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Why Study GPUs?

• Very successful commodity accelerator/co-processor

• GPUs combine two strategies to increase efficiency
– Massive parallelism
– Specialization

• Illustrates tension between performance and 
programmability in accelerators

• And within the context of programmability illustrates 
the principle of “make the common case fast”.
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Graphics Processors Timeline

• Until mid-90s
– Most graphics processing in CPU
– VGA controllers used to accelerate some display functions

• Mid-90s to mid-2000s
– Fixed-function accelerators for 2D and 3D graphics 

• triangle setup & rasterization, 
• texture mapping & shading

– Programming:
• OpenGL and DirectX APIs
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Contemporary GPUs

• Modern GPUs
– Some fixed-function hardware (texture, raster ops, ray tracing…)
– Plus programmable data-parallel multiprocessors
– Programming:

• OpenGL/DirectX
• Plus more general-purpose languages (CUDA, OpenCL, …)
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Luebke and 
Humphreys, 2007
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GPUs in Modern Systems

• Discrete GPUs
– PCIe-based accelerator
– Separate GPU memory

• Integrated GPUs
– CPU and GPU on same die
– Shared main memory and

last-level cache

• Pros/cons?
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Apple A7, 28nm 
TSMC, 102mm2

Intel Ivy Bridge, 22nm 160mm2

GPU

Nvidia Kepler
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Single Instruction Multiple Thread
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SIMT
– Many threads, each with 

private architectural 
state, e.g., registers

– Group of threads that 
issue together called a 
warp

– All threads that issue 
together execute same 
instruction

– Entire pipeline is an SM
or streaming 
multiprocessor
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Multithreading + Single Instruction Multiple Thread
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Function unit optimization
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Function unit optimization
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Function unit optimization
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Fetch Add0,0-1 Mul1,0-1 Add2,0-1 Mul3,0-1 …
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Streaming Multiprocessor Overview

• Each SM supports 10s of 
warps (e.g., 64 in Kepler) 
with 32 threads/warp

• Fetch 1 instr/cycle

• Issue 1 ready instr/cycle
– Simple scoreboarding: all 

warp elements must be ready

• Instruction broadcast to all 
lanes

• Multithreading is the main 
latency-hiding mechanism
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Little’s Law (again!)

November 16, 2022

Throughput (T) = Number in Flight (N) / Latency (L)

Issue Execution

Example:
64 warps (number of instructions in flight)
1 instruction / cycle (desired throughput) 



L19-12



MIT 6.5900 Fall 2022

Context Size vs Number of Contexts

• SMs support a variable number of contexts based 
on required registers (and shared memory)
– Few large contexts  Fewer register spills
– Many small contexts  More latency tolerance
– Choice left to the compiler

• Example: Kepler supports up to 64 warps
– Max: 64 warps @ <=32 registers/thread
– Min: 8 warps @ 256 registers/thread
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Multiple Thread – Single Instruction Multiple Thread
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Many Memory Types

Mem

Thread 0

Thread 1

Thread 2

Per Thread Memory

Scratchpad Shared Memory

Global Memory

…
…

…
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Private Per Thread Memory

…
.

Thread 0 Thread 0 Memory

Thread 1 Thread 1 Memory

Thread 2 Thread 2 Memory

• Private memory
– No cross-thread sharing
– Small, fixed size memory 

• Can be used for constants
– Multi-bank implementation (can be in global memory)
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Shared Scratchpad Memory

…
.

Thread 0 Shared Memory Bank

• Shared scratchpad memory (threads share data)
– Small, fixed size memory (16K-64K per SM = ‘core’)
– Banked for high bandwidth
– Fed with address coalescing unit (ACU) + crossbar

• ACU can buffer/coalesce requests
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Memory Access Divergence

• All loads are gathers, all stores are scatters

• Address coalescing unit detects sequential and 
strided patterns, coalesces memory requests, but 
complex patterns can result in multiple lower 
bandwidth requests (memory divergence) 

• Writing efficient GPU code requires most accesses 
to not conflict, even though programming model 
allows arbitrary patterns!
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Global Memory Bank
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Shared Global Memory

• Shared global memory
– Large shared memory
– Will also suffer from memory divergence
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Shared Global Memory

• Memory hierarchy with caches
– Cache to save memory bandwidth
– Caches also enable compression/decompression of data
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Serialized cache access
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• Trade latency for power/flexibility
– Only access data bank that contains data
– Facilitate more sophisticated cache organizations

• e.g., greater associativity

B
l
o
c
k

O
f
f
s
e
t

I
n
d
e
x

T
a
g

Data Store

Tag Store

Match

Combine

November 16, 2022 L19-21



MIT 6.5900 Fall 2022

Handling Branch Divergence

• Similar to vector processors, but masks are 
handled internally
– Per-warp stack stores PCs and masks of non-taken paths

• On a conditional branch
– Push the current mask onto the stack
– Push the mask and PC for the non-taken path
– Set the mask for the taken path

• At the end of the taken path
– Pop mask and PC for the non-taken path and execute

• At the end of the non-taken path
– Pop the original mask before the branch instruction

• If a mask is all zeros, skip the block
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Example: Branch Divergence

Push mask 1111
Push mask 0011
Set mask   1100

Push mask 1100
Push mask 0100
Set mask   1000

Pop mask   0100

Pop mask   1100

Pop mask   0011

Pop mask   1111

if (m[i] != 0) {
if (a[i] > b[i]) {

y[i] = a[i] - b[i];
} else {

y[i] = b[i] - a[i];
}

} else {
y[i] = 0;

}
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Assume 4 threads/warp,
initial mask 1111

Optimization for branches that all go same way?
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Branch divergence and locking

• Consider the following executing in multiple threads 
in a warp:

November 16, 2022

if (condition[i]) {
while (locked(map0[i])){}
lock(locks[map0[i]]);

} else {
unlock(locks[map1[i]]);

}

where i is a thread id and map0[], map1[]  
are permutations of thread ids.

What can go wrong here?

L19-24



MIT 6.5900 Fall 2022

GPU Programming Environments

November 16, 2022

Code for accelerated kernels

• CUDA (Nvidia-only)
– C-like language that runs on GPU
– Libraries: cuDNN, cuBLAS, cuFFT

• OpenCL (open standard)
– C-like language that runs on GPU, CPU or FPGA
– usually less optimized than CUDA
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CUDA GPU Thread Model

• Single-program multiple data (SPMD) 
model 

• Each context is a thread
– Threads have registers
– Threads have local memory

• Parallel threads packed in blocks
– Blocks have shared memory
– Threads synchronize with barrier
– Blocks run to completion (or abort)

• Grids include independent blocks
– May execute concurrently
– Share global memory, but
– Have limited inter-block synchronization
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Code Example: DAXPY

• CUDA code launches 256 threads per block
• CUDA vs vector terminology:

– Thread = 1 iteration of scalar loop (1 element in vector loop)
– Block = Body of vectorized loop (VL=256 in this example)
– Grid = Vectorizable loop

C Code CUDA Code
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GPU Kernel Execution

Transfer input data from 
CPU to GPU memory

Launch kernel (grid)
Wait for kernel to finish

(if synchronous)
Transfer results to CPU 

memory
CPU

Mem
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• Data transfers can dominate execution time
• Integrated GPUs with unified address space 
 no copies, but CPU & GPU contend for memory
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Hardware Scheduling

• Grids can be launched by 
CPU or GPU
– Work from multiple CPU 

threads and processes

• HW unit schedules grids on 
SMs
– Priority-based scheduling

• Multi-level scheduling
– Limited number of active grids 
– More queued/paused
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Synchronization

• Barrier synchronization within a thread block 
(__syncthreads())
– Tracking simplified by grouping threads into warps
– Counter tracks number of warps that have arrived to barrier

• Atomic operations to global memory
– Read-modify-write operations (add, exchange, compare-and-

swap, …)
– Performed at the memory controller or at the L2

• Limited inter-block synchronization!
– Can’t wait for other blocks to finish
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GPU ISA and Compilation

• GPU microarchitecture and instruction set 
change very frequently

• To achieve compatibility:
– Compiler produces intermediate pseudo-assembler 

language (e.g., Nvidia PTX)
– GPU driver JITs kernel, tailoring it to specific 

microarchitecture

• In practice, little performance portability
– Code is often tuned to specific GPU architecture
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System-Level Issues

• Instruction semantics
– Exceptions

• Scheduling
– Each kernel is non-preemptive (but can be aborted)
– Resource management and scheduling left to GPU driver, 

opaque to OS

• Memory management
– First GPUs had no virtual memory
– Recent support for basic virtual memory (protection 

among grids, no paging)
– Host-to-device copies with separate memories (discrete 

GPUs)
– Very recent GPUs support paging
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GPU: Multithreaded Multicore Chip

• Example: Nvidia Pascal GP100 (2016)
• 60 streaming 

multiprocessors (SMs)

• 4MB Shared L2 cache
• 8 memory controllers

• 720 GB/s (HBM2)

• Fixed-function logic for 
graphics (texture units, 
raster ops, …)

• Scalability  change 
number of  cores and 
memory channels

• Scheduling mostly 
controlled by hardware
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Pascal Streaming Multiprocessor (SM)

• Execution units
– 64 FUs (int and FP)
– 16 load-store FUs
– 16 special FUs (e.g., 

sqrt, sin, cos, …)

• Memory structures
– 64K 32-bit registers
– 64KB shared 

memory

• Contexts
– 2048 threads
– 32 blocks
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Vector vs GPU Terminology

[H&P5, Fig 4.25]
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CPU vs. GPU Performance

November 16, 2022

Source: Stanford CS231n

Ratio of (partially-optimized) CPU vs. CUDA library (cuDNN)
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Thank you!

Next Lecture:
Accelerators (I)


