Memory Consistency Models

Mengjia Yan
Computer Science and Artificial Intelligence Lab
M.I.T.

MIT 6.5900 (ne 6.823) Fall 2022 L14-1



Coherence vs Consistency

e Cache coherence makes private caches invisible to

software
— Concerns reads/writes to a single memory location

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-2



Coherence vs Consistency

e Cache coherence makes private caches invisible to
software
— Concerns reads/writes to a single memory location

e Memory consistency models precisely specify how
memory behaves with respect to read and write
operations from multiple processors
— Concerns reads/writes to multiple memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-2



Why Consistency Matters

Initial memory contents

0
flag: O
Processor 1 Processor 2
Store (a), 10; L: Load rl1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

e What value does r2 hold after both processors
finish running this code?

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-3



Why Consistency Matters

Initial memory contents

0
flag: O
Processor 1 Processor 2
Store (a), 10; L: Load rl1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

e What value does r2 hold after both processors
finish running this code?

It depends on the order in which processor 2
observes processor 1’s stores!

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-3



Why Consistency Matters

Initial memory contents

0
flag: O
Processor 1 Processor 2
Store (a), 10; L: Load rl1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

e What value does r2 hold after both processors
finish running this code?

It depends on the order in which processor 2
observes processor 1’s stores!

10 if Store (flag) > Store (a); 0 or 10 otherwise

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-3



Sequential Consistency
A Straightforward Memory Model

“A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

Leslie Lamport

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-4



Sequential Consistency

Processor 1 Processor 2
Store (a), 10; L: Load rl1, (flag);
Store (flag), 1; if r;, == 0 goto L,

Load r2, (a);

e In-order instruction execution
e Atomic loads and stores

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-5



Sequential Consistency

Processor 1 Processor 2
Store (a), 10;

L: Load r1, (flag);
Store (flag), 1;/ if y == 0 goto L;

Load r2, (a);

e In-order instruction execution
e Atomic loads and stores

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-5



Sequential Consistency

Processor 1 Processor 2

Store (a), 10; L: Load r1, (flag);
Store (flag), 1?/ if y == 0 goto L;

Load r2, (a);

e In-order instruction execution
e Atomic loads and stores

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-5



Sequential Consistency

Processor 1 Processor 2
Store (a), 10;>

L: Load rl1, (flag);
Store (flag), 1,/ if ry == 0 goto L>

Load r2, (a);

e In-order instruction execution
e Atomic loads and stores

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-5



Sequential Consistency

Processor 1 Processor 2

Store (a), 10;7\ L: Load rl1, (flag);

Store (flag), 17— . ifr, == 0 goto L>
* Load r2, (a);

e In-order instruction execution
e Atomic loads and stores

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-5



Sequential Consistency

Processor 1 Processor 2

Store (a), 10;7\\ L: Load rl1, (flag);

Store (flag), 1 . ifrp == 0 goto L>
% Load r2, (a);

e In-order instruction execution
e Atomic loads and stores

SC is easy to understand, but architects and
compiler writers want to violate it for performance

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-5



Memory Model Issues

Architectural optimizations that are correct
for uniprocessors often violate sequential
consistency and result in a new memory
model for multiprocessors

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-6



Consistency Models

e Sequential Consistency
— All reads and writes in order

e Relaxed Consistency (one or more of the following)
- Loads may be reordered after loads
e e.g., PA-RISC, Power, Alpha
- Loads may be reordered after stores
e e.g., PA-RISC, Power, Alpha
— Stores may be reordered after stores
e e.g., PA-RISC, Power, Alpha, PSO
— Stores may be reordered after loads
e e.g., PA-RISC, Power, Alpha, PSO, TSO, x86

— Other more esoteric characteristics
e e.g., Alpha

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-7



Committed Store Buffers

e CPU can continue execution
while earlier committed stores CPU CPU
are still propagating through

memory system S~

— Processor can commit other
instructions (including loads and
stores) while first store is

committing to memory

— Committed store buffer can be Cache Cache
combined with speculative store
buffer in an out-of-order CPU / I

e Local loads can bypass values I
from buffered stores to same
address

Main Memory

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-8



Example 1: Store Buffers

Process 1 Process 2
Store (flag,),1; Store (flag,),1;
Load ry, (flag,); Load r,, (flag,);

Initially, all memory
locations contain zeros

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-9



Example 1: Store Buffers

Process 1 Process 2
Store (flag,),1; Store (flag,),1;
Load rq, (flag,); Load r,, (flagy);

Question: Is it possible that r;=0 and r,=0?

Initially, all memory
locations contain zeros

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-9



Example 1: Store Buffers

Process 1 Process 2
Store (flag,),1; Store (flag,),1;
Load rq, (flag,); Load r,, (flagy);

Question: Is it possible that r;=0 and r,=0?
e Seqguential consistency: No

Initially, all memory
locations contain zeros

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-9



Example 1: Store Buffers

Process 1 Process 2
Store (flag,),1; Store (flag,),1;
Load rq, (flag,); Load r,, (flagy);

Question: Is it possible that r;=0 and r,=0?
e Seqguential consistency: No

e Suppose Loads can go ahead of Stores
waiting in the store buffer: Yes!

Initially, all memory
locations contain zeros

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-9



Example 1: Store Buffers

Process 1 Process 2
Store (flag,),1; Store (flag,),1;
Load rq, (flag,); Load r,, (flagy);

Question: Is it possible that r;=0 and r,=0?
e Seqguential consistency: No

e Suppose Loads can go ahead of Stores
waiting in the store buffer: Yes!

Total Store Order (TSO):
Sun SPARC, IBM 370

Initially, all memory
locations contain zeros

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-9



Example 2: Store-Load Bypassing

Process 1

Process 2

Store (flag,), 1;
Load rs5, (flagy);
Load rq, (flag,);

Store (flag,), 1;
Load ru, (flag,);
Load r,, (flagy);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-10



Example 2: Store-Load Bypassing

Process 1 Process 2

Store (flag,), 1; Store (flag,), 1;
Load r3, (flagy); Load ry, (flag,);
Load rq, (flag,); Load r,, (flagy);

Question: Do extra Loads have any effect?

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-10



Example 2: Store-Load Bypassing

Process 1 Process 2

Store (flag,), 1; Store (flag,), 1;
Load r3, (flagy); Load ry, (flag,);
Load rq, (flag,); Load r,, (flagy);

Question: Do extra Loads have any effect?
e Sequential consistency: No

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-10



Example 2: Store-Load Bypassing

Process 1 Process 2

Store (flag,), 1; Store (flag,), 1;
Load r3, (flagy); Load ry, (flag,);
Load rq, (flag,); Load r,, (flagy);

Question: Do extra Loads have any effect?
e Sequential consistency: No

e Suppose Store-Load bypassing is permitted
in the store buffer

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-10



Example 2: Store-Load Bypassing

Process 1 Process 2

Store (flag,), 1; Store (flag,), 1;
Load r3, (flagy); Load ry, (flag,);
Load rq, (flag,); Load r,, (flagy);

Question: Do extra Loads have any effect?
e Sequential consistency: No

e Suppose Store-Load bypassing is permitted
in the store buffer
- No effect in Sparc’s TSO model, still not SC

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-10



Example 2: Store-Load Bypassing

Process 1 Process 2

Store (flag,), 1; Store (flag,), 1;
Load r3, (flagy); Load ry, (flag,);
Load rq, (flag,); Load r,, (flagy);

Question: Do extra Loads have any effect?
e Sequential consistency: No

e Suppose Store-Load bypassing is permitted

in the store buffer

- No effect in Sparc’s TSO model, still not SC

- In IBM 370, a load cannot return a written value
until it is visible to other processors => implicitly
adds a memory fence, looks like SC

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-10



Interleaved Memory System

e Achieve greater throughput
by spreading memory
addresses across two or more
parallel memory subsystems

— In snooping system, can have
two or more snoops in progress
at same time (e.g., Sun UE10K
system has four interleaved
snooping busses)

— Greater bandwidth from main
memory system as two memory
modules can be accessed in
parallel

CPU

Even
Cache

Odd
Cache

I

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

Memory Memory
(Even (Odd
Addresses) Addresses)
L14-11



Example 3: Non-FIFO Store buffers

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-12



Example 3: Non-FIFO Store buffers

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

Question: Is it possible that r;=1 but r,=0?

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-12



Example 3: Non-FIFO Store buffers

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

Question: Is it possible that r;=1 but r,=0?
e Sequential consistency: No

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-12



Example 3: Non-FIFO Store buffers

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

Question: Is it possible that r;=1 but r,=0?
e Sequential consistency: No

e With non-FIFO store buffers: Yes

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-12



Example 3: Non-FIFO Store buffers

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

Question: Is it possible that r;=1 but r,=0?
e Sequential consistency: No

e With non-FIFO store buffers: Yes

Sparc’s PSO memory model

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-12



Example 4: Non-Blocking Caches

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-13



Example 4: Non-Blocking Caches

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

Question: Is it possible that r;=1 but r,=0?

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-13



Example 4: Non-Blocking Caches

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

Question: Is it possible that r;=1 but r,=0?
e Sequential consistency: No

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-13



Example 4: Non-Blocking Caches

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

Question: Is it possible that r;=1 but r,=0?
e Sequential consistency: No

e Assuming stores are ordered: Yes because
Loads can be reordered

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-13



Example 4: Non-Blocking Caches

Process 1 Process 2
Store (a), 1; Load ry, (flag);
Store (flag), 1; Load ry, (a);

Question: Is it possible that r;=1 but r,=0?
e Sequential consistency: No

e Assuming stores are ordered: Yes because
Loads can be reordered

Alpha, Sparc’s RMO, PowerPC’'s WO

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-13



Example 5: Register Renaming

Process 1 Process 2
Store (flag,), rq; Store (flag,), ry;
Load rq, (flag,); Load r,, (flagy);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-14



Example 5: Register Renaming

Process 1 Process 2
Store (flag,), rq; Store (flag,), ry;
Load rq, (flag,); Load r,, (flagy);

Question: Is it possible that r,;=0 but r,=07?

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-14



Example 5: Register Renaming

Process 1 Process 2
Store (flag,), rq; Store (flag,), ry;
Load rq, (flag,); Load r,, (flagy);

Question: Is it possible that r,;=0 but r,=07?
e Seqguential consistency: No

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-14



Example 5: Register Renaming

Process 1 Process 2
Store (flag,), rq; Store (flag,), ry;
Load rq, (flag,); Load r,, (flagy);

Question: Is it possible that r,;=0 but r,=07?
e Seqguential consistency: No

e Register renaming: Yes because it removes
anti-dependencies

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-14



Example 5: Register Renaming

Process 1 Process 2
<Store (flagy), ry; Store (flag,), ry; )
Load rq, (flag,); Load r,, (flagy);

Question: Is it possible that r,;=0 but r,=07?
e Seqguential consistency: No

e Register renaming: Yes because it removes
anti-dependencies

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-14



Example 5: Register Renaming

Process 1 Process 2
<Store (flagy), rq; .~ Store (flag,), ry; )
Load r]_, (ﬂagz), /"//’/ Load r2/ (ﬂagl)l

Question: Is it possible that r,;=0 but r,=07?
e Seqguential consistency: No

e Register renaming: Yes because it removes
anti-dependencies

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-14



Example 5: Register Renaming

Process 1 Process 2
(Store (ﬂagl), rl, v Store (flaQZ)l r2; )
Load r,, (flag,); . “—sLoad r,, (flag;);

Question: Is it possible that r,;=0 but r,=07?
e Seqguential consistency: No

e Register renaming: Yes because it removes
anti-dependencies

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-14



Example 5: Register Renaming

Register

Process 1 Process 2 renaming
will

>< Store (flagl)l rl;\\‘\\\\\ //,,/V Store (flaQZ)l r2; ?< ellmlnate

Load ry, (flag,); . —slLoad r,, (flag,); this edge

Question: Is it possible that r,;=0 but r,=07?
e Seqguential consistency: No

e Register renaming: Yes because it removes
anti-dependencies

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-14



Example 5: Register Renaming

Register

Process 1 Process 2 renaming
will

>< Store (flagl)l rl;\\‘><\\\/’/,/7 Store (flaQZ)l r2; ?< ellmlnate

Load ry, (flag,); . —slLoad r,, (flag,); this edge

Question: Is it possible that r,;=0 but r,=07?
e Seqguential consistency: No

e Register renaming: Yes because it removes
anti-dependencies

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-14



Example 5: Register Renaming

Register

Process 1 Process 2 renaming
will

>< Store (flagl)l rl;\\\ - \\//,,/V Store (flaQZ)l r2; ?< ellmlnate

Load ry, (flag,); ~" .load ry, (flagy); this edge

Question: Is it possible that r,;=0 but r,=07?
e Seqguential consistency: No

e Register renaming: Yes because it removes
anti-dependencies

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-14



Example 6: Speculative Execution

Process 1 Process 2
Store (a), 1; L: Load ry, (flag);
Store (flag), 1; if y == 0 goto L;

Load r», (a);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-15



Example 6: Speculative Execution

Process 1 Process 2
Store (a), 1; L: Load ry, (flag);
Store (flag), 1; if ry == 0 goto L;

Load r», (a);

Question: Is it possible that r;=1 but r,=07?

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-15



Example 6: Speculative Execution

Process 1 Process 2
Store (a), 1; L: Load ry, (flag);
Store (flag), 1; if ry == 0 goto L;

Load r», (a);

Question: Is it possible that r;=1 but r,=07?
e Sequential consistency: No

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-15



Example 6: Speculative Execution

Process 1 Process 2

Store (a), 1; L: Load ry, (flag);

Store (flag), 1; if ry == 0 goto L;
Load r», (a);

Question: Is it possible that r;=1 but r,=07?
e Sequential consistency: No

o With speculative loads: Yes even if the
stores are ordered

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-15



Example 7: Address Speculation

Process 1 Process 2
Store (flag,), rq; Store (flag,), rs;
Load r,, (flag,); Load r,, (flagy);

Flag, and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Process 1 Process 2
Store (flag,), rq; Store (flag,), rs;
Load r,, (flag,); Load r,, (flagy);

Question: Is it possible that r,=0 but r,=07?

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Process 1 Process 2
Store (flag,), rq; Store (flag,), rs;
Load r,, (flag,); Load r,, (flagy);

Question: Is it possible that r,=0 but r,=07?
e Seqguential consistency: No

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Process 1 Process 2
Store (flag,), rq; Store (flag,), rs;
Load r,, (flag,); Load r,, (flagy);

Question: Is it possible that r,=0 but r,=07?
e Seqguential consistency: No
e Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Process 1 Process 2
Store (flag,), rq; Store (flag,), rs;
Load r,, (flag,); Load r,, (flagy);

Question: Is it possible that r,=0 but r,=07?
e Seqguential consistency: No
e Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Process 1 Process 2
<Store (flagy), ry; Store (flag,), rs; )
Load r,, (flag,); Load r,, (flagy);

Question: Is it possible that r,=0 but r,=07?

e Seqguential consistency: No
e Address speculation: Yes because it

removes the dependencies between the
stores and loads

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Process 1 Process 2
<Store (flagy), rq; .~ Store (flag,), r3; )
Load r,, (flag,); . Load r,, (flagy);

Question: Is it possible that r,=0 but r,=07?
e Seqguential consistency: No
e Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Process 1 Process 2
(Store (ﬂagl), rl, v Store (ﬂa92)l r3; )
Load r,, (flag,); . “—sLoad ry,, (flag;);

Question: Is it possible that r,=0 but r,=07?
e Seqguential consistency: No
e Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Address
Process 1 Process 2 speculati
on will
>< Store (flagl)l rl;\\‘\\\\\ //,/V Store (flaQZ)l r3; ?< ellmlnate
Load r,, (flag,); . ~“—-slLoad r,, (flag,); this edge

Question: Is it possible that r,=0 but r,=07?

e Seqguential consistency: No
e Address speculation: Yes because it

removes the dependencies between the
stores and loads

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Address
Process 1 Process 2 speculati
on will
>< Store (flagl)l rl;\\‘><\\\/’/,/7 Store (flaQZ)l r3; ?< ellmlnate
Load r,, (flag,); . ~“—-slLoad r,, (flag,); this edge

Question: Is it possible that r,=0 but r,=07?

e Seqguential consistency: No
e Address speculation: Yes because it

removes the dependencies between the
stores and loads

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 7: Address Speculation

Address

Process 1 Process 2 speculati
on will

o //,/V Store (f|a92)l r3; ?< ellmlnate
~" iload r,, (flagy); this edge

>< Store (flagy), rq; -
Load r,, (flag,);

Question: Is it possible that r,=0 but r,=07?

e Seqguential consistency: No
e Address speculation: Yes because it

removes the dependencies between the
stores and loads

Flag; and flag, are registers
pointing at memory locations

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-16



Example 8: Store Atomicity

Process 1 Process 2 Process 3 Process 4
Store (a),1; Store (a),2; Load ry, (Q); Load r3, (a);
Load r,, (a); Load r,, (a);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-17



Example 8: Store Atomicity

Process 1 Process 2 Process 3 Process 4
Store (a),1; Store (a),2; Load ry, (Q); Load r3, (a);
Load r,, (a); Load r,, (a);

Question: 1Is it possible that r;=1 and r,=2
but rs=2 and r,=1 ?

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-17



Example 8: Store Atomicity

Process 1 Process 2 Process 3 Process 4
Store (a),1; Store (a),2; Load ry, (Q); Load r3, (a);
Load r,, (a); Load r,, (a);

Question: 1Is it possible that r;=1 and r,=2
but rs=2 and r,=1 ?

e Sequential consistency: No

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-17



Example 8: Store Atomicity

Process 1 Process 2 Process 3 Process 4
Store (a),1; Store (a),2; Load ry, (Q); Load r3, (a);
Load r,, (a); Load r,, (a);

Question: 1Is it possible that r;=1 and r,=2
but rs=2 and r,=1 ?

e Sequential consistency: No

e Fven if Loads on a processor are ordered,
the different ordering of stores can be
observed if the Store operation is not
atomic.

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-17



Example 9: Causality

Process 1 Process 2 Process 3
Store (flag,),1; Load rq, (flagy); Load r,, (flag,);
Store (flag,),1; Load r3, (flagy);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-18



Example 9: Causality

Process 1 Process 2 Process 3
Store (flag,),1; Load rq, (flagy); Load r,, (flag,);
Store (flag,),1; Load r3, (flagy);

Question: 1Is it possible that r;=1 and r,=1
bUt I‘3=0 ?

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-18



Example 9: Causality

Process 1 Process 2 Process 3
Store (flag,),1; Load rq, (flagy); Load r,, (flag,);
Store (flag,),1; Load r3, (flagy);

Question: 1Is it possible that r;=1 and r,=1
bUt I‘3=0 ?

e Sequential consistency: No

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-18



Example 9: Causality

Process 1 Process 2 Process 3
Store (flag,),1; Load rq, (flagy); Load r,, (flag,);
Store (flag,),1; Load r3, (flagy);

Question: 1Is it possible that r;=1 and r,=1
bUt I‘3=0 ?

e Sequential consistency: No
o With load/load reordering: Yes
Alpha

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L14-18



Weaker Memory Models & Memory
Fence Instructions

e Architectures with weaker memory models provide
memory fence instructions to prevent otherwise
permitted reorderings of loads and stores

The Load and Store can be
Store (ay), r2; reordered if a; =/= a,.
Insertion of Fence, will
disallow this reordering

Load r1, (a,);

Similarly:

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-19



Weaker Memory Models & Memory
Fence Instructions

e Architectures with weaker memory models provide
memory fence instructions to prevent otherwise
permitted reorderings of loads and stores

<t 5. The Load and Store can be
ore (ay), r2; reordered if a; =/= a,.
Fence,,

Insertion of Fence, will
Load r1, (a,); disallow this reordering

Similarly:

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-19



Weaker Memory Models & Memory
Fence Instructions

e Architectures with weaker memory models provide
memory fence instructions to prevent otherwise
permitted reorderings of loads and stores

< 5. The Load and Store can be
tore (ay), r2; reordered if a; =/= a,.
Fence,,

Insertion of Fence, will
Load r1, (a,); disallow this reordering

Similarly: Fence,.; Fence,,; Fence,,;

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-19



Weaker Memory Models & Memory
Fence Instructions

e Architectures with weaker memory models provide
memory fence instructions to prevent otherwise
permitted reorderings of loads and stores

<t 5. The Load and Store can be
ore (ay), r2; reordered if a; =/= a,.
Fence,,

Insertion of Fence, will
Load r1, (a,); disallow this reordering

Similarly: Fence,.; Fence,,; Fence,,;

SUN’s Sparc: MEMBAR:

MEMBARRR; MEMBARRW; MEMBARWR; MEMBARWW
PowerPC: Sync; EIEIO

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-19



Enforcing Ordering using Fences

Processor 1 Processor 2
Store (a),10; L: Load ry, (flag);
Store (flag),1; if r == 0 goto L;

Load r,, (a);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-20



Enforcing Ordering using Fences

Processor 1
Store (a),10;
Store (flag),1;

Processor 1
Store (a),10;
Fence,;
Store (flag),1;

Processor 2

: Load ry, (flag);

if 1 == 0 goto L;
Load r,, (a);

Processor 2

: Load ry, (flag);

if 1 == 0 goto L;

Fence,,;
Load r,, (a);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-20



Enforcing Ordering using Fences

Processor 1
Store (a),10;
Store (flag),1;

Processor 1
Store (a),10;
Fence,;
Store (flag),1;

Weak ordering

Processor 2

: Load ry, (flag);

if 1 == 0 goto L;
Load r,, (a);

Processor 2

: Load ry, (flag);

if 1 == 0 goto L;

Fence,,;
Load r,, (a);

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-20



Weaker (Relaxed) Memory Models

Alpha, Sparc
PowerPC, ...

Store is globally
performed

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-21



Weaker (Relaxed) Memory Models

Alpha, Sparc
PowerPC, ...

Store is globally
performed

e Hard to understand and remember

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-21



Weaker (Relaxed) Memory Models

Alpha, Sparc
PowerPC, ...

Store is globally
performed

e Hard to understand and remember
e Unstable - Modele de I'année

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-21



Weaker (Relaxed) Memory Models

Alpha, Sparc
PowerPC, ...

Store is globally
performed

e Hard to understand and remember
e Unstable - Modele de I'année

e Abandon weaker memory models in favor of
implementing SC

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-21



Implementing SC

1. The memory operations of each individual
processor appear to all processors in the order the
requests are made to the memory

— Provided by cache coherence, which ensures that all processors
observe the same order of loads and stores to an address

2. Any execution is the same as if the operations of
all the processors were executed in some
sequential order

— Provided by enforcing a dependence between each memory
operation and the following one

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-22



SC Data Dependence

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-23



SC Data Dependence

o Stall

— Use in-order execution and blocking caches

e Cache coherence plus allowing a processor to have only
one request in flight at a time will provide SC

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-23



SC Data Dependence

o Stall

— Use in-order execution and blocking caches

e Cache coherence plus allowing a processor to have only
one request in flight at a time will provide SC

e Change architecture = Relaxed memory models
— Use OO0 and non-blocking caches

e Cache coherence and allowing multiple concurrent
requests (to different addresses) gives high
performance

e Add fence operations to force ordering when needed

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-23



SC Data Dependence

o Stall
— Use in-order execution and blocking caches

e Cache coherence plus allowing a processor to have only
one request in flight at a time will provide SC

e Change architecture = Relaxed memory models
— Use OO0 and non-blocking caches

e Cache coherence and allowing multiple concurrent
requests (to different addresses) gives high
performance

e Add fence operations to force ordering when needed

e Speculate...

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-23



Sequential Consistency Speculation

e Local load-store ordering uses standard OOO mechanism

e Globally non-speculative stores
— Stores execute at commit -> stores are in-order!

e Globally speculative loads

— Guess at issue that the memory location used by a load will not
change between issue and commit of the instruction

e this is equivalent to loads happening in-order at commit

— Check at commit by remembering all loads addresses starting at
issue and watching for writes to that location.

- Data Management for rollback relies on the basic out-of-order
speculative data management used for uni-processor rollback
and instruction re-execution.

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-24



SC Speculative Behavior

CPU A

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

O
®

CPU A

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA
O

2: LD A
O

CPU A

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA
O

2: LD A
O

CPU A

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

CPU A

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

CPU A

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

®
CPU A

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

®
CPU A CPU B

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



@ STA

SC Speculative Behavior

@ 1:STA

®
CPU A CPU B

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ STA
@ 1:STA
® O
O

QO

®
CPU A CPU B

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

@ STA
O
® O

O

®
CPU A CPU B

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

QO

O
@ STA
O
O

®
CPU A CPU B

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

@ STA

®
CPU A CPU B

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

@ STA

®
CPU A CPU B

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



SC Speculative Behavior

@ 1:STA

®
CPU A CPU B

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-25



Properly Synchronized Programs

e Very few programmers do programming that relies
on SC; instead, they use higher-level
synchronization primitives
- locks, semaphores, monitors, atomic transactions

e A “properly synchronized program” is one where
each shared writable variable is protected (say, by
a lock) so that there is no race in updating the
variable
— There is still race to get the lock
— There is no way to check if a program is properly synchronized

e For properly synchronized programs, instruction
reordering does not matter as long as updated
values are committed before leaving a locked
region

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-26



Release Consistency
[Garachorloo 1990]

e Only care about inter-processor memory ordering
at thread synchronization points, not in between

e Can treat all synchronization instructions as the
only ordering points

Acquire(lock) // All following loads get most recent written values
... Read and write shared data ..
Release(lock) // All preceding writes are globally visible before

// lock is freed.

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-27



Takeaways

e SCis too low level a programming model. High-level
programming should be based on critical sections & locks,
atomic transactions, monitors, ...

e High-level parallel programming should be oblivious of
memory model issues
- Programmer should not be affected by changes in the memory model

e ISA definition for Load, Store, Memory Fence, synchronization
instructions should
— Be precise
— Permit maximum flexibility in hardware implementation
- Permit efficient implementation of high-level parallel constructs

October 26, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L14-28



Thank you!

Next Lecture:
On-Chip Networks

MIT 6.5900 (ne 6.823) Fall 2022 L14-107



