
L12-1MIT 6.5900 Fall 2022

Joel Emer
Computer Science & Artificial Intelligence Lab

M.I.T.

Cache Coherence

October 19, 2022

MIT 6.5900 Fall 2022

The Shift to Multicore

• Since 2005, improvements in system performance mainly due
to increasing cores per chip

• Why?

October 19, 2022

Technology scaling
Limited instruction-level parallelism

[https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/]

L12-2

MIT 6.5900 Fall 2022

Multicore Performance

October 19, 2022

Performance

C
os

t
(a

re
a,

 e
ne

rg
y…

)
Cost/perf curve of
possible core designs

High-perf,
expensive
core

Moderate perf,
efficient core

2 cores

4 cores

What factors may limit multicore performance?

• Limited application parallelism
• Memory accesses and inter-core communication
• Programming complexity

L12-3

MIT 6.5900 Fall 2022

Amdahl’s Law

• Speedup= timewithout enhancement / timewith enhancement

• Suppose an enhancement speeds up a fraction f of
a task by a factor of S

timenew = timeold·((1-f) + f/S)
Soverall = 1 / ((1-f) + f/S)

October 19, 2022

f(1 - f)

(1 - f)

timenew

f/S

timeold

Corollary: Make the common case fast
L12-4

MIT 6.5900 Fall 2022

Amdahl’s Law and Parallelism

• Say you write a program that can do 90% of the
work in parallel, but the other 10% is sequential

• What is the maximum speedup you can get by
running on a multicore machine?

October 19, 2022

Soverall = 1 / ((1-f) + f/S)

f = 0.9, S=∞  Soverall = 10

What f do you need to use a 1000-core machine well?

L12-5

MIT 6.5900 Fall 2022

Communication Models

• Shared memory:
– Single address space
– Implicit communication by reading/writing memory

• Data
• Control (semaphores, locks, barriers, …)

– Low-level programming model: threads

• Message passing:
– Separate address spaces
– Explicit communication by send/rcv messages

• Data
• Control (blocking msgs, barriers, …)

– Low-level programming model:
processes + inter-process communication (e.g., MPI)

• Pros/cons of each model?

October 19, 2022

Mem

Mem Mem Mem

Network

L12-6

MIT 6.5900 Fall 2022

Coherence and Consistency
• Shared memory systems:

– Have multiple private caches for performance reasons
– Need to provide the illusion of a single shared memory

• Intuition: A read should return the most recently
written value
– What is “most recent”?

• Formally:
– Coherence: What values can a read return?

• Concerns reads/writes to a single memory location
– Consistency: When do writes become visible to reads?

• Concerns reads/writes to multiple memory locations

October 19, 2022 L12-7

MIT 6.5900 Fall 2022

Cache Coherence Avoids Stale Data

• A cache coherence protocol controls cache contents
to avoid stale cache lines

October 19, 2022

LD 0xA  2 ST 3  0xA

LD 0xA  2 (stale!)

Core 0

Main Memory

Cache

Core 1

Cache

Core 2

Cache

Core 3

Cache
$[0xA] = 2 $[0xA] = 3

1

3

2

L12-8

MIT 6.5900 Fall 2022

Implementing Cache Coherence
• Coherence protocols must enforce two rules:

– Write propagation: Writes eventually become visible to all processors
– Write serialization: Writes to the same location are serialized (all

processors see them in the same order)

• How to ensure write propagation?
– Write-invalidate protocols: Invalidate all other cached copies before

performing the write
– Write-update protocols: Update all other cached copies after

performing the write

• How to track sharing state of cached data and serialize
requests to the same address?
– Snooping-based protocols: All caches observe each other’s actions

through a shared bus (bus is the serialization point)
– Directory-based protocols: A coherence directory tracks contents of

private caches and serializes requests (directory is the serialization
point)

October 19, 2022 L12-9

MIT 6.5900 Fall 2022

Snooping-Based Coherence
(Goodman, 1983)

October 19, 2022

Caches watch (snoop on) bus to keep all
processors’ view of memory coherent

P1

P2

P3

Snoopy
Cache

DMA

Physical
Memory

Shared
Bus

Snoopy
Cache

Snoopy
Cache

DISKS

L12-10

MIT 6.5900 Fall 2022

Snooping-Based Coherence
• Bus provides serialization point

– Broadcast, totally ordered
• Controller

– One cache controller for each core “snoops” all bus transactions
– Controller

• Responds to requests from core and the bus
• changes state of the selected cache block
• generates bus transactions to access data or invalidate

• Snoopy protocol (FSM)
– State-transition diagram
– Actions

• Handling writes:
– Write-invalidate
– Write-update

October 19, 2022

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

Cache

L12-11

MIT 6.5900 Fall 2022

A Simple Protocol: Valid/Invalid (VI)

• Assume write-
through caches

• Transition
nomenclature:

triggering action /
taken action(s)

October 19, 2022

PrWr / BusWr

Valid

BusWr / --

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / --

Actions
Processor Read (PrRd)

Processor Write (PrWr)

Bus Read (BusRd)

Bus Write (BusWr)

L12-12

MIT 6.5900 Fall 2022

Valid/Invalid Example

October 19, 2022

LD 0xA
Core 0

Main Memory

Cache

Core 1

Cache

1

Tag State Data Tag State DataTag State Data

0xA V 2

BusRd 0xA

L12-13

MIT 6.5900 Fall 2022

Valid/Invalid Example

October 19, 2022

LD 0xA
LD 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1
2

Tag State Data Tag State DataTag State Data

0xA V 2

BusRd 0xA

Tag State Data

0xA V 2

Additional loads satisfied locally, without BusRd

L12-14

MIT 6.5900 Fall 2022

Valid/Invalid Example

October 19, 2022

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State Data Tag State DataTag State Data

0xA V 2

Tag State Data

0xA V 2

BusWr 0xA, 3

Tag State Data

0xA I 2

Tag State Data

0xA V 3

L12-15

MIT 6.5900 Fall 2022

Valid/Invalid Example

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State DataTag State Data

0xA I 2

BusRd 0xA

Tag State Data

0xA V 3
Tag State Data

0xA V 3

LD 0xA4

VI Problems?
October 19, 2022

Every write updates main memory
Every write requires broadcast & snoop

L12-16

MIT 6.5900 Fall 2022

Modified/Shared/Invalid (MSI)
Protocol
• Allows writeback caches + satisfying writes locally

October 19, 2022

PrRd /--

M

BusRdX
/ BusWBPrWr /

BusRdX
S

I

PrWr / --

BusRd /
BusWBPrWr /

BusRdX

PrRd /
BusRd BusRdX / --

PrRd / --
BusRd / --

Actions
Processor Read (PrRd)

Processor Write (PrWr)

Bus Read (BusRd)

Bus Read Exclusive
(BusRdX)

Bus Writeback (BusWB)

Processor-initiated transitions
Bus-initiated transitions

L12-17

MIT 6.5900 Fall 2022

MSI Example

October 19, 2022

LD 0xA
Core 0

Main Memory

Cache

Core 1

Cache

1

Tag State Data Tag State DataTag State Data

0xA S 2

BusRd 0xA

L12-18

MIT 6.5900 Fall 2022

MSI Example

October 19, 2022

LD 0xA
LD 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1
2

Tag State Data Tag State DataTag State Data

0xA S 2

BusRd 0xA

Tag State Data

0xA S 2

Additional loads satisfied locally, without BusRd
(like in VI)

L12-19

MIT 6.5900 Fall 2022

MSI Example

October 19, 2022

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State Data Tag State DataTag State Data

0xA S 2

Tag State Data

0xA S 2

BusRdX 0xA

Tag State Data

0xA I 2

Tag State Data

0xA M 3

Additional loads and stores from core 0 satisfied locally,
without bus transactions (unlike in VI)

L12-20

MIT 6.5900 Fall 2022

MSI Example

October 19, 2022

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State DataTag State Data

0xA I 2

BusRdX 0xA

Tag State Data

0xA M 10
Tag State Data

0xA M 3

ST 0xA4

BusWB 0xA, 3

Tag State Data

0xA I 3

L12-21

MIT 6.5900 Fall 2022

Cache interventions

• MSI allows caches to serve writes without updating
memory, so main memory can have stale data
– Core 0’s cache needs to supply data
– But main memory may also respond!

• Cache must override response from main memory

October 19, 2022

Core 0

Main Memory

Cache

Core 1

Cache
Tag State DataTag State Data

0xA I 2

BusRdX 0xA

Tag State Data

0xA M 10
Tag State Data

0xA M 3

BusWB 0xA, 3

Tag State Data

0xA I 3

L12-22

MIT 6.5900 Fall 2022

MSI Example

October 19, 2022

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State DataTag State Data

0xA M 10

BusWB 0xA, 10

Tag State Data

0xA S 10

Tag State Data

0xA I 3

ST 0xA4

BusRd 0xA

Tag State Data

0xA S 10

LD 0xA5

L12-23

MIT 6.5900 Fall 2022

MSI Optimizations: Exclusive State

• Observation: Doing read-modify-write sequences
on private data is common
– What’s the problem with MSI?

• Solution: E state (exclusive, clean)
– If no other sharers, a read acquires line in E instead of S
– Writes silently cause EM (exclusive, dirty)

October 19, 2022 L12-24

MIT 6.5900 Fall 2022

MESI: An Enhanced MSI protocol
increased performance for private read-write data

October 19, 2022

M: Modified Exclusive
E: Exclusive, unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag
state
bits

M

S I

BusRdX
/ --

BusRdX / --

PrWr / --

PrRd / --

BusRd /
BusWB

E
PrRd / --

PrWr / --
PrRd /--

PrWr/
BusRdX

BusRd / --
PrRd / BusRd

if other sharers

PrRd / BusRd
if no other

sharers

L12-25

MIT 6.5900 Fall 2022

MSI Optimizations: Owner State
• Observation: On MS transitions, must write back

line!
– What happens with frequent read-write sharing?
– Can we defer the write after S?

• Solution: O state (Owner)
– O = S + responsibility to write back
– On MS transition, one sharer (typically the one who had the

line in M) retains the line in O instead of S
– On eviction, O writes back line (or another sharer does SO)

• MSI, MESI, MOSI, MOESI…
– Typically E if private read-write >> shared read-only (common)
– Typically O only if writebacks are expensive (main mem vs L3)

October 19, 2022 L12-26

MIT 6.5900 Fall 2022

Split-Transaction and Pipelined Buses

• Supports multiple simultaneous transactions
– Higher throughput
– Responses may arrive out of order

• Often implemented as multiple buses (req+resp)
October 19, 2022

Req
Delay

Response

Atomic Transaction Bus

Req2Req1

Resp1

Req3

Resp3

Split-Transaction Bus

Simple, but low throughput! Time

L12-27

MIT 6.5900 Fall 2022

BusGnt /
BusRd

Non-Atomicity  Transient States
• Protocol must handle

lack of atomicity
• Two types of states

– Stable (e.g. MSI)
– Transient

• Split + race
transitions

• More complex

October 19, 2022

PrRd /--

PrRd /
BusReq

IS

IM

PrWr /
BusReq

BusGnt /
BusRdX

PrWr /
BusReq

BusGnt /
BusInv

SM

Actions
Bus Request

(BusReq)
Bus Grant
(BusGnt)

PrRd / --
BusRd / --

M

BusRdX
/ BusWB

I

PrWr / --

BusRd /
BusWB

BusRdX / --

S

L12-28

MIT 6.5900 Fall 2022

Scaling Cache Coherence

• Can implement ordered interconnects that scale
better than buses…

• … but broadcast is fundamentally unscalable
– Bandwidth, energy of transactions with 100s of cache snoops?

October 19, 2022

Starfire E10000 (drawn with only eight processors for clarity).
A coherence request is unicast up to the root, where it is
serialized, before being broadcast down to all processors

L12-29

MIT 6.5900 Fall 2022

Directory-Based Coherence

• Route all coherence transactions through a directory
– Tracks contents of private caches  No broadcasts
– Serves as ordering point for conflicting requests  Unordered

networks

October 19, 2022

(more on next lecture)
L12-30

MIT 6.5900 Fall 2022

Coherence and False Sharing
Performance Issue #1

October 19, 2022

state blk addr data0 data1 ... dataN

A cache block contains more than one word and cache
coherence is done at the block-level and not word-level

Suppose P1 writes wordi and P2 writes wordk and
both words have the same block address.

What can happen?

How to address this problem?

The block may be invalidated (ping-pong)
many times unnecessarily because
addresses are in the same block.

L12-31

MIT 6.5900 Fall 2022

Coherence and Synchronization
Performance Issue #2

October 19, 2022

Cache coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex location
(non-atomically) and executing a swap only if it is found to be
zero (test&test&set).

cache

Processor 1
R ← 1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex] ← 0;

Processor 2
R ← 1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex] ← 0;

CPU-Memory Bus

cache cache

Processor 3
R ← 1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex] ← 0;

mutex=1

L12-32

MIT 6.5900 Fall 2022

Coherence and Bus Occupancy
Performance Issue #3

October 19, 2022

• In general, an atomic read-modify-write instruction
requires two memory (bus) operations without
intervening memory operations by other processors

• In a multiprocessor setting, bus needs to be locked
for the entire duration of the atomic read and write
operation
⇒ expensive for simple buses
⇒ very expensive for split-transaction buses

• modern processors use
load-reserve
store-conditional

L12-33

MIT 6.5900 Fall 2022

Load-reserve & Store-conditional

October 19, 2022

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
with respect to the bus traffic

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional
Load-reserve R, (a):

<flag, adr> ← <1, a>;
R ← M[a];

Store-conditional (a), R:
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
M[a] ← <R>;
status ← succeed;

else status ← fail;

L12-34

MIT 6.5900 Fall 2022

Performance:
Load-reserve & Store-conditional

October 19, 2022

The total number of memory (bus) transactions is not
necessarily reduced, but splitting an atomic instruction
into load-reserve & store-conditional:

• increases bus utilization (and reduces processor
stall time), especially in split-transaction buses

• reduces cache ping-pong effect because
processors trying to acquire a mutex do not have to
perform stores each time

L12-35

L12-36MIT 6.5900 Fall 2022

Thank you!

Next lecture: Directory-based
Cache Coherence

October 19, 2022

	Slide Number 1
	The Shift to Multicore
	Multicore Performance
	Amdahl’s Law
	Amdahl’s Law and Parallelism
	Communication Models
	Coherence and Consistency
	Cache Coherence Avoids Stale Data
	Implementing Cache Coherence
	Snooping-Based Coherence�(Goodman, 1983)
	Snooping-Based Coherence
	A Simple Protocol: Valid/Invalid (VI)
	Valid/Invalid Example
	Valid/Invalid Example
	Valid/Invalid Example
	Valid/Invalid Example
	Modified/Shared/Invalid (MSI) Protocol
	MSI Example
	MSI Example
	MSI Example
	MSI Example
	Cache interventions
	MSI Example
	MSI Optimizations: Exclusive State
	MESI: An Enhanced MSI protocol� increased performance for private read-write data
	MSI Optimizations: Owner State
	Split-Transaction and Pipelined Buses
	Non-Atomicity  Transient States
	Scaling Cache Coherence
	Directory-Based Coherence
	Coherence and False Sharing�Performance Issue #1
	Coherence and Synchronization�Performance Issue #2
	Coherence and Bus Occupancy�Performance Issue #3
	Load-reserve & Store-conditional
	Performance: �Load-reserve & Store-conditional
	Slide Number 36

