
L19-1MIT 6.5900 Fall 2022

Joel Emer
Computer Science & Artificial Intelligence Lab

M.I.T.

Graphics Processing Units
(GPUs)

MIT 6.5900 Fall 2022

Why Study GPUs?

• Very successful commodity accelerator/co-processor

• GPUs combine two strategies to increase efficiency
– Massive parallelism
– Specialization

• Illustrates tension between performance and
programmability in accelerators

• And within the context of programmability illustrates
the principle of “make the common case fast”.

November 16, 2022 L19-2

MIT 6.5900 Fall 2022

Graphics Processors Timeline

• Until mid-90s
– Most graphics processing in CPU
– VGA controllers used to accelerate some display functions

• Mid-90s to mid-2000s
– Fixed-function accelerators for 2D and 3D graphics

• triangle setup & rasterization,
• texture mapping & shading

– Programming:
• OpenGL and DirectX APIs

November 16, 2022 L19-3

MIT 6.5900 Fall 2022

Contemporary GPUs

• Modern GPUs
– Some fixed-function hardware (texture, raster ops, ray tracing…)
– Plus programmable data-parallel multiprocessors
– Programming:

• OpenGL/DirectX
• Plus more general-purpose languages (CUDA, OpenCL, …)

November 16, 2022

Luebke and
Humphreys, 2007

L19-4

MIT 6.5900 Fall 2022

GPUs in Modern Systems

• Discrete GPUs
– PCIe-based accelerator
– Separate GPU memory

• Integrated GPUs
– CPU and GPU on same die
– Shared main memory and

last-level cache

• Pros/cons?

November 16, 2022

Apple A7, 28nm
TSMC, 102mm2

Intel Ivy Bridge, 22nm 160mm2

GPU

Nvidia Kepler

L19-5

MIT 6.5900 Fall 2022

Single Instruction Multiple Thread

November 16, 2022

SIMT
– Many threads, each with

private architectural
state, e.g., registers

– Group of threads that
issue together called a
warp

– All threads that issue
together execute same
instruction

– Entire pipeline is an SM
or streaming
multiprocessor

Mem

GPR

X

Y

+
*

PC I$ IR GPR

X

Y

+
*

Mem

M
e
m
o
r
y

green-> Nvidia terminology

Lane

L19-6

MIT 6.5900 Fall 2022

+1

2 2

Multithreading + Single Instruction Multiple Thread

November 16, 2022

PC I$ IR GPR

X

Y

+

*

GPR

X

Y

+

*

M
e
m
o
r
y

PC
1PC

1PC
1PC

1

GPR1GPR1GPR1GPR1

GPR1GPR1GPR1GPR1

L19-7

MIT 6.5900 Fall 2022

Function unit optimization

L22-8November 16, 2022

+
*

PC I$ IR GPR +
*

M
e
m
o
r
y

GPR

+

*

Specialize
Function Units

MIT 6.5900 Fall 2022

Function unit optimization

L22-9November 16, 2022

*

PC I$ IR GPR +

Restriction: Can’t issue same operation twice in a row

M
e
m
o
r
y

GPRIR

C
r
o
s
s
b
a
r

C
r
o
s
s
b
a
r

MIT 6.5900 Fall 2022

Function unit optimization

L22-10November 16, 2022

0 1 2 3 4 5

Fetch Add0,0-1 Mul1,0-1 Add2,0-1 Mul3,0-1 …

GPR0 Add0,0 Mul1,0 Add2,0 Mul3,0 …

GPR1 Add0,1 Mul1,1 Add2,1 …

Adder Add0,0 Add0,1 Add2,0 …

Mul Mul1,0 Mul1,1 …

Key
Opcodeinum,thread(s)

U
n
i
t

Cycle

MIT 6.5900 Fall 2022

Streaming Multiprocessor Overview

• Each SM supports 10s of
warps (e.g., 64 in Kepler)
with 32 threads/warp

• Fetch 1 instr/cycle

• Issue 1 ready instr/cycle
– Simple scoreboarding: all

warp elements must be ready

• Instruction broadcast to all
lanes

• Multithreading is the main
latency-hiding mechanism

November 16, 2022 L19-11

MIT 6.5900 Fall 2022

Little’s Law (again!)

November 16, 2022

Throughput (T) = Number in Flight (N) / Latency (L)

Issue Execution

Example:
64 warps (number of instructions in flight)
1 instruction / cycle (desired throughput)



L19-12

MIT 6.5900 Fall 2022

Context Size vs Number of Contexts

• SMs support a variable number of contexts based
on required registers (and shared memory)
– Few large contexts  Fewer register spills
– Many small contexts  More latency tolerance
– Choice left to the compiler

• Example: Kepler supports up to 64 warps
– Max: 64 warps @ <=32 registers/thread
– Min: 8 warps @ 256 registers/thread

November 16, 2022 L19-13

MIT 6.5900 Fall 2022

+1

2 2

Multiple Thread – Single Instruction Multiple Thread

November 16, 2022

PC I$ IR GPR

X

Y

+

*

GPR

X

Y

+

*

M
e
m
o
r
y

PC
1PC

1PC
1PC

1

GPR1GPR1GPR1GPR1

GPR1GPR1GPR1GPR1

L19-14

MIT 6.5900 Fall 2022

Many Memory Types

Mem

Thread 0

Thread 1

Thread 2

Per Thread Memory

Scratchpad Shared Memory

Global Memory

…
…

…

November 16, 2022 L19-15

MIT 6.5900 Fall 2022

Private Per Thread Memory

…
.

Thread 0 Thread 0 Memory

Thread 1 Thread 1 Memory

Thread 2 Thread 2 Memory

• Private memory
– No cross-thread sharing
– Small, fixed size memory

• Can be used for constants
– Multi-bank implementation (can be in global memory)

November 16, 2022 L19-16

MIT 6.5900 Fall 2022

Shared Scratchpad Memory

…
.

Thread 0 Shared Memory Bank

• Shared scratchpad memory (threads share data)
– Small, fixed size memory (16K-64K per SM = ‘core’)
– Banked for high bandwidth
– Fed with address coalescing unit (ACU) + crossbar

• ACU can buffer/coalesce requests

Thread 1 Shared Memory Bank

Thread 2 Shared Memory Bank

A
C
U
+
X
b
a
r

A
C
U
+
X
b
a
r

November 16, 2022 L19-17

MIT 6.5900 Fall 2022

Memory Access Divergence

• All loads are gathers, all stores are scatters

• Address coalescing unit detects sequential and
strided patterns, coalesces memory requests, but
complex patterns can result in multiple lower
bandwidth requests (memory divergence)

• Writing efficient GPU code requires most accesses
to not conflict, even though programming model
allows arbitrary patterns!

November 16, 2022 L19-18

MIT 6.5900 Fall 2022

Global Memory Bank

Global Memory Bank

Global Memory Bank

A
C
U
+
X
b
a
r

A
C
U
+
X
b
a
r…

.

Thread 0 Global Memory Bank

Thread 1 Global Memory Bank

Thread 2 Global Memory Bank

A
C
U
+
X
b
a
r

A
C
U
+
X
b
a
r

Shared Global Memory

• Shared global memory
– Large shared memory
– Will also suffer from memory divergence

November 16, 2022 L19-19

MIT 6.5900 Fall 2022

Shared Global Memory

• Memory hierarchy with caches
– Cache to save memory bandwidth
– Caches also enable compression/decompression of data

Global Memory Bank

Global Memory Bank

Global Memory Bank

C
r
o
s
s
b
a
r

C
r
o
s
s
b
a
r

Cache Tags/Data

Cache Tags/Data

Cache Tags/Data

A
C
U
+
X
b
a
r

C
r
o
s
s
b
a
r

N
e
t
w
o
r
k

Buffered Data

Buffered Data

Buffered Data

N
e
t
w
o
r
k

Hits

Misses

November 16, 2022 L19-20

MIT 6.5900 Fall 2022

Serialized cache access

B
l
o
c
k

O
f
f
s
e
t

I
n
d
e
x

T
a
g

Data Store

Tag Store

Match

• Trade latency for power/flexibility
– Only access data bank that contains data
– Facilitate more sophisticated cache organizations

• e.g., greater associativity

B
l
o
c
k

O
f
f
s
e
t

I
n
d
e
x

T
a
g

Data Store

Tag Store

Match

Combine

November 16, 2022 L19-21

MIT 6.5900 Fall 2022

Handling Branch Divergence

• Similar to vector processors, but masks are
handled internally
– Per-warp stack stores PCs and masks of non-taken paths

• On a conditional branch
– Push the current mask onto the stack
– Push the mask and PC for the non-taken path
– Set the mask for the taken path

• At the end of the taken path
– Pop mask and PC for the non-taken path and execute

• At the end of the non-taken path
– Pop the original mask before the branch instruction

• If a mask is all zeros, skip the block

November 16, 2022 L19-22

MIT 6.5900 Fall 2022

Example: Branch Divergence

Push mask 1111
Push mask 0011
Set mask 1100

Push mask 1100
Push mask 0100
Set mask 1000

Pop mask 0100

Pop mask 1100

Pop mask 0011

Pop mask 1111

if (m[i] != 0) {
if (a[i] > b[i]) {

y[i] = a[i] - b[i];
} else {

y[i] = b[i] - a[i];
}

} else {
y[i] = 0;

}

3

1

2

4

6

3

1

2

4

5

Assume 4 threads/warp,
initial mask 1111

Optimization for branches that all go same way?

November 16, 2022

6
5

L19-23

MIT 6.5900 Fall 2022

Branch divergence and locking

• Consider the following executing in multiple threads
in a warp:

November 16, 2022

if (condition[i]) {
while (locked(map0[i])){}
lock(locks[map0[i]]);

} else {
unlock(locks[map1[i]]);

}

where i is a thread id and map0[], map1[]
are permutations of thread ids.

What can go wrong here?

L19-24

MIT 6.5900 Fall 2022

GPU Programming Environments

November 16, 2022

Code for accelerated kernels

• CUDA (Nvidia-only)
– C-like language that runs on GPU
– Libraries: cuDNN, cuBLAS, cuFFT

• OpenCL (open standard)
– C-like language that runs on GPU, CPU or FPGA
– usually less optimized than CUDA

L19-25

MIT 6.5900 Fall 2022

CUDA GPU Thread Model

• Single-program multiple data (SPMD)
model

• Each context is a thread
– Threads have registers
– Threads have local memory

• Parallel threads packed in blocks
– Blocks have shared memory
– Threads synchronize with barrier
– Blocks run to completion (or abort)

• Grids include independent blocks
– May execute concurrently
– Share global memory, but
– Have limited inter-block synchronization

November 16, 2022 L19-26

MIT 6.5900 Fall 2022

Code Example: DAXPY

• CUDA code launches 256 threads per block
• CUDA vs vector terminology:

– Thread = 1 iteration of scalar loop (1 element in vector loop)
– Block = Body of vectorized loop (VL=256 in this example)
– Grid = Vectorizable loop

C Code CUDA Code

November 16, 2022 L19-27

MIT 6.5900 Fall 2022

GPU Kernel Execution

Transfer input data from
CPU to GPU memory

Launch kernel (grid)
Wait for kernel to finish

(if synchronous)
Transfer results to CPU

memory
CPU

Mem

GPU

Mem

3

1

2

4

1

3

2

4

• Data transfers can dominate execution time
• Integrated GPUs with unified address space
 no copies, but CPU & GPU contend for memory

November 16, 2022 L19-28

MIT 6.5900 Fall 2022

Hardware Scheduling

• Grids can be launched by
CPU or GPU
– Work from multiple CPU

threads and processes

• HW unit schedules grids on
SMs
– Priority-based scheduling

• Multi-level scheduling
– Limited number of active grids
– More queued/paused

November 16, 2022 L19-29

MIT 6.5900 Fall 2022

Synchronization

• Barrier synchronization within a thread block
(__syncthreads())
– Tracking simplified by grouping threads into warps
– Counter tracks number of warps that have arrived to barrier

• Atomic operations to global memory
– Read-modify-write operations (add, exchange, compare-and-

swap, …)
– Performed at the memory controller or at the L2

• Limited inter-block synchronization!
– Can’t wait for other blocks to finish

November 16, 2022 L19-30

MIT 6.5900 Fall 2022

GPU ISA and Compilation

• GPU microarchitecture and instruction set
change very frequently

• To achieve compatibility:
– Compiler produces intermediate pseudo-assembler

language (e.g., Nvidia PTX)
– GPU driver JITs kernel, tailoring it to specific

microarchitecture

• In practice, little performance portability
– Code is often tuned to specific GPU architecture

November 16, 2022 L19-31

MIT 6.5900 Fall 2022

System-Level Issues

• Instruction semantics
– Exceptions

• Scheduling
– Each kernel is non-preemptive (but can be aborted)
– Resource management and scheduling left to GPU driver,

opaque to OS

• Memory management
– First GPUs had no virtual memory
– Recent support for basic virtual memory (protection

among grids, no paging)
– Host-to-device copies with separate memories (discrete

GPUs)
– Very recent GPUs support paging

November 16, 2022 L19-32

MIT 6.5900 Fall 2022

GPU: Multithreaded Multicore Chip

• Example: Nvidia Pascal GP100 (2016)
• 60 streaming

multiprocessors (SMs)

• 4MB Shared L2 cache
• 8 memory controllers

• 720 GB/s (HBM2)

• Fixed-function logic for
graphics (texture units,
raster ops, …)

• Scalability  change
number of cores and
memory channels

• Scheduling mostly
controlled by hardware

November 16, 2022 L19-33

MIT 6.5900 Fall 2022

Pascal Streaming Multiprocessor (SM)

• Execution units
– 64 FUs (int and FP)
– 16 load-store FUs
– 16 special FUs (e.g.,

sqrt, sin, cos, …)

• Memory structures
– 64K 32-bit registers
– 64KB shared

memory

• Contexts
– 2048 threads
– 32 blocks

November 16, 2022 L19-34

MIT 6.5900 Fall 2022

Vector vs GPU Terminology

[H&P5, Fig 4.25]

November 16, 2022 L19-35

MIT 6.5900 Fall 2022

CPU vs. GPU Performance

November 16, 2022

Source: Stanford CS231n

Ratio of (partially-optimized) CPU vs. CUDA library (cuDNN)

L19-36

L19-37MIT 6.5900 Fall 2022

Thank you!

Next Lecture:
Accelerators (I)

