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Maintaining Cache Coherence

It is sufficient to have hardware such that

« Only one processor at a time has write permission for a location

« No processor can load a stale copy of the location after a write

= A correct approach could be:

write request:
The address is invalidated in all other caches
before the write is performed

read request:

If a dirty copy is found in some cache, a write-
back is performed before the memory is read
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Directory-Based Coherence
[Censier and Feautrier, 1978]

Snoopy Protocols

(P RP PP
PEET

= ! Bus

|
v
Mem.

e Snoopy schemes broadcast
requests over memory bus

e Difficult to scale to large
numbers of processors

e Requires additional
bandwidth to cache tags for
snoop requests
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Directory Protocols
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e Directory schemes send
messages to only those caches
that might have the line

e Can scale to large numbers of
processors

e Requires extra directory
storage to track possible
sharers
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An MSI Directory Protocol

Directory

|__Tag | state | Sharers_

Tag | State | Data _

e Cache states: Modified (M) / Shared (S) / Invalid (I)

e Directory states:
— Uncached (Un): No sharers
— Shared (Sh): One or more sharers with read permission (S)
— Exclusive (Ex): A single sharer with read & write permissions (M)
e Transient states not drawn for clarity; for now, assume
No racing requests
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MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

PFWF / PrWr / ExReq ' Actions |
ExReq Processor Read (PrRd)
CS:D PrRd / -- Processor Write (PrWwr)
A Shared Request

PrRd / ShReq (ShReq)

Exclusive Request
(ExReq)
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MSI Protocol: Caches (2/3)

Transitions initiated by directory requests:

DownReq / InvReq / InvResp (with data)

DownResp
(with data) ____Actions
Invalidation Request
(InvReq)
Downgrade Request
InvRess (DownRea)
(without Invalidation Response
data) (InvResp)
@ Downgrade Response
(DownResp)
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MSI Protocol: Caches (3/3)

@ Eviction /

WDbReq
(with data)
Eviction /

Writeback Request
@ | (WbReq)
WDbReq

(without data)

@
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MSI Protocol: Caches

—> Transitions initiated by processor accesses

—> Transitions initiated by directory requests

| |
N
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MSI Protocol: Directory (1/2)

Transitions initiated by data requests:
ExReq / Sharers = {P}; ExResp

ExReq / Inv(Sharers), Sharers={P}; ExResp

' ShReq / Down(Sharer): Sharers = Sharer + {P}: ShResp

ExReq / Inv(Sharers — {P}); Sharers = {P}; ExResp

G@ ShReq / Sharers = Sharers + {P}; ShResp

ShReq / Sharers = {P}; ShResp
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MSI Protocol: Directory (2/2)

®
WbReq / Sharers = {}; WDbResp
Sh WbReq && |Sharers| > 1/
Sharers = Sharers - {P}; WbResp

WbReq && |Sharers| == 1/
Sharers = {}; WbResp

(o)
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MSI Directory Protocol Example

Main Memory

Directory

: -
mml

OxA

® ShReq 0xA @ ShResp 0xA, data=3

OxA

€ LD OxA
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MSI Directory Protocol Example

Main Memory

i = AT —2O
Directory i 1
| Tag | State | Sharers |
OxA Sh ,

@ ShResp 0xA, data=3 © ShReq OxA

|_Tag | state _Tag | state | Data

OxA S 3
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MSI Directory Protocol Example

Main Memory

Directory
| Tag | sState | Sharers |
0xA Ex {1}

9 InvReq OxA

QIanesp OxA

ExResp OxA T ExReq OxA
6data =3 9 XReq X

QIanesp OxA

9 InvReq OxA

October 24, 2022
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MSI Directory Protocol Example

Main Memory

ViFfl=laalEEA'SA '-I..I--L‘_-—--
-

Directory
| Tag | State | Sharers
0xB Ex {1}
€) WbReq OxA, data=5 © ExReq OxB

@ WbResp 0xA

@) ExResp 0xB, data=10

mm mm mm

OxB

€ st oxB

Why are OxA’s wb and OxB’s req serialized?

Possible solutions?
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Miss Status Holding Register

MSHR - Holds load misses and writes outside of cache

MSHR entry

VI|X| Addr Data

e On eviction/writeback
— No free MSHR entry: stall

— Allocate new MSHR entry
- When channel available send WBReq and data

— Deallocate entry on WBResp

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-15



Miss Status Holding Register

MSHR - Holds load misses and writes outside of cache

MSHR entry per ld/st slots
Block
V([X| Addr Data L/S Inum Offset

e On cache load miss
— No free MSHR entry: stall
— Allocate new MSHR entry
— Send ShReq (or ExReq)
— On *Resp forward data to CPU and cache

— Deallocate MSHR

October 24, 2022
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Miss Status Holding Register

MSHR - Holds load misses and writes outside of cache

MSHR entry per ld/st slots
Block
V([X| Addr Data V| L/S Inum Offset
Block
V]| L/S Inum Offset
Block

] V| L/S Inum
e On cache load miss Offset

— Look for matching address in MSHRs
e If not found
— If no free MSHR entry: stall
— Allocate new MSHR entry and fill in
e If found, just fill in per Id/st slot
- Send ShReq (or ExReq)
— On *Resp forward data to CPU and cache
— Deallocate MSHR

Per Id/st slots allow servicing multiple requests with one entry
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Directory Organization

e Requirement: Directory needs to keep track of all
the cores that are sharing a cache block

e Challenge: For each block, the space needed to
hold the list of sharers grows with number of
possible sharers...
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Flat, Memory-based Directories

e Dedicate a few bits of main memory to store the
state and sharers of every line

e Encode sharers using a bit-vector

Main Memory

State Sharer Set

Sh 01001100

64 bytes 10 bits

v Simple
x Slow
x Very inefficient with many processors (~P bits/line)
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Sparse Full-Map Directories

e Not every line in the system needs to be tracked -
only those in private caches!

e Idea: Organize directory as a cache

Way 1 Way 2 Way 3 Way 4

Directory Entry Format
Line Address State Sharer Set

OxFOO Sh 01001100

v Low latency, energy-efficient
x Bit-vectors grow with # cores - Area scales poorly
x Limited associativity - Directory-induced invalidations
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Directory-Induced Invalidations

e To retain inclusion, must invalidate all sharers of an entry
before reusing it for another address

e Example: 2-way set-associative sparse directory

Main Memory

: W 5 -L'A;m.=_=-
Directory
| Tag | sState | Sharers | Tag | State | Sharers |
OxB Sh {2} OxF Ex {1}

9 d — ) InvResp 0xA data=5

Cache 0

ShReq OxB

LD OxB
How many entries should the directory have?
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Inexact Representations of Sharer Sets

e (Coarse-grain bit-vectors (e.g., 1 bit per 4 cores)

Sharer Set 0 0 0 0 0 0

0-3 4-7 8-11 12-15 16-19 20-23

e Limited pointers: Maintain a few sharer pointers, on overflow
mark ‘all’ and broadcast (or invalidate another sharer)

Sharer Set 0 8 14 33

all sharer 1 sharer 2 sharer 3

o Allow false positives (e.g., Bloom filters)

v’ Reduced area & energy
x Overheads still not scalable (these techniques simply play with

constant factors)
x Inexact sharers - Broadcasts, invalidations or spurious

invalidations and downgrades
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In-Cache Directories

e Common multicore memory hierarchy:
- 1+ levels of private caches
— A shared last-level cache

— Need to enforce coherence Shared cache
among private caches

e Idea: Embed the directory | ii5 A

information in shared cache
tags Core O

— Shared cache must be inclusive

Main Memory

Core N

v'Avoids tag overheads & separate lookups
x Can be inefficient if shared cache size >>
sum(private cache sizes)

October 24, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L13-23



Extra Hops and 3-Hop Protocols
Reducing Protocol Latency

e Problem: Data in another cache needs to pass
through the directory, adding latency

e Optimization: Forward data to requester directly

Directory

Tag
OxA Ex {2}

© ExFwd O0xA, req=2 O ExAck OxA © ExReq OxA

Cache 2

© ExResp OxA~—— ©® ST 0xA

data=3
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Protocol Races

e Directory serializes multiple requests for the same address
— Same-address requests are queued or NACKed and retried

e But races still exist due to conflicting requests
e Example: Upgrade race

. Caches 0 and 1 issue
simultaneous ExReqs

Directory Directory starts serving
ReqQ DTN ETTONRETEEAN | cache 0's ExReq,
1, ExReq OxA OXA Sh {0,2} queues cache 1’s

QExReq OxA elaneq OxA \QExReq OxA

Cache 1 expected
ExResp, but got InvReq!

Cache 1 should
transition from S->M to
I->M and send InvResp

€ sToxA € ST 0xA
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Avoiding Protocol Deadlock

e Protocols can cause deadlocks even if network is
deadlock-free! (more on this later)

Example: Both nodes
saturate all intermediate
buffers with requests to each
other, blocking responses
from entering the network

Node O

e Solution: Separate virtual networks
— Different sets of virtual channels and endpoint buffers
— Same physical routers and links

e Most protocols require at least 2 virtual networks
(for requests and replies), often >2 needed
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Coherence in Multi-Level Hierarchies

e Can use the same or different protocols to keep coherence
across multiple levels

e Key invariant: Ensure sufficient permissions in all

intermediate levels

e Example: 8-socket Xeon E7 (8 cores/socket)

" Main temory [ Main Hemory |

Chi

p O

Chip 7

MESIF protocol
- Snooping (QPI)

1 MESI protocol

October 24, 2022
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Coherence and False Sharing

Performance Issue #1

state |blk addr |dataO | datal dataN

A cache block contains more than one word and cache
coherence is done at the block-level and not word-level

Suppose P, writes word, and P, writes word, and
both words have the same block address.

What can happen?

How to address this problem?
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Coherence and Synchronization
Performance Issue #2

Processor 1

Processor 2

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

cache

cache

Processor 3

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

mutex=1

swap (R, mutex):
R = test&set(mutex)

test&set(mutex):
old_val = M[mutex];
M[mutex] = 1;
return old_val;

October 20, 2021

Our cache coherence protocol will
introduce a performance issue here.
What is the problem?
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Coherence and Synchronization
Performance Issue #2

Processor 1

Processor 2

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

Processor 3

R« 1
L: swap (R, mutex);
if <R> then goto L;
<critical section>
M[mutex] « O;

mutex=1

Cache coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex location
(non-atomically) and executing a swap only if it is found to be

zero (test&test&set).

October 20, 2021
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Coherence and Bus Occupancy
Performance Issue #3

test&set(mutex):
old_val = M[mutex];
M[mutex] = 1;
return old_val;

« In general, an atomic read-modify-write instruction requires
two memory (bus) operations without intervening memory
operations by other processors

« Implementation options:
« With snoopy coherence, lock the bus = expensive
« With directory-based coherence, lock the line in the cache (prevent
invalidations or evictions until atomic op finishes) = complex

« modern processors use
load-reserve
store-conditional
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Load-reserve & Store-conditional

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a): Store-conditional (a), R:
<flag, adr> « <1, a>; if <flag, adr> == <1, a>
R « M[a]; then cancel other procs’

reservation on a;

M[a] < <R>;

status « succeed;
else status <« fail;

If the cache receives an invalidation to the address

in the reserve register, the reserve bit is set to 0
e Several processors may reserve ‘a’ simultaneously
e These instructions are like ordinary loads and stores
with respect to the bus traffic
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Load-Reserve/Store-Conditional

Swap implemented with Ld-Reserve/St-Conditional
# Swap(R1, mutex):

L: Ld-Reserve R2, (mutex)
St-Conditional (mutex), R1
if (status == fail) goto L
R1 <- R2
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Performance:
Load-reserve & Store-conditional

The total number of coherence transactions is
not necessarily reduced, but splitting an atomic
instruction into load-reserve & store-conditional:

e jncreases utilization (and reduces
processor stall time), especially in split-
transaction buses and directories

e reduces cache ping-pong effect because

processors trying to acquire a semaphore do
not have to perform stores each time
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Thank you!

Next Lecture:
Consistency and
Relaxed Memory Models
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