)

Processor Write (PrWr)
PrWr / BusWr Bus Read (BusRd)
Bus Write (BusWr)

October 19, 2022 MIT 6.5900 Fall 2022 L12-12

Valid/Invalid Example

BusRd OxA | N

-<

__Tag | state | Data _

OxA Vv 2

O LD oxA

October 19, 2022 MIT 6.5900 Fall 2022 L12-13

Valid/Invalid Example

| BusRdOxA

-<

__Tag | state | Data _ | Tag | sState | Data
OxA Vv 2 OxA \Y 2

@ LD OxA

O LD oxA

Additional loads satisfied locally, without BusRd

October 19, 2022 MIT 6.5900 Fall 2022 L12-14

Valid/Invalid Example

BusWr OxA, 3 !

< >

" Tag | State | Data _
OxA AV 3 OxA I 2
O LD oxA
@ LD OxA
9 ST OxA

October 19, 2022 MIT 6.5900 Fall 2022

L12-15

Valid/Invalid Example

Main Memory

§ BusRd OxA

>

" Tag | state | Dpata _
OxA V 3 OxA \Y/ 3
O LD oxA
@ LD 0xA
T OXA
© ST ox OLD 0xA

VI Problems? EVery write updates main memory
" Every write requires broadcast & snoop

October 19, 2022 MIT 6.5900 Fall 2022 L12-16

Modified/Shared/Invalid (MSI)
Protocol

o Allows writeback caches + satisfying writes locally

PrRd /——O PrWr / --
—> Processor-initiated transitions
Bus-initiated transitions

\\ \\\
| BusRd / . Actions |
\
) BUswB Processor Read (PrRd)
| BusRdX Processor Write (PrWr)
PrWr / N | / BusWB
BusRdx \PrRd / \ Bus Read (BusRd)
\ -
,'Bu/?’RdX / Bus Read Exclusive
\ PrRd / —- (BusRdX)
-7 BusRd / -- Bus Writeback (BusWB)

October 19, 2022 MIT 6.5900 Fall 2022 L12-17

MSI Example

BusRd OxA | N

-<

__Tag | state | Data _

OxA S 2

O LD oxA

October 19, 2022 MIT 6.5900 Fall 2022 L12-18

MSI Example

| BusRdOxA

-<

__Tag | state | Data _ | Tag | sState | Data
OxA S 2 OxA S 2

@ LD 0xA

O LD oxA

Additional loads satisfied locally, without BusRd
(like in VI)

October 19, 2022 MIT 6.5900 Fall 2022 L12-19

MSI Example

BusRdX OxA | _

-<

" Tag | state | Data
OxA M 3 OxA I 2
O LD oxA
@ LD 0xA
9 ST OxA

Additional loads and stores from core 0 satisfied locally,
without bus transactions (unlike in VI)

October 19, 2022 MIT 6.5900 Fall 2022 L12-20

MSI Example

_BusWB OxA,3 | BusRdX OxA
" Tag | state | vata |[Tog | state | pata _
OxA I 3 OxA M 10

© LD oxA
@ LD OxA
9 ST OxA

OST 0xA

October 19, 2022 MIT 6.5900 Fall 2022 L12-21

Cache interventions

Main Memory

BusWB OxA, 3 | BusRdX OxA

-< >

__Tag | state | Data _

OxA 3 OxA M 10

e MSI allows caches to serve writes without updating
memory, so main memory can have stale data

— Core 0’s cache needs to supply data
— But main memory may also respond!

e Cache must override response from main memory

=

October 19, 2022 MIT 6.5900 Fall 2022 L12-22

MSI Example

_BusRd 0xA | BuswB OxA, 10 _
 Tag | State | Data _ Tag | State | Data _
OxA S 10 OxA S 10

€ LD 0xA

€ LD OxA
9 ST OxA

9 ST OxA

© LD 0xA

October 19, 2022 MIT 6.5900 Fall 2022 L12-23

MSI Optimizations: Exclusive State

e Observation: Doing read-modify-write sequences

on private data is common
- What's the problem with MSI?

e Solution: E state (exclusive, clean)

— If no other sharers, a read acquires line in E instead of S
— Writes silently cause E->M (exclusive, dirty)

October 19, 2022 MIT 6.5900 Fall 2022 L12-24

MESI: An Enhanced MSI protocol

increased performance for private read-write data

: Modified Exclusive

Each cache line has a tag : 3
: Exclusive, unmodified

H LV m=<

Address tag : Shared
State : Invalid
bits PrRd / --
PrWr / -- =
PrRd /--
P T A
V. - BusRdX
/ == PrRd / BusRd
: if no other
! sharers
[

: @
PrRd / -- PrRd / BusRd

BusRd / - if other sharers
October 19, 2022 MIT 6.5900 Fall 2022 L12-25

MSI Optimizations: Owner State

e Observation: On M-S transitions, must write back
line!
- What happens with frequent read-write sharing?
— Can we defer the write after S?

e Solution: O state (Owner)

- O = S + responsibility to write back

— On M-S transition, one sharer (typically the one who had the
line in M) retains the line in O instead of S

— On eviction, O writes back line (or another sharer does S->0)

e MSI, MESI, MOSI, MOESI...

— Typically E if private read-write >> shared read-only (common)
— Typically O only if writebacks are expensive (main mem vs L3)

October 19, 2022 MIT 6.5900 Fall 2022 L12-26

Split-Transaction and Pipelined Buses

Atomic Transaction Bus

Delay

>

Simple, but low throughput! Time

Split-Transaction Bus
h [Resp3 |

e Supports multiple simultaneous transactions
— Higher throughput
— Responses may arrive out of order

o Often implemented as multiple buses (reg+resp)

October 19, 2022 MIT 6.5900 Fall 2022 L12-27

Non-Atomicity - Transient States

e Protocol must handle BusGnt /
lack of atomicity BusRd

e Two types of states
- Stable (e.g. MSI)

BusGnt /

— Transient BusInv
e Split + race
. BusRd /
transitions PrWF / BUSWB | \\
e More complex BusReq ,/\ BusRdX
<. \/ BusWB
h 1
\
|
BusGnt / \\Bu$RdX / --

BusRd

Bus Request e
(BusReq) PrRd /
Bus Grant BusReq
(BusGnt)

October 19, 2022 MIT 6.5900 Fall 2022 L12-28

Scaling Cache Coherence

e Can implement ordered interconnects that scale
better than buses...

broadcast broadcast
request down switch request down

/;itch
switc \ //\a itch
/

crossbar data network

Starfire E10000 (drawn W|th onIy elght processors for clarity).
A coherence request is unicast up to the root, where it is
serialized, before being broadcast down to all processors

e ... but broadcast is fundamentally unscalable
- Bandwidth, energy of transactions with 100s of cache snoops?

October 19, 2022 MIT 6.5900 Fall 2022 L12-29

Directory-Based Coherence

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory 110

Directory

Memory 110

Directory

Memory 110

Directory

i

Memory 110

Directory

Interconnection network

)

ULl
il

Directory

Directory

Directory

Directory

| Memory I_

Processor
+ cache

110 | Memory I_ 110

Processor
+ cache

Memory /O

Processor
+ cache

Il

Memory

LR

Processor
+ cache

e Route all coherence transactions through a directory
- Tracks contents of private caches - No broadcasts
— Serves as ordering point for conflicting requests - Unordered

networks

October 19, 2022

(more on next lecture)

MIT 6.5900 Fall 2022

L12-30

Coherence and False Sharing

Performance Issue #1

state |blk addr |dataO | datal dataN

A cache block contains more than one word and cache
coherence is done at the block-level and not word-level

Suppose P, writes word, and P, writes word, and
both words have the same block address.

What can happen? The block may be invalidated (ping-pong)
many times unnecessarily because
addresses are in the same block.

How to address this problem?

October 19, 2022 MIT 6.5900 Fall 2022 L12-31

Coherence and Synchronization

Performance Issue #2

Processor 1

Processor 2

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

Processor 3

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

mutex=1

Cache coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex location
(non-atomically) and executing a swap only if it is found to be

zero (test&test&set).

October 19, 2022

MIT 6.5900 Fall 2022

L12-32

Coherence and Bus Occupancy
Performance Issue #3

« In general, an atomic read-modify-write instruction
requires two memory (bus) operations without
intervening memory operations by other processors

 In a multiprocessor setting, bus needs to be locked
for the entire duration of the atomic read and write
operation
— expensive for simple buses
= very expensive for split-transaction buses

« modern processors use
load-reserve
store-conditional

October 19, 2022 MIT 6.5900 Fall 2022 L12-33

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a): Store-conditional (a), R:
<flag, adr> « <1, a>; if <flag, adr> == <1, a>
R « M[a]; then cancel other procs’

reservation on a;

M[a] « <R>;

status « succeed;
else status « fail;

If the snooper sees a store transaction to the address

in the reserve register, the reserve bit is set to 0
e Several processors may reserve ‘a’ simultaneously
e These instructions are like ordinary loads and stores
with respect to the bus traffic

October 19, 2022 MIT 6.5900 Fall 2022 L12-34

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions is not
necessarily reduced, but splitting an atomic instruction
into load-reserve & store-conditional:

e jncreases bus utilization (and reduces processor
stall time), especially in split-transaction buses

e reduces cache ping-pong effect because

processors trying to acquire a mutex do not have to
perform stores each time

October 19, 2022 MIT 6.5900 Fall 2022 L12-35

Thank you!

Next lecture: Directory-based
Cache Coherence

October 19, 2022 MIT 6.5900 Fall 2022 L12-36

	Slide Number 1
	The Shift to Multicore
	Multicore Performance
	Amdahl’s Law
	Amdahl’s Law and Parallelism
	Communication Models
	Coherence and Consistency
	Cache Coherence Avoids Stale Data
	Implementing Cache Coherence
	Snooping-Based Coherence�(Goodman, 1983)
	Snooping-Based Coherence
	A Simple Protocol: Valid/Invalid (VI)
	Valid/Invalid Example
	Valid/Invalid Example
	Valid/Invalid Example
	Valid/Invalid Example
	Modified/Shared/Invalid (MSI) Protocol
	MSI Example
	MSI Example
	MSI Example
	MSI Example
	Cache interventions
	MSI Example
	MSI Optimizations: Exclusive State
	MESI: An Enhanced MSI protocol� increased performance for private read-write data
	MSI Optimizations: Owner State
	Split-Transaction and Pipelined Buses
	Non-Atomicity  Transient States
	Scaling Cache Coherence
	Directory-Based Coherence
	Coherence and False Sharing�Performance Issue #1
	Coherence and Synchronization�Performance Issue #2
	Coherence and Bus Occupancy�Performance Issue #3
	Load-reserve & Store-conditional
	Performance: �Load-reserve & Store-conditional
	Slide Number 36

