Directory-Based
Cache Coherence

Mengjia Yan
Computer Science and Artificial Intelligence Lab
M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022 L13-1

Maintaining Cache Coherence

It is sufficient to have hardware such that

« Only one processor at a time has write permission for a location

« No processor can load a stale copy of the location after a write

= A correct approach could be:

write request:
The address is invalidated in all other caches
before the write is performed

read request:

If a dirty copy is found in some cache, a write-
back is performed before the memory is read

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-2

Directory-Based Coherence
[Censier and Feautrier, 1978]

Snoopy Protocols

(P RP PP
PEET

= ! Bus

|
v
Mem.

e Snoopy schemes broadcast
requests over memory bus

e Difficult to scale to large
numbers of processors

e Requires additional
bandwidth to cache tags for
snoop requests

October 24, 2022

Directory Protocols

$ $ $

0
T

nterconplect

Dir. [Mem.

e Directory schemes send
messages to only those caches
that might have the line

e Can scale to large numbers of
processors

e Requires extra directory
storage to track possible
sharers

MIT 6.5900 (ne 6.823) Fall 2022 L13-3

An MSI Directory Protocol

Directory

|__Tag | state | Sharers_

Tag | State | Data _

e Cache states: Modified (M) / Shared (S) / Invalid (I)

e Directory states:
— Uncached (Un): No sharers
— Shared (Sh): One or more sharers with read permission (S)
— Exclusive (Ex): A single sharer with read & write permissions (M)
e Transient states not drawn for clarity; for now, assume
No racing requests
October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-4

MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

PFWF / PrWr / ExReq ' Actions |
ExReq Processor Read (PrRd)
CS:D PrRd / -- Processor Write (PrWwr)
A Shared Request

PrRd / ShReq (ShReq)

Exclusive Request
(ExReq)

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-5

MSI Protocol: Caches (2/3)

Transitions initiated by directory requests:

DownReq / InvReq / InvResp (with data)

DownResp
(with data) ____Actions
Invalidation Request
(InvReq)
Downgrade Request
InvRess (DownRea)
(without Invalidation Response
data) (InvResp)
@ Downgrade Response
(DownResp)

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-6

MSI Protocol: Caches (3/3)

@ Eviction /

WDbReq
(with data)
Eviction /

Writeback Request
@ | (WbReq)
WDbReq

(without data)

@

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-7

MSI Protocol: Caches

—> Transitions initiated by processor accesses

—> Transitions initiated by directory requests

| |
N

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-8

MSI Protocol: Directory (1/2)

Transitions initiated by data requests:
ExReq / Sharers = {P}; ExResp

ExReq / Inv(Sharers), Sharers={P}; ExResp

' ShReq / Down(Sharer): Sharers = Sharer + {P}: ShResp

ExReq / Inv(Sharers — {P}); Sharers = {P}; ExResp

G@ ShReq / Sharers = Sharers + {P}; ShResp

ShReq / Sharers = {P}; ShResp

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-9

MSI Protocol: Directory (2/2)

®
WbReq / Sharers = {}; WDbResp
Sh WbReq && |Sharers| > 1/
Sharers = Sharers - {P}; WbResp

WbReq && |Sharers| == 1/
Sharers = {}; WbResp

(o)

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-10

MSI Directory Protocol Example

Main Memory

Directory

: -
mml

OxA

® ShReq 0xA @ ShResp 0xA, data=3

OxA

€ LD OxA

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-11

MSI Directory Protocol Example

Main Memory

i = AT —2O
Directory i 1
| Tag | State | Sharers |
OxA Sh ,

@ ShResp 0xA, data=3 © ShReq OxA

|_Tag | state _Tag | state | Data

OxA S 3

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-12

MSI Directory Protocol Example

Main Memory

Directory
| Tag | sState | Sharers |
0xA Ex {1}

9 InvReq OxA

QIanesp OxA

ExResp OxA T ExReq OxA
6data =3 9 XReq X

QIanesp OxA

9 InvReq OxA

October 24, 2022

€ sT oxA

MIT 6.5900 (ne 6.823) Fall 2022

OxA I 3 OxA M 5 OxA I 3
Core O Core 1 Core 2

L13-13

MSI Directory Protocol Example

Main Memory

ViFfl=laalEEA'SA '-I..I--L‘_-—--
-

Directory
| Tag | State | Sharers
0xB Ex {1}
€) WbReq OxA, data=5 © ExReq OxB

@ WbResp 0xA

@) ExResp 0xB, data=10

mm mm mm

OxB

€ st oxB

Why are OxA’s wb and OxB’s req serialized?

Possible solutions?
October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-14

Miss Status Holding Register

MSHR - Holds load misses and writes outside of cache

MSHR entry

VI|X| Addr Data

e On eviction/writeback
— No free MSHR entry: stall

— Allocate new MSHR entry
- When channel available send WBReq and data

— Deallocate entry on WBResp

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-15

Miss Status Holding Register

MSHR - Holds load misses and writes outside of cache

MSHR entry per ld/st slots
Block
V([X| Addr Data L/S Inum Offset

e On cache load miss
— No free MSHR entry: stall
— Allocate new MSHR entry
— Send ShReq (or ExReq)
— On *Resp forward data to CPU and cache

— Deallocate MSHR

October 24, 2022

MIT 6.5900 (ne 6.823) Fall 2022

L13-16

Miss Status Holding Register

MSHR - Holds load misses and writes outside of cache

MSHR entry per ld/st slots
Block
V([X| Addr Data V| L/S Inum Offset
Block
V]| L/S Inum Offset
Block

] V| L/S Inum
e On cache load miss Offset

— Look for matching address in MSHRs
e If not found
— If no free MSHR entry: stall
— Allocate new MSHR entry and fill in
e If found, just fill in per Id/st slot
- Send ShReq (or ExReq)
— On *Resp forward data to CPU and cache
— Deallocate MSHR

Per Id/st slots allow servicing multiple requests with one entry

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L13-17

Directory Organization

e Requirement: Directory needs to keep track of all
the cores that are sharing a cache block

e Challenge: For each block, the space needed to
hold the list of sharers grows with number of
possible sharers...

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-18

Flat, Memory-based Directories

e Dedicate a few bits of main memory to store the
state and sharers of every line

e Encode sharers using a bit-vector

Main Memory

State Sharer Set

Sh 01001100

64 bytes 10 bits

v Simple
x Slow
x Very inefficient with many processors (~P bits/line)

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-19

Sparse Full-Map Directories

e Not every line in the system needs to be tracked -
only those in private caches!

e Idea: Organize directory as a cache

Way 1 Way 2 Way 3 Way 4

Directory Entry Format
Line Address State Sharer Set

OxFOO Sh 01001100

v Low latency, energy-efficient
x Bit-vectors grow with # cores - Area scales poorly
x Limited associativity - Directory-induced invalidations

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-20

Directory-Induced Invalidations

e To retain inclusion, must invalidate all sharers of an entry
before reusing it for another address

e Example: 2-way set-associative sparse directory

Main Memory

: W 5 -L'A;m.=_=-
Directory
| Tag | sState | Sharers | Tag | State | Sharers |
OxB Sh {2} OxF Ex {1}

9 d —) InvResp 0xA data=5

Cache 0

ShReq OxB

LD OxB
How many entries should the directory have?

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-21

Inexact Representations of Sharer Sets

e (Coarse-grain bit-vectors (e.g., 1 bit per 4 cores)

Sharer Set 0 0 0 0 0 0

0-3 4-7 8-11 12-15 16-19 20-23

e Limited pointers: Maintain a few sharer pointers, on overflow
mark ‘all’ and broadcast (or invalidate another sharer)

Sharer Set 0 8 14 33

all sharer 1 sharer 2 sharer 3

o Allow false positives (e.g., Bloom filters)

v’ Reduced area & energy
x Overheads still not scalable (these techniques simply play with

constant factors)
x Inexact sharers - Broadcasts, invalidations or spurious

invalidations and downgrades

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-22

In-Cache Directories

e Common multicore memory hierarchy:
- 1+ levels of private caches
— A shared last-level cache

— Need to enforce coherence Shared cache
among private caches

e Idea: Embed the directory | ii5 A

information in shared cache
tags Core O

— Shared cache must be inclusive

Main Memory

Core N

v'Avoids tag overheads & separate lookups
x Can be inefficient if shared cache size >>
sum(private cache sizes)

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-23

Extra Hops and 3-Hop Protocols
Reducing Protocol Latency

e Problem: Data in another cache needs to pass
through the directory, adding latency

e Optimization: Forward data to requester directly

Directory

Tag
OxA Ex {2}

© ExFwd O0xA, req=2 O ExAck OxA © ExReq OxA

Cache 2

© ExResp OxA~—— ©® ST 0xA

data=3

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-24

Protocol Races

e Directory serializes multiple requests for the same address
— Same-address requests are queued or NACKed and retried

e But races still exist due to conflicting requests
e Example: Upgrade race

. Caches 0 and 1 issue
simultaneous ExReqs

Directory Directory starts serving
ReqQ DTN ETTONRETEEAN | cache 0's ExReq,
1, ExReq OxA OXA Sh {0,2} queues cache 1’s

QExReq OxA elaneq OxA \QExReq OxA

Cache 1 expected
ExResp, but got InvReq!

Cache 1 should
transition from S->M to
I->M and send InvResp

€ sToxA € ST 0xA

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-25

Avoiding Protocol Deadlock

e Protocols can cause deadlocks even if network is
deadlock-free! (more on this later)

Example: Both nodes
saturate all intermediate
buffers with requests to each
other, blocking responses
from entering the network

Node O

e Solution: Separate virtual networks
— Different sets of virtual channels and endpoint buffers
— Same physical routers and links

e Most protocols require at least 2 virtual networks
(for requests and replies), often >2 needed

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-26

Coherence in Multi-Level Hierarchies

e Can use the same or different protocols to keep coherence
across multiple levels

e Key invariant: Ensure sufficient permissions in all

intermediate levels

e Example: 8-socket Xeon E7 (8 cores/socket)

" Main temory [Main Hemory |

Chi

p O

Chip 7

MESIF protocol
- Snooping (QPI)

1 MESI protocol

October 24, 2022

MIT 6.5900 (ne 6.823) Fall 2022

L3 in-cache directory

L13-27

Coherence and False Sharing

Performance Issue #1

state |blk addr |dataO | datal dataN

A cache block contains more than one word and cache
coherence is done at the block-level and not word-level

Suppose P, writes word, and P, writes word, and
both words have the same block address.

What can happen?

How to address this problem?

October 20, 2021 MIT 6.5900 (ne 6.823) Fall 2022 L12-28

Coherence and Synchronization
Performance Issue #2

Processor 1

Processor 2

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

cache

cache

Processor 3

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

mutex=1

swap (R, mutex):
R = test&set(mutex)

test&set(mutex):
old_val = M[mutex];
M[mutex] = 1;
return old_val;

October 20, 2021

Our cache coherence protocol will
introduce a performance issue here.
What is the problem?

MIT 6.5900 (ne 6.823) Fall 2022

L12-29

Coherence and Synchronization
Performance Issue #2

Processor 1

Processor 2

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

Processor 3

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

mutex=1

Cache coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex location
(non-atomically) and executing a swap only if it is found to be

zero (test&test&set).

October 20, 2021

MIT 6.5900 (ne 6.823) Fall 2022

L12-30

Coherence and Bus Occupancy
Performance Issue #3

test&set(mutex):
old_val = M[mutex];
M[mutex] = 1;
return old_val;

« In general, an atomic read-modify-write instruction requires
two memory (bus) operations without intervening memory
operations by other processors

« Implementation options:
« With snoopy coherence, lock the bus = expensive
« With directory-based coherence, lock the line in the cache (prevent
invalidations or evictions until atomic op finishes) = complex

« modern processors use
load-reserve
store-conditional

October 20, 2021 MIT 6.5900 (ne 6.823) Fall 2022 L12-31

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a): Store-conditional (a), R:
<flag, adr> « <1, a>; if <flag, adr> == <1, a>
R « M[a]; then cancel other procs’

reservation on a;

M[a] < <R>;

status « succeed;
else status <« fail;

If the cache receives an invalidation to the address

in the reserve register, the reserve bit is set to 0
e Several processors may reserve ‘a’ simultaneously
e These instructions are like ordinary loads and stores
with respect to the bus traffic

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-32

Load-Reserve/Store-Conditional

Swap implemented with Ld-Reserve/St-Conditional
Swap(R1, mutex):

L: Ld-Reserve R2, (mutex)
St-Conditional (mutex), R1
if (status == fail) goto L
R1 <- R2

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-33

Performance:
Load-reserve & Store-conditional

The total number of coherence transactions is
not necessarily reduced, but splitting an atomic
instruction into load-reserve & store-conditional:

e jncreases utilization (and reduces
processor stall time), especially in split-
transaction buses and directories

e reduces cache ping-pong effect because

processors trying to acquire a semaphore do
not have to perform stores each time

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-34

Thank you!

Next Lecture:
Consistency and
Relaxed Memory Models

MIT 6.5900 (ne 6.823) Fall 2022

L13-35

