
L14-1MIT 6.5900 (ne 6.823) Fall 2022

Mengjia Yan
Computer Science and Artificial Intelligence Lab

M.I.T.

Memory Consistency Models

MIT 6.5900 (ne 6.823) Fall 2022

Coherence vs Consistency

• Cache coherence makes private caches invisible to
software
– Concerns reads/writes to a single memory location

October 26, 2022 L14-2

MIT 6.5900 (ne 6.823) Fall 2022

Coherence vs Consistency

• Cache coherence makes private caches invisible to
software
– Concerns reads/writes to a single memory location

• Memory consistency models precisely specify how
memory behaves with respect to read and write
operations from multiple processors
– Concerns reads/writes to multiple memory locations

October 26, 2022 L14-2

MIT 6.5900 (ne 6.823) Fall 2022

Why Consistency Matters

• What value does r2 hold after both processors
finish running this code?

October 26, 2022

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

Initial memory contents
a: 0
flag: 0

L14-3

MIT 6.5900 (ne 6.823) Fall 2022

Why Consistency Matters

• What value does r2 hold after both processors
finish running this code?

October 26, 2022

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

Initial memory contents
a: 0
flag: 0

It depends on the order in which processor 2
observes processor 1’s stores!

L14-3

MIT 6.5900 (ne 6.823) Fall 2022

Why Consistency Matters

• What value does r2 hold after both processors
finish running this code?

October 26, 2022

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

Initial memory contents
a: 0
flag: 0

It depends on the order in which processor 2
observes processor 1’s stores!

10 if Store (flag) > Store (a); 0 or 10 otherwise

L14-3

MIT 6.5900 (ne 6.823) Fall 2022

Sequential Consistency
A Straightforward Memory Model

October 26, 2022

“A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

Leslie Lamport

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

M

P P P P P P

L14-4

MIT 6.5900 (ne 6.823) Fall 2022

Sequential Consistency

• In-order instruction execution
• Atomic loads and stores

October 26, 2022

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

L14-5

MIT 6.5900 (ne 6.823) Fall 2022

Sequential Consistency

• In-order instruction execution
• Atomic loads and stores

October 26, 2022

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

L14-5

MIT 6.5900 (ne 6.823) Fall 2022

Sequential Consistency

• In-order instruction execution
• Atomic loads and stores

October 26, 2022

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

L14-5

MIT 6.5900 (ne 6.823) Fall 2022

Sequential Consistency

• In-order instruction execution
• Atomic loads and stores

October 26, 2022

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

L14-5

MIT 6.5900 (ne 6.823) Fall 2022

Sequential Consistency

• In-order instruction execution
• Atomic loads and stores

October 26, 2022

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

L14-5

MIT 6.5900 (ne 6.823) Fall 2022

Sequential Consistency

• In-order instruction execution
• Atomic loads and stores

October 26, 2022

SC is easy to understand, but architects and
compiler writers want to violate it for performance

Processor 1 Processor 2
Store (a), 10; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

L14-5

MIT 6.5900 (ne 6.823) Fall 2022

Memory Model Issues

October 26, 2022

Architectural optimizations that are correct
for uniprocessors often violate sequential
consistency and result in a new memory
model for multiprocessors

L14-6

MIT 6.5900 (ne 6.823) Fall 2022

Consistency Models

October 26, 2022

• Sequential Consistency
– All reads and writes in order

• Relaxed Consistency (one or more of the following)
– Loads may be reordered after loads

• e.g., PA-RISC, Power, Alpha
– Loads may be reordered after stores

• e.g., PA-RISC, Power, Alpha
– Stores may be reordered after stores

• e.g., PA-RISC, Power, Alpha, PSO
– Stores may be reordered after loads

• e.g., PA-RISC, Power, Alpha, PSO, TSO, x86

– Other more esoteric characteristics
• e.g., Alpha

L14-7

MIT 6.5900 (ne 6.823) Fall 2022

Committed Store Buffers
• CPU can continue execution

while earlier committed stores
are still propagating through
memory system
– Processor can commit other

instructions (including loads and
stores) while first store is
committing to memory

– Committed store buffer can be
combined with speculative store
buffer in an out-of-order CPU

• Local loads can bypass values
from buffered stores to same
address

October 26, 2022

CPU

Cache

Main Memory

CPU

Cache

L14-8

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1),1; Store (flag2),1;
Load r1, (flag2); Load r2, (flag1);

Example 1: Store Buffers

October 26, 2022

Initially, all memory
locations contain zeros

L14-9

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1),1; Store (flag2),1;
Load r1, (flag2); Load r2, (flag1);

Example 1: Store Buffers

October 26, 2022

Initially, all memory
locations contain zeros

Question: Is it possible that r1=0 and r2=0?

L14-9

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1),1; Store (flag2),1;
Load r1, (flag2); Load r2, (flag1);

Example 1: Store Buffers

October 26, 2022

Initially, all memory
locations contain zeros

Question: Is it possible that r1=0 and r2=0?
• Sequential consistency: No

L14-9

MIT 6.5900 (ne 6.823) Fall 2022

• Suppose Loads can go ahead of Stores
waiting in the store buffer: Yes!

Process 1 Process 2
Store (flag1),1; Store (flag2),1;
Load r1, (flag2); Load r2, (flag1);

Example 1: Store Buffers

October 26, 2022

Initially, all memory
locations contain zeros

Question: Is it possible that r1=0 and r2=0?
• Sequential consistency: No

L14-9

MIT 6.5900 (ne 6.823) Fall 2022

• Suppose Loads can go ahead of Stores
waiting in the store buffer: Yes!

Process 1 Process 2
Store (flag1),1; Store (flag2),1;
Load r1, (flag2); Load r2, (flag1);

Example 1: Store Buffers

October 26, 2022

Initially, all memory
locations contain zeros

Question: Is it possible that r1=0 and r2=0?
• Sequential consistency: No

Total Store Order (TSO):
Sun SPARC, IBM 370

L14-9

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1), 1; Store (flag2), 1;
Load r3, (flag1); Load r4, (flag2);
Load r1, (flag2); Load r2, (flag1);

Example 2: Store-Load Bypassing

October 26, 2022 L14-10

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1), 1; Store (flag2), 1;
Load r3, (flag1); Load r4, (flag2);
Load r1, (flag2); Load r2, (flag1);

Example 2: Store-Load Bypassing

October 26, 2022

Question: Do extra Loads have any effect?

L14-10

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1), 1; Store (flag2), 1;
Load r3, (flag1); Load r4, (flag2);
Load r1, (flag2); Load r2, (flag1);

Example 2: Store-Load Bypassing

October 26, 2022

Question: Do extra Loads have any effect?
• Sequential consistency: No

L14-10

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1), 1; Store (flag2), 1;
Load r3, (flag1); Load r4, (flag2);
Load r1, (flag2); Load r2, (flag1);

Example 2: Store-Load Bypassing

October 26, 2022

• Suppose Store-Load bypassing is permitted
in the store buffer

Question: Do extra Loads have any effect?
• Sequential consistency: No

L14-10

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1), 1; Store (flag2), 1;
Load r3, (flag1); Load r4, (flag2);
Load r1, (flag2); Load r2, (flag1);

Example 2: Store-Load Bypassing

October 26, 2022

• Suppose Store-Load bypassing is permitted
in the store buffer
– No effect in Sparc’s TSO model, still not SC

Question: Do extra Loads have any effect?
• Sequential consistency: No

L14-10

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (flag1), 1; Store (flag2), 1;
Load r3, (flag1); Load r4, (flag2);
Load r1, (flag2); Load r2, (flag1);

Example 2: Store-Load Bypassing

October 26, 2022

• Suppose Store-Load bypassing is permitted
in the store buffer
– No effect in Sparc’s TSO model, still not SC
– In IBM 370, a load cannot return a written value

until it is visible to other processors => implicitly
adds a memory fence, looks like SC

Question: Do extra Loads have any effect?
• Sequential consistency: No

L14-10

MIT 6.5900 (ne 6.823) Fall 2022

Interleaved Memory System

October 26, 2022

CPU

Even
Cache

Memory
(Even

Addresses)

Odd
Cache

Memory
(Odd

Addresses)

• Achieve greater throughput
by spreading memory
addresses across two or more
parallel memory subsystems
– In snooping system, can have

two or more snoops in progress
at same time (e.g., Sun UE10K
system has four interleaved
snooping busses)

– Greater bandwidth from main
memory system as two memory
modules can be accessed in
parallel

L14-11

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

Example 3: Non-FIFO Store buffers

October 26, 2022 L14-12

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

Example 3: Non-FIFO Store buffers

October 26, 2022

Question: Is it possible that r1=1 but r2=0?

L14-12

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

Example 3: Non-FIFO Store buffers

October 26, 2022

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

L14-12

MIT 6.5900 (ne 6.823) Fall 2022

• With non-FIFO store buffers: Yes

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

Example 3: Non-FIFO Store buffers

October 26, 2022

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

L14-12

MIT 6.5900 (ne 6.823) Fall 2022

• With non-FIFO store buffers: Yes

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

Example 3: Non-FIFO Store buffers

October 26, 2022

Sparc’s PSO memory model

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

L14-12

MIT 6.5900 (ne 6.823) Fall 2022

Example 4: Non-Blocking Caches

October 26, 2022

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

L14-13

MIT 6.5900 (ne 6.823) Fall 2022

Example 4: Non-Blocking Caches

October 26, 2022

Question: Is it possible that r1=1 but r2=0?

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

L14-13

MIT 6.5900 (ne 6.823) Fall 2022

Example 4: Non-Blocking Caches

October 26, 2022

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

L14-13

MIT 6.5900 (ne 6.823) Fall 2022

• Assuming stores are ordered: Yes because
Loads can be reordered

Example 4: Non-Blocking Caches

October 26, 2022

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

L14-13

MIT 6.5900 (ne 6.823) Fall 2022

• Assuming stores are ordered: Yes because
Loads can be reordered

Example 4: Non-Blocking Caches

October 26, 2022

Alpha, Sparc’s RMO, PowerPC’s WO

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

Process 1 Process 2
Store (a), 1; Load r1, (flag);
Store (flag), 1; Load r2, (a);

L14-13

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

Example 5: Register Renaming

October 26, 2022 L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

Register
renaming
will
eliminate
this edge

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

Register
renaming
will
eliminate
this edge

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r2 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r2;
Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

October 26, 2022

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

Register
renaming
will
eliminate
this edge

L14-14

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (a), 1; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

Example 6: Speculative Execution

October 26, 2022 L14-15

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (a), 1; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

Example 6: Speculative Execution

October 26, 2022

Question: Is it possible that r1=1 but r2=0?

L14-15

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2
Store (a), 1; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

Example 6: Speculative Execution

October 26, 2022

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

L14-15

MIT 6.5900 (ne 6.823) Fall 2022

• With speculative loads: Yes even if the
stores are ordered

Process 1 Process 2
Store (a), 1; L: Load r1, (flag);
Store (flag), 1; if r1 == 0 goto L;

Load r2, (a);

Example 6: Speculative Execution

October 26, 2022

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

L14-15

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
•

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Address
speculati
on will
eliminate
this edge

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Address
speculati
on will
eliminate
this edge

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Initially both r1 and r3 contain 1.

Process 1 Process 2
Store (flag1), r1; Store (flag2), r3;
Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

October 26, 2022

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Address
speculati
on will
eliminate
this edge

Flag1 and flag2 are registers
pointing at memory locations

L14-16

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2 Process 3 Process 4
Store (a),1; Store (a),2; Load r1, (a); Load r3, (a);

Load r2, (a); Load r4, (a);

Example 8: Store Atomicity

October 26, 2022 L14-17

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2 Process 3 Process 4
Store (a),1; Store (a),2; Load r1, (a); Load r3, (a);

Load r2, (a); Load r4, (a);

Example 8: Store Atomicity

October 26, 2022

Question: Is it possible that r1=1 and r2=2
but r3=2 and r4=1 ?

L14-17

MIT 6.5900 (ne 6.823) Fall 2022

Process 1 Process 2 Process 3 Process 4
Store (a),1; Store (a),2; Load r1, (a); Load r3, (a);

Load r2, (a); Load r4, (a);

Example 8: Store Atomicity

October 26, 2022

Question: Is it possible that r1=1 and r2=2
but r3=2 and r4=1 ?

• Sequential consistency: No

L14-17

MIT 6.5900 (ne 6.823) Fall 2022

• Even if Loads on a processor are ordered,
the different ordering of stores can be
observed if the Store operation is not
atomic.

Process 1 Process 2 Process 3 Process 4
Store (a),1; Store (a),2; Load r1, (a); Load r3, (a);

Load r2, (a); Load r4, (a);

Example 8: Store Atomicity

October 26, 2022

Question: Is it possible that r1=1 and r2=2
but r3=2 and r4=1 ?

• Sequential consistency: No

L14-17

MIT 6.5900 (ne 6.823) Fall 2022

Example 9: Causality

October 26, 2022

Process 1 Process 2 Process 3
Store (flag1),1; Load r1, (flag1); Load r2, (flag2);

Store (flag2),1; Load r3, (flag1);

L14-18

MIT 6.5900 (ne 6.823) Fall 2022

Example 9: Causality

October 26, 2022

Process 1 Process 2 Process 3
Store (flag1),1; Load r1, (flag1); Load r2, (flag2);

Store (flag2),1; Load r3, (flag1);

Question: Is it possible that r1=1 and r2=1
but r3=0 ?

L14-18

MIT 6.5900 (ne 6.823) Fall 2022

Example 9: Causality

October 26, 2022

Process 1 Process 2 Process 3
Store (flag1),1; Load r1, (flag1); Load r2, (flag2);

Store (flag2),1; Load r3, (flag1);

Question: Is it possible that r1=1 and r2=1
but r3=0 ?

• Sequential consistency: No

•

L14-18

MIT 6.5900 (ne 6.823) Fall 2022

Example 9: Causality

October 26, 2022

Process 1 Process 2 Process 3
Store (flag1),1; Load r1, (flag1); Load r2, (flag2);

Store (flag2),1; Load r3, (flag1);

Question: Is it possible that r1=1 and r2=1
but r3=0 ?

• Sequential consistency: No

• With load/load reordering: Yes

Alpha

L14-18

MIT 6.5900 (ne 6.823) Fall 2022

Weaker Memory Models & Memory
Fence Instructions
• Architectures with weaker memory models provide

memory fence instructions to prevent otherwise
permitted reorderings of loads and stores

October 26, 2022

Store (a1), r2;

Load r1, (a2);

The Load and Store can be
reordered if a1 =/= a2.
Insertion of Fencewr will
disallow this reordering

Similarly:

L14-19

MIT 6.5900 (ne 6.823) Fall 2022

Weaker Memory Models & Memory
Fence Instructions
• Architectures with weaker memory models provide

memory fence instructions to prevent otherwise
permitted reorderings of loads and stores

October 26, 2022

Fencewr

Store (a1), r2;

Load r1, (a2);

The Load and Store can be
reordered if a1 =/= a2.
Insertion of Fencewr will
disallow this reordering

Similarly:

L14-19

MIT 6.5900 (ne 6.823) Fall 2022

Weaker Memory Models & Memory
Fence Instructions
• Architectures with weaker memory models provide

memory fence instructions to prevent otherwise
permitted reorderings of loads and stores

October 26, 2022

Fencewr

Store (a1), r2;

Load r1, (a2);

Fencerr; Fencerw; Fenceww;

The Load and Store can be
reordered if a1 =/= a2.
Insertion of Fencewr will
disallow this reordering

Similarly:

L14-19

MIT 6.5900 (ne 6.823) Fall 2022

Weaker Memory Models & Memory
Fence Instructions
• Architectures with weaker memory models provide

memory fence instructions to prevent otherwise
permitted reorderings of loads and stores

October 26, 2022

Fencewr

Store (a1), r2;

Load r1, (a2);

Fencerr; Fencerw; Fenceww;

The Load and Store can be
reordered if a1 =/= a2.
Insertion of Fencewr will
disallow this reordering

Similarly:

SUN’s Sparc: MEMBAR;
MEMBARRR; MEMBARRW; MEMBARWR; MEMBARWW

PowerPC: Sync; EIEIO

L14-19

MIT 6.5900 (ne 6.823) Fall 2022

Enforcing Ordering using Fences

October 26, 2022

Processor 1 Processor 2
Store (a),10; L: Load r1, (flag);
Store (flag),1; if r1 == 0 goto L;

Load r2, (a);

L14-20

MIT 6.5900 (ne 6.823) Fall 2022

Enforcing Ordering using Fences

October 26, 2022

Processor 1 Processor 2
Store (a),10; L: Load r1, (flag);
Store (flag),1; if r1 == 0 goto L;

Load r2, (a);

Processor 1 Processor 2
Store (a),10; L: Load r1, (flag);
Fenceww; if r1 == 0 goto L;
Store (flag),1; Fencerr;

Load r2, (a);

L14-20

MIT 6.5900 (ne 6.823) Fall 2022

Enforcing Ordering using Fences

October 26, 2022

Processor 1 Processor 2
Store (a),10; L: Load r1, (flag);
Store (flag),1; if r1 == 0 goto L;

Load r2, (a);

Processor 1 Processor 2
Store (a),10; L: Load r1, (flag);
Fenceww; if r1 == 0 goto L;
Store (flag),1; Fencerr;

Load r2, (a);

Weak ordering

L14-20

MIT 6.5900 (ne 6.823) Fall 2022

Weaker (Relaxed) Memory Models

October 26, 2022

Alpha, Sparc
PowerPC, ...

Write-
buffers

Store is globally
performed

TSO, PSO,
RMO, ...

RMO=WO? SMP, DSM,
CMP

L14-21

MIT 6.5900 (ne 6.823) Fall 2022

Weaker (Relaxed) Memory Models

• Hard to understand and remember

October 26, 2022

Alpha, Sparc
PowerPC, ...

Write-
buffers

Store is globally
performed

TSO, PSO,
RMO, ...

RMO=WO? SMP, DSM,
CMP

L14-21

MIT 6.5900 (ne 6.823) Fall 2022

Weaker (Relaxed) Memory Models

• Hard to understand and remember
• Unstable - Modèle de l’année

October 26, 2022

Alpha, Sparc
PowerPC, ...

Write-
buffers

Store is globally
performed

TSO, PSO,
RMO, ...

RMO=WO? SMP, DSM,
CMP

L14-21

MIT 6.5900 (ne 6.823) Fall 2022

Weaker (Relaxed) Memory Models

• Hard to understand and remember
• Unstable - Modèle de l’année
• Abandon weaker memory models in favor of

implementing SC
October 26, 2022

Alpha, Sparc
PowerPC, ...

Write-
buffers

Store is globally
performed

TSO, PSO,
RMO, ...

RMO=WO? SMP, DSM,
CMP

L14-21

MIT 6.5900 (ne 6.823) Fall 2022

Implementing SC

1. The memory operations of each individual
processor appear to all processors in the order the
requests are made to the memory

– Provided by cache coherence, which ensures that all processors
observe the same order of loads and stores to an address

2. Any execution is the same as if the operations of
all the processors were executed in some
sequential order

– Provided by enforcing a dependence between each memory
operation and the following one

October 26, 2022 L14-22

MIT 6.5900 (ne 6.823) Fall 2022

SC Data Dependence

October 26, 2022 L14-23

MIT 6.5900 (ne 6.823) Fall 2022

SC Data Dependence

• Stall
– Use in-order execution and blocking caches

• Cache coherence plus allowing a processor to have only
one request in flight at a time will provide SC

October 26, 2022 L14-23

MIT 6.5900 (ne 6.823) Fall 2022

SC Data Dependence

• Stall
– Use in-order execution and blocking caches

• Cache coherence plus allowing a processor to have only
one request in flight at a time will provide SC

• Change architecture Þ Relaxed memory models
– Use OOO and non-blocking caches

• Cache coherence and allowing multiple concurrent
requests (to different addresses) gives high
performance

• Add fence operations to force ordering when needed

October 26, 2022 L14-23

MIT 6.5900 (ne 6.823) Fall 2022

SC Data Dependence

• Stall
– Use in-order execution and blocking caches

• Cache coherence plus allowing a processor to have only
one request in flight at a time will provide SC

• Change architecture Þ Relaxed memory models
– Use OOO and non-blocking caches

• Cache coherence and allowing multiple concurrent
requests (to different addresses) gives high
performance

• Add fence operations to force ordering when needed

• Speculate…

October 26, 2022 L14-23

MIT 6.5900 (ne 6.823) Fall 2022

Sequential Consistency Speculation
• Local load-store ordering uses standard OOO mechanism

• Globally non-speculative stores
– Stores execute at commit -> stores are in-order!

• Globally speculative loads
– Guess at issue that the memory location used by a load will not

change between issue and commit of the instruction
• this is equivalent to loads happening in-order at commit

– Check at commit by remembering all loads addresses starting at
issue and watching for writes to that location.

– Data Management for rollback relies on the basic out-of-order
speculative data management used for uni-processor rollback
and instruction re-execution.

October 26, 2022 L14-24

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A
L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A

1: ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A

1: ST A

2: LD A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A

1: ST A

2: LD A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A

1: ST A

2: LD A

3: LD A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A

1: ST A

2: LD A

3: LD A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A

1: ST A

2: LD A

3: LD A

4: ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A CPU B

1: ST A

2: LD A

3: LD A

4: ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A CPU B

ST A

1: ST A

2: LD A

3: LD A

4: ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A CPU B

1: ST A

2: LD A

3: LD A

4: ST A

ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A CPU B

1: ST A

2: LD A

3: LD A

4: ST A

ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A CPU B

1: ST A

2: LD A

3: LD A

4: ST A
ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A CPU B

1: ST A

2: LD A

3: LD A

4: ST A

ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A CPU B

1: ST A

2: LD A

3: LD A

4: ST A

ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

SC Speculative Behavior

October 26, 2022

CPU A CPU B

1: ST A

2: LD A

3: LD A

4: ST A

L14-25

MIT 6.5900 (ne 6.823) Fall 2022

Properly Synchronized Programs

• Very few programmers do programming that relies
on SC; instead, they use higher-level
synchronization primitives
– locks, semaphores, monitors, atomic transactions

• A “properly synchronized program” is one where
each shared writable variable is protected (say, by
a lock) so that there is no race in updating the
variable
– There is still race to get the lock
– There is no way to check if a program is properly synchronized

• For properly synchronized programs, instruction
reordering does not matter as long as updated
values are committed before leaving a locked
region

October 26, 2022 L14-26

MIT 6.5900 (ne 6.823) Fall 2022

Release Consistency
[Garachorloo 1990]

• Only care about inter-processor memory ordering
at thread synchronization points, not in between

• Can treat all synchronization instructions as the
only ordering points

…
Acquire(lock) // All following loads get most recent written values
… Read and write shared data ..
Release(lock) // All preceding writes are globally visible before

// lock is freed.
…

October 26, 2022 L14-27

MIT 6.5900 (ne 6.823) Fall 2022

Takeaways
• SC is too low level a programming model. High-level

programming should be based on critical sections & locks,
atomic transactions, monitors, ...

• High-level parallel programming should be oblivious of
memory model issues
– Programmer should not be affected by changes in the memory model

• ISA definition for Load, Store, Memory Fence, synchronization
instructions should
– Be precise
– Permit maximum flexibility in hardware implementation
– Permit efficient implementation of high-level parallel constructs

October 26, 2022 L14-28

L14-107MIT 6.5900 (ne 6.823) Fall 2022

Thank you!

Next Lecture:
On-Chip Networks

