Graphics Processing Units
(GPUs)

Joel Emer
Computer Science & Artificial Intelligence Lab
M.I.T.

MIT 6.5900 Fall 2022 L19-1

Why Study GPUs?

e Very successful commodity accelerator/co-processor

e GPUs combine two strategies to increase efficiency

— Massive parallelism
— Specialization

e Jllustrates tension between performance and
programmability in accelerators

e And within the context of programmability illustrates
the principle of "make the common case fast”.

November 16, 2022 MIT 6.5900 Fall 2022 L19-2

Graphics Processors Timeline

e Until mid-90s

— Most graphics processing in CPU
VGA controllers used to accelerate some display functions

e Mid-90s to mid-2000s

- Fixed-function accelerators for 2D and 3D graphlg; \
e triangle setup & rasterization, o
e texture mapping & shading —
— Programming:
e OpenGL and DirectX APIs

November 16, 2022 MIT 6.5900 Fall 2022

Contemporary GPUs

3D geometric
primitives
GPU
Programmable unlfled processors
v
Vertex Geometry Pixel Compute
programs programs programs programs

/H Rasteﬂzation H'dden surface} ﬂ
removal

GPU memory (DRAM
Final image

e Modern GPUs

Luebke and
Humphreys, 2007

- Some fixed-function hardware (texture, raster ops, ray tracing...)

— Plus programmable data-parallel multiprocessors

— Programming:

e OpenGL/DirectX
e Plus more general-purpose languages (CUDA, OpenCL,

November 16, 2022

MIT 6.5900 Fall 2022

)

L19-4

GPUs in Modern Systems

e Discrete GPUs

— PCle-based accelerator
- Separate GPU memory

e Integrated GPUs
— CPU and GPU on same die

— Shared main memory and
last-level cache

LLLELEL

1LE
Ll L

e Pros/cons?

Intel Ivy Bridge, 22nm 160mm? Apple A7, 28nm
TSMC, 102mm?
November 16, 2022 MIT 6.5900 Fall 2022 L19-5

Single Instruction Multiple Thread

A 4 X - .
>

/
PC > 1$ | IR > GPR ZaN 1’
‘& o ~| |-

Y
SIMT PaN

— Many threads, each with Lane 2\ M
private architectural /

state, e.qg., registers
— Group of threads that / 0 \
issue together called a r

warp

X
_—
— All threads that issue J GPR P
together execute same ~— R
instruction T Y
— Entire pipeline is an SM VaN|
or streaming

multiprocessor \ 'A | /

green-> Nvidia terminology

3

November 16, 2022 MIT 6.5900 Fall 2022 L19-6

Multithreading + Single Instruction Multiple Thread

L~ X >]
5 =R GPR1 = |
>*
A \A Y > é
1 VN >
A M
e
m
(0]
r
> X1 | y
A | T
GPR1 “ .
. v > é
VN | >
+1 [A

I

November 16, 2022 MIT 6.5900 Fall 2022 L19-7

Function unit optimization

\2 1S » IR — GPR <+
ZaN :/

Specialize
Function Units

4
{GPR -<*]

3

< -So3zgo =

3

November 16, 2022 MIT 6.5900 Fall 2022 L22-8

Function unit optimization

‘PC 13 o IRT™ ' GPR > *
= C CIT A

r r

o) (0]

S S ﬂ M

S S ©

b b m

a a ©

r r _ i
y

V*
| IRT— {GPR ~ d
N\

3

Restriction: Can’t issue same operation twice in a row

November 16, 2022 MIT 6.5900 Fall 2022 L22-9

Function unit optimization

- 35 C

—t

Add,, Addg,

Mul, o Muly,

Key
OpCOdeinum,thread(s)

November 16, 2022 MIT 6.5900 Fall 2022 L22-10

Streaming Multiprocessor Overview

Warp scheduler Secareboard
. | Warp No. | Address | SIMD instructions | Operands?
nanicon 1| 42 d.global.f64 Ready
oone 1| 43 mulf64 No _
3 | a5 shl.g32 Ready
3 | 96 add.s32 Mo
B | 1 |d.global.f64 Ready
8 | 12 |d.global.f64 Ready
I i
) 1
I Instruction register |
T T I
i i i i i 1 1 !) Il L l 1 I 1 1 1
EREEREEEEEEERE R
\T \TJ 1Tf jj jj h‘ kT i kfj -l'--lllr|l\‘\-l'--'If L 1J| -rl k;a ?J;anxwmmm
!:gmmmmmmmmmhm Reg | Reg | Reg | Reg Ftoul
1432 | 132 | 1K | TR E | THeB2 | 100 [1K=00 132 [1Ke2 m.«aain-:aaz e e m“ae!ma:se;wae!
Load Lian Load Load | Load Load | Losd Load | Laad ey I Laai Load | Load | Load | Load |
store | Stond siore | stoe | sioed stony | siom shony | shorm | store | sl story | shor storg | sicrm | Sbomy
Lt Lifst il it it il it i il | il it it uil il unil |
5 O
| Address coalescing unit | I Interconnection network]

1

!

!

Local Memory

G4 KB

November 16, 2022

MIT 6.5900 Fall 2022

Each SM supports 10s of
warps (e.g., 64 in Kepler)
with 32 threads/warp

Fetch 1 instr/cycle

Issue 1 ready instr/cycle

- Simple scoreboarding: all
warp elements must be ready

Instruction broadcast to all
lanes

Multithreading is the main
latency-hiding mechanism

L19-11

Little’s Law (again!)

Throughput (T) = Number in Flight (N) / Latency (L)

Example:

November 16, 2022

64 warps (number of instructions in flight)
1 instruction / cycle (desired throughput)

—

Issue |,

MIT 6.5900 Fall 2022

L19-12

Context Size vs Number of Contexts

e SMs support a variable number of contexts based

on required registers (and shared memory)
- Few large contexts - Fewer register spills
- Many small contexts - More latency tolerance
— Choice left to the compiler

e Example: Kepler supports up to 64 warps
- Max: 64 warps @ <=32 registers/thread
— Min: 8 warps @ 256 registers/thread

November 16, 2022 MIT 6.5900 Fall 2022 L19-13

Multiple Thread - Single Instruction Multiple Thread

e X >]
1$ o IR ePR1 IA | T
>*
A \A Y > é
1 VN >
A M
e
m
(0]
r
_» X1 B y
‘ ‘ A | T
GPR1 "
~ v A
VZaN >
+1 [A

o I

November 16, 2022 MIT 6.5900 Fall 2022 L19-14

Many Memory Types

Thread O Per Thread Memory

Thread 1 —

Thread 2 ——

Scratchpad Shared Memory

Global Memory

November 16, 2022 MIT 6.5900 Fall 2022

L19-15

Private Per Thread Memory

Thread O > Thread 0 Memory
Thread 1 > Thread 1 Memory
Thread 2 > Thread 2 Memory

e Private memory
— No cross-thread sharing
- Small, fixed size memory
e Can be used for constants
— Multi-bank implementation (can be in global memory)

November 16, 2022 MIT 6.5900 Fall 2022 L19-16

Shared Scratchpad Memory

Thread 0 A || Shared Memory Bank [/ A
C C

Thread 1 U Shared Memory Bank [™ U
+ +

Thread 2 >b(L Shared Memory Bank X
b

d a

r r

e Shared scratchpad memory (threads share data)
- Small, fixed size memory (16K-64K per SM = ‘core’)
— Banked for high bandwidth
— Fed with address coalescing unit (ACU) + crossbar
e ACU can buffer/coalesce requests

November 16, 2022 MIT 6.5900 Fall 2022 L19-17

Memory Access Divergence

e All loads are gathers, all stores are scatters

e Address coalescing unit detects sequential and
strided patterns, coalesces memory requests, but
complex patterns can result in multiple lower
bandwidth requests (memory divergence)

e Writing efficient GPU code requires most accesses
to not conflict, even though programming model
allows arbitrary patterns!

November 16, 2022 MIT 6.5900 Fall 2022 L19-18

Shared Global Memory

Thread O A Global Memory Bank [P{ A >
C C

Thread 1 J U Global Memory Bank P| U >
+ +
Thread 2 >)b(— Global Memory Bank |~ X
b
. d a
r r

e Shared global memory
— Large shared memory
— Will also suffer from memory divergence

November 16, 2022 MIT 6.5900 Fall 2022 L19-19

Shared Global Memory

. 1\ o] C B Global Memory Bank I’ C > |
Misses r r
of »l © P Global Memory Bank I" 0 |
S S
»{ S5 P Global Memory Bank P S > —>
of A~ | cacheTags/pata Pl C » N b b N
C r a a
e e
o] Y P| cacheTags/pata P © 1 ¢ i r ¢
+ 5
of X Pl cache Tags/Data - S o W M
b b (o] (o]
a a r > Buffered Data " r
r r k k
> Buffered Data »
L—"
/ > Buffered Data >
[Hits

e Memory hierarchy with caches

— Cache to save memory bandwidth
— Caches also enable compression/decompression of data

November 16, 2022 MIT 6.5900 Fall 2022 L19-20

Serialized cache access

Data Store Data Store

X O O T W
Do u N

X O O T W
Do u hh QO

X o a3+

X o a3 -

_|
_|

o
]

Tag Store Tag Store

e Trade latency for power/flexibility
— Only access data bank that contains data
— Facilitate more sophisticated cache organizations
e e.g., greater associativity

November 16, 2022 MIT 6.5900 Fall 2022 L19-21

Handling Branch Divergence

e Similar to vector processors, but masks are
handled internally
— Per-warp stack stores PCs and masks of non-taken paths

e On a conditional branch
— Push the current mask onto the stack
— Push the mask and PC for the non-taken path
— Set the mask for the taken path

e At the end of the taken path

— Pop mask and PC for the non-taken path and execute

e At the end of the non-taken path

— Pop the original mask before the branch instruction
e If a mask is all zeros, skip the block

November 16, 2022 MIT 6.5900 Fall 2022 L19-22

Example: Branch Divergence

Assume 4 threads/warp,
initial mask 1111

if (m[i] !'= @) { O
if (a[i] > b[i]) { O
y[i] = a[1] - b[1i];
} else { @)
y[i] = b[1] - a[i];
} O
} else { O
yl[i] = ©;
} O

Q Push mask 1111
Push mask 0011
Set mask 1100

9 Push mask 1100
Push mask 0100
Set mask 1000

O Pop mask

9 Pop mask

O Pop mask

@ Pop mask

Optimization for branches that all go same way?

November 16, 2022 MIT 6.5900 Fall 2022

0100

1100

0011

1111

L19-23

Branch divergence and locking

e Consider the following executing in multiple threads
In a warp:

if (condition[i]) {
while (locked(map@[i])){}
lock(locks[map@[i]]);

} else {
unlock(locks[mapl[i]]);

}

where i is a thread id and map@[], mapl[]
are permutations of thread ids.

What can go wrong here?

November 16, 2022 MIT 6.5900 Fall 2022 L19-24

GPU Programming Environments

Code for accelerated kernels

e CUDA (Nvidia-only)
- C-like language that runs on GPU
— Libraries: cuDNN, cuBLAS, cuFFT

e OpenCL (open standard)
- C-like language that runs on GPU, CPU or FPGA
— usually less optimized than CUDA

November 16, 2022 MIT 6.5900 Fall 2022 L19-25

CUDA GPU Thread Model

Thread

e Single-program multiple data (SPMD)
per-Threa d Lo cal M emory m Od e |

hread Block e Each context is a thread

e — Threads have registers
§§§§§§§§ S ey - Threads have local memory

o Parallel threads packed in blocks

orido — o b — Blocks have shared memory
!;; : m ?ﬁ& E oD — Threads synchronize with barrier
S | S| S S — Blocks run to completion (or abort)
— — — Inter-Grid Synchronization — — — Globa | Me mory
”G‘“ e B e Grids include independent blocks
e g I e - May execute concurrently
et v — Share global memory, but

— Have limited inter-block synchronization

November 16, 2022 MIT 6.5900 Fall 2022 L19-26

Code Example: DAXPY

C Code CUDA Code
// Invoke DAXPY // Invoke DAXPY with 256 threads per block
daxpy(n,2.0,x,y): __host__
// DAXPY in C int nblocks = (n+ 255) / 256;
void daxpy(int n, double a, double *x, double *y) daxpy<<<nblocks, 256>>>(n, 2.0, X, y);
{ // DAXPY in CUDA
for (int i =0; i < n; ++i) __device__
y[i] = a*x[i] + y[il; void daxpy(int n, double a, double *x, double *y)
} {

int 1 = blockldx x*blockDim .x + threadldx.x;
if (1 <n) y[i] = a*x[i] + y[il;
}

e CUDA code launches 256 threads per block

e CUDA vs vector terminology:

— Thread = 1 iteration of scalar loop (1 element in vector loop)
— Block = Body of vectorized loop (VL=256 in this example)
— Grid = Vectorizable loop

November 16, 2022 MIT 6.5900 Fall 2022 L19-27

GPU Kernel Execution

Mem I

Mem

A,

gl

— O —

E——

@ Transfer input data from
CPU to GPU memory

© Launch kernel (grid)

© Wait for kernel to finish
(if synchronous)

O Transfer results to CPU
memory

« Data transfers can dominate execution time
« Integrated GPUs with unified address space
- no copies, but CPU & GPU contend for memory

November 16, 2022

MIT 6.5900 Fall 2022 L19-28

Hardware Scheduling

S e Grids can be launched by
Ordered queues of grids CPU Or GPU

— Work from multiple CPU
threads and processes

Y

CUDA-Created Grid Management Unit
Work B Pending & suspended grids . .
e HW unit schedules grids on
* Two-way link allows S M S

pausing dispatch
Y

P —— — Priority-based scheduling

Work Distributor

Actively dispatching grids >)
\\‘\ 32 Active Grids ‘ . .
e Multi-level scheduling
- Limited number of active grids
T SMIX - More queued/paused

November 16, 2022 MIT 6.5900 Fall 2022 L19-29

Synchronization

e Barrier synchronization within a thread block
(__syncthreads())

— Tracking simplified by grouping threads into warps
— Counter tracks number of warps that have arrived to barrier

e Atomic operations to global memory

— Read-modify-write operations (add, exchange, compare-and-
swap, ...)

— Performed at the memory controller or at the L2

e Limited inter-block synchronization!
— Can’t wait for other blocks to finish

November 16, 2022 MIT 6.5900 Fall 2022 L19-30

GPU ISA and Compilation

e GPU microarchitecture and instruction set
change very frequently

e To achieve compatibility:
— Compiler produces intermediate pseudo-assembler
language (e.g., Nvidia PTX)
— GPU driver JITs kernel, tailoring it to specific
microarchitecture

e In practice, little performance portability
— Code is often tuned to specific GPU architecture

November 16, 2022 MIT 6.5900 Fall 2022 L19-31

System-Level Issues

e Instruction semantics
— EXceptions

e Scheduling
— Each kernel is non-preemptive (but can be aborted)

— Resource management and scheduling left to GPU driver,
opaque to OS

e Memory management
— First GPUs had no virtual memory
— Recent support for basic virtual memory (protection
among grids, no paging)
— Host-to-device copies with separate memories (discrete
GPUs)
— Very recent GPUs support paging

November 16, 2022 MIT 6.5900 Fall 2022 L19-32

GPU: Multithreaded Multicore Chip

e Example: Nvidia Pascal GP100 (2016)

November 16, 2022

MIT 6.5900 Fall 2022

60 streaming
multiprocessors (SMs)

4MB Shared L2 cache
8 memory controllers
e 720 GB/s (HBM2)

Fixed-function logic for
graphics (texture units,
raster ops, ...)

Scalability - change
number of cores and
memory channels

Scheduling mostly
controlled by hardware

L19-33

Pascal Streaming Multiprocessor (SM)

e EXxecution units

TS ‘ - 64 FUs (int and FP)
— 1 - 16 load-store FUs
i — - 16 special FUs (e.g.,
sqgrt, sin, cos, ...)
con [l <~ con [l <~ < [l
. 1| °© Memory structures
coe [l o [l o o - 64K 32-bit registers
I e I s - 64KB shared
memory
oo [N <o coe [= - [N
e Contexts
— 2048 threads
- 32 blocks

November 16, 2022 MIT 6.5900 Fall 2022 L19-34

Vector vs GPU Terminology

November 16, 2022

More descrip- Closest old term Offficial CUDA/S
Type tive name outside of GPUs ~ MVIDIA GPU term Book definition

Vectorizable Vectorizable Loop Grid A vectorizable loop, exccuted on the GPU, made
“ Loop up of one or more Thread Blocks (bodics of
E vectorized loop) I:hat_mn cxecute in parallel.
E Body of Body of a Thread Block A vectorized loop exccuted on a multithreaded
= Vectorized Loop {Strip-Mined) SIMD Processor, made up of one or more threads
] Vectorized Loop of SIMD instructions. They can communicate via
E Local Men;m_z}-.
E Sequence of Omne iteration of CUDA Thread A vertical cut of a thread of SIMD instructions
:E SIMD Lane a Scalar Loop comesponding to one element executed by one

Operations SIMD Lane. Result is stored depending on mask
and predicate register.

E A Thread of Thread of Vector Warp A traditional thread, but it contains just SIMD
‘E SIMD Instructions instructions that are executed on a multithreaded
Instructions SIMD Processor. Results stored depending on a
—plemenl mask.
% per-el k
E SIMD Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD

Instruction Lanes,

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor execules

SIMD Vector Processor Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors,

E Thread Block Scalar Processor Giga Thread Assigns multiple Thread Blocks (bodies of

-E Scheduler Engine veetorized loop) to multithreaded SIMD

E Processors.

& SIMDThread — Thread scheduler Warp Scheduler Hardware unit that schedules and issues threads

‘% Scheduler in a Multithreaded of SIMD instructions when they are ready to
CPU execute; includes a scoreboard fo track SIMD

E Thread execution.

SIMD Lanc Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single clement. Results
stored depending on mask.

GPFU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

- SIMD Processors in a GPUL

2 Private Stack or Thread Local Memory Portion of DRAM memory private to each SIMD

- Memory Local Storage (0S) Lane,

= Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded STMD

E Processor, unavailable to other SIMD Processors.

g SIMD Lane Vector Lane Thread Processor Registers in a single SIMD Lane allocated across
Registers Registess Registers a full thread block (body of vectorized loop).

MIT 6.5900 Fall 2022

[H&P5, Fig 4.25]

L19-35

CPU vs. GPU Performance

I Intel E5-2620v3 [Pascal Titan X (no cuDNN) [Pascal Titan X (cuDNN 5.1)
24000

18000 \

we OOX 67/x 71x 64X
y 0) 76X

RN i

VGG-16 VGG-19 ResNet-18 Res-Net-50 ResNet-200

16 Forward + Backward time (ms)

N

Data from https:/github.com/jcjohnson/cnn-benchmarks

Ratio of (partially-optimized) CPU vs. CUDA library (cuDNN)

Source: Stanford CS231n
November 16, 2022 MIT 6.5900 Fall 2022 L19-36

Thank you!

Next Lecture:
Accelerators (1)

MIT 6.5900 Fall 2022 L19-37

