Reliable Architectures

Joel Emer
Computer Science & Artificial Intelligence Lab
M.I.T.

April 22, 2019 MIT 6.5900 Fall 2022 L20-1

Event Changes State of a Single Bit

April 22, 2019 MIT 6.5900 Fall 2022 L19-2

Event Changes State of a Single Bit

« Soft Error — Changes that are not permanent
« Hard Error — Changes that are permanent

April 22, 2019 MIT 6.5900 Fall 2022 L19-2

Impact of Neutron Strike on a Si Device

neutron strike

v Strikes release electron &
hole pairs that can be
absorbed by source &

drain to alter the state of
the device

Transistor Device

e Secondary source of upsets: Alpha particles from packaging

April 22, 2019 MIT 6.5900 Fall 2022 L19-3

Cosmic Rays Come From Deep Space
¥ ¥ ¥
/1
) \
%&“A\
Earth’s Surface

e Neutron flux is higher at higher altitudes

— 3-5x increase in Denver at 5,000 feet
— 100x increase in airplanes at 30,000+ feet

April 22, 2019 MIT 6.5900 Fall 2022 L19-4

Basics of Charge Generation

Cosmic rays of >1GeV result in neutrons of >1MeV

Energy Electron-Hole Charge
\')) Pairs (Femtocoulombs)

3.6eV 1 3.2x10
1MeV ~2.8x10° ~44
1GeV ~2.8x108 ~44x103

In 2010:
« Critical charge on a DRAM: ~25 fCoulomb
« Critical charge on an SRAM: <4 fCoulomb

April 22, 2019 MIT 6.5900 Fall 2022 L19-5

Cosmic Ray Strikes:
Evidence & Reaction

e Publicly disclosed incidences

— Error logs in large servers, E. Normand, “Single Event Upset at
Ground Level,” IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996.

— Sun Microsystems found cosmic ray strikes on L2 cache with
defective error protection caused Sun’s flagship servers to crash,
R. Baumann, IRPS Tutorial on SER, 2000.

— Cypress Semiconductor reported in 2004 a single soft error
brought a billion-dollar automotive factory to a halt once a
month, Zielger & Puchner, "SER - History, Trends, and
Challenges,” Cypress, 2004.

- In 2003, a "single-event upset" was blamed for an electronic
voting error in Schaerbeekm, Belgium. A bit flip in the electronic
voting machine added 4,096 extra votes to one candidate.

April 22, 2019 MIT 6.5900 Fall 2022 L19-6

Physical solutions are hard

e Shielding?
— No practical absorbent (e.g., approximately > 10 ft of concrete)
— This is unlike Alpha particles which are easily blocked

e Technology solution?
— Partially-depleted SOI of some help, effect on logic unclear
- Fully-depleted SOI may help, but is challenging to manufacture
— FinFETs are showing significantly lower vulnerability

e Circuit-level solution?

— Radiation-hardened circuits can provide 10x improvement with
significant penalty in performance, area, cost

- 2-4x improvement may be possible with less penalty

April 22, 2019 MIT 6.5900 Fall 2022 L19-7

Triple Modular Redundancy
(Von Neumann, 1956)

—+ Result

V does a majority vote on the results

April 22, 2019 MIT 6.5900 Fall 2022 L19-8

Dual Modular Redundancy
(e.g., BINAC 1949, Stratus)

Error?

Mismatch?

Error?

e Processing stops on mismatch

e Error signal used to decide which processor be used
to restore state to other

April 22, 2019 MIT 6.5900 Fall 2022 L19-9

Pair and Spare Lockstep
(e.g., Tandem, 1975)

Primary

C » Mismatch?

Backup

C » Mismatch?

e Primary creates periodic checkpoints
e Backup restarts from checkpoint on mismatch

April 22, 2019 MIT 6.5900 Fall 2022 L19-10

Redundant Multithreading
(e.g., Reinhardt, Mukherjee, 2000)

Leading Thread

Fault? Fault?

Trailing Thread

e Writes are checked

April 22, 2019 MIT 6.5900 Fall 2022 L19-11

Component Protection

Parity ECC

Error?

e Fujitsu SPARC in 130 nm technology (ISSCC 2003)
- 80% of 200k latches protected with parity

April 22, 2019 MIT 6.5900 Fall 2022 L19-12

Strike on a bit (e.qg., in register file)

Bit %ﬁﬁ
Read? no
yes

Benign fault
Bit has error no error
protection?
o detectlgn & no eror
correction

detection only

Affects program Affects program

outcome? outcome?
yes V;O yes no
SDC Benign fault True DUE False DUE
no error

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

April 22, 2019 MIT 6.5900 Fall 2022 L19-13

Metrics

e Interval-based
- MTTF = Mean Time to Failure
- MTTR = Mean Time to Repair
- MTBF = Mean Time Between Failures = MTTF + MTTR
— Availability = MTTF / MTBF

e Rate-based
— FIT = Failure in Time = 1 failure in a billion hours
- 1 year MTTF = 109 / (24 * 365) FIT = 114,155 FIT
— SER FIT = SDC FIT + DUE FIT

1= e | Hypothetical Example
1 | Cache: 0 FIT

+ 1Q: 100K FIT
+ FU: 58K FIT

Total of 158K FIT

April 22, 2019 MIT 6.5900 Fall 2022 L19-14

Number of Vulnerable Bits
Growing with Moore’s Law

10000

12x GAP

g 1000

34

ES 100"

24

|

=

m 10 —1—100% Vulnerable

0

5
m ;r T —¢—20% Vulnerable
ST T N T |——1000 year MTBF Goal

ear

Typical SDC goal: 1000 year MTBF
Typical DUE goal: 10-25 year MTBF

April 22, 2019 MIT 6.5900 Fall 2022 L19-15

Architectural Vulnerability Factor

(AVF)

AVF,:

April 22, 2019

Probability Bit Matters

MIT 6.5900 Fall 2022

L19-16

Architectural Vulnerability Factor

(AVF)

AVF,:

April 22, 2019

Probability Bit Matters
of Visible Errors

of Bit Flips from Particle Strikes

MIT 6.5900 Fall 2022

L19-16

Architectural Vulnerability Factor
(AVF)

AVF.,. = Probability Bit Matters

of Visible Errors
of Bit Flips from Particle Strikes

FIT,; = intrinsic FIT,; * AVF,;

April 22, 2019 MIT 6.5900 Fall 2022 L19-16

Statistical Fault Injection (SFI)
with RTL

output

April 22, 2019 MIT 6.5900 Fall 2022 L19-17

Statistical Fault Injection (SFI)
with RTL

y Simulate strike on latch

1
output

April 22, 2019 MIT 6.5900 Fall 2022 L19-17

Statistical Fault Injection (SFI)
with RTL

y Simulate strike on latch

/1,0

output

April 22, 2019 MIT 6.5900 Fall 2022 L19-17

Statistical Fault Injection (SFI)
with RTL

y Simulate strike on latch

/1,0

Check whether fault propagates
to architectural state

April 22, 2019 MIT 6.5900 Fall 2022 L19-17

Statistical Fault Injection (SFI)
with RTL

y Simulate strike on latch

/1,0

Check whether fault propagates
to architectural state

+ Naturally characterizes all logical structures

April 22, 2019 MIT 6.5900 Fall 2022 L19-17

Statistical Fault Injection (SFI)
with RTL

y Simulate strike on latch

/1,0

Check whether fault propagates
to architectural state

+ Naturally characterizes all logical structures

— RTL not available until late in the design cycle
— Numerous experiments to flip all bits

— Generally done at the chip level
— Limited structural insight

April 22, 2019 MIT 6.5900 Fall 2022 L19-17

Architectural Vulnerability Factor
Does a bit matter?

e Branch Predictor

e Program Counter

April 22, 2019 MIT 6.5900 Fall 2022 L19-18

Architecturally Correct Execution
(ACE)

Program Input

Program Outputs

e ACE path requires only a subset of values to flow correctly
through the program’s data flow graph (and the machine)

e Anything else (un-ACE path) can be derated away

April 22, 2019 MIT 6.5900 Fall 2022

L19-19

Example of un-ACE instruction:
Dynamically Dead Instruction

Dynamically
Dead
Instruction

e Most bits of an un-ACE instruction do not affect program
output

April 22, 2019 MIT 6.5900 Fall 2022

L19-20

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

April 22, 2019 MIT 6.5900 Fall 2022 L19-21

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = 2/4

April 22, 2019 MIT 6.5900 Fall 2022 L19-21

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = 1/4

April 22, 2019 MIT 6.5900 Fall 2022 L19-21

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = 0/4

April 22, 2019 MIT 6.5900 Fall 2022 L19-21

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

ACE% = 3/4

April 22, 2019 MIT 6.5900 Fall 2022 L19-21

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

(2+1+0+3)/4
4

April 22, 2019 MIT 6.5900 Fall 2022 L19-21

Vulnerability of a structure

AVF = fraction of cycles a bit contains ACE state

(2+1+0+3)/4
4

Average number of ACE bits in a cycle
Total number of bits in the structure

April 22, 2019 MIT 6.5900 Fall 2022 L19-21

Little’s Law for ACEs

LF=

+>
<

N ace = 1 ace X Lace

v e

Notal

April 22, 2019 MIT 6.5900 Fall 2022 L19-22

Computing AVF

e Approach is conservative
— Assume every bit is ACE unless proven otherwise

e Data Analysis using a Performance Model
— Prove that data held in a structure is un-ACE

e Timing Analysis using a Performance Model
— Tracks the time this data spent in the structure

April 22, 2019 MIT 6.5900 Fall 2022 L19-23

ACE Lifetime Analysis (1)

(e.g., write-through data cache)

e Idle is unACE

Fill Read Read Evict

e Assuming all time intervals are equal
e For 3/5 of the lifetime the bit is valid

e Gives a measure of the structure’s utilization
— Number of useful bits
— Amount of time useful bits are resident in structure
— Valid for a particular trace

April 22, 2019 MIT 6.5900 Fall 2022 L19-24

ACE Lifetime Analysis (2)

(e.g., write-through data cache)

e Valid is not necessarily ACE
5 o Evict

Fill A Read e Read 5
& o
y ‘ v ‘

Write-through Data Cache

e ACE % = AVF = 2/5 = 40%

e Example Lifetime Components
- ACE: fill-to-read, read-to-read
— UunACE: idle, read-to-evict, write-to-evict

April 22, 2019 MIT 6.5900 Fall 2022 L19-25

ACE Lifetime Analysis (3)

(e.g., write-through data cache)

e Data ACEness is a function of instruction ACEness

Fill

A
L]

Read 5, .| Read 5,

Evict

Idle ‘

Write-through Data Cache

e Second Read is by an unACE instruction

e AVF =1/5 = 20%

April 22, 2019

MIT 6.5900 Fall 2022

L19-26

Dynamic Instruction Breakdown

DYNAMICALLY
DEAD
20%

PERFORMANCE
INST
1%

PREDICATED
FALSE
7%

Average across Spec2K slices

April 22, 2019 MIT 6.5900 Fall 2022

L19-27

Mapping ACE & un-ACE Instructions
to the Instruction Queue

Architectural un-ACE Micro-architectural un-ACE

April 22, 2019 MIT 6.5900 Fall 2022 L19-28

Mapping ACE & un-ACE Instructions
to the Instruction Queue

Architectural un-ACE Micro-architectural un-ACE

April 22, 2019 MIT 6.5900 Fall 2022 L19-28

Instruction Queue

PREDICATED
FALSE
3%

WRONG PATH
3%

DYNAMICALLY PERFORMANCE
DEAD INST

8% 1%

April 22, 2019

ACE percentage = AVF = 29%

MIT 6.5900 Fall 2022

L19-29

Strike on a bit (e.qg., in register file)

Bit %ﬁﬁ
Read? no
yes

Benign fault
Bit has error no error
protection?
o detectlgn & no eror
correction

detection only

Affects program Affects program

outcome? outcome?
yes V;O yes no
SDC Benign fault True DUE False DUE
no error

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

April 22, 2019 MIT 6.5900 Fall 2022 L19-30

DUE AVF of Instruction Queue
with Parity

True DUE AVF
29%

ldle & Misc
38%

UnCcommitted
6%

cpU2000 Dynami utral

Asim Dead 16% False DUE AVF
Simpoint 11% 33%
[tanium®2-like

April 22, 2019 MIT 6.5900 Fall 2022 L19-31

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

Fetch jmpp

Decode |

1Q =-» RR

I

Instruction
Cache (IC)

April 22, 2019

=»| Execute

>

Commit

I

Data Cache

MIT 6.5900 Fall 2022

L19-32

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

INSt =

Decode |

1Q =-» RR

I

Instruction
Cache (IC)

April 22, 2019

=»| Execute

>

Commit

I

Data Cache

MIT 6.5900 Fall 2022

L19-32

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

Fetch jmpp

inst @1

1Q =-» RR

I

Instruction
Cache (IC)

April 22, 2019

=»| Execute

>

Commit

I

Data Cache

MIT 6.5900 Fall 2022

L19-32

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

Fetch == Decode | INSt = RR M Executel=®| Commit
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-32

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

g

Fetch jmpp

Decode |

N RR

I

Instruction
Cache (IC)

April 22, 2019

=»| Execute

>

Commit

I

Data Cache

MIT 6.5900 Fall 2022

L19-32

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

Fetch jmpp

Decode |

ingt =» RR

I

Instruction
Cache (IC)

April 22, 2019

=»| Execute

>

Commit

I

Data Cache

MIT 6.5900 Fall 2022

L19-32

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

Fetch ==p| Decode == il)(t = RR M Executef=»| Commit
I DECLARE I
ERROR
Instruction ON ISSUE Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-32

Coping with Wrong-Path Instructions

(assume parity-protected instruction queue)

Fetch ==yl Decode (== i[)(t = RR M Execute= Commit

I DECLARE I
ERROR

Instruction ON ISSUE Data Cache

Cache (IC)

* Problem: not enough information at issue

April 22, 2019 MIT 6.5900 Fall 2022 L19-32

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

Fetch ==gp Decode | |Q M= RR M| Executef=» Commit
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

INSt =P Decode | |Q M= RR M| Executef=»| Commit
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

Fetch m=p{ inst :| |Q = RR M Execute{ Commit
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

Fetch == Decode | INSt = RR M Executel=®| Commit
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

g

Fetch j=p! Decode | | RR M| Executel=»{ Commit
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

=»| Execute

>

Commit

I

| |
Fetch = Decode inst (1) RR
I POST ERROR
IN = BIT ON
Instruction ISSUE
Cache (IC)

Data Cache

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

I I
Fetch m==fp! Decode | Q = Inst (ﬂ) » Executem» Commit
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

Fetch p==pp| Decode | IQ =» RR M inst (n) = Commit
I I I |
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

Fetch p==pp| Decode | IQ =» RR M inst (n) = Commit
I I I |
Instruction Data Cache
Cache (IC)

April 22, 2019

MIT 6.5900 Fall 2022

L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

Fetch f==pp| Decode (=9 |Q (=P RR | Executel= INSt (TC)

I I | |

Instruction Data Cache
Cache (IC)

April 22, 2019 MIT 6.5900 Fall 2022 L19-33

The n (Possibly Incorrect) Bit

(assume parity-protected instruction queue)

Fetch f==pp| Decode (=9 |Q (=P RR | Executel= INSt (TC)

I I | |

Instruction Data Cache
Cache (IC)

At commit point, declare error only if not wrong-path
instruction and n bit is set

April 22, 2019 MIT 6.5900 Fall 2022 L19-33

Sources of False DUE in an
Instruction Queue

e Instructions with uncommitted results

- e.g., wrong-path, predicated-false
— solution: = (possibly incorrect) bit till commit

e Instruction types neutral to errors
- e.g., no-ops, prefetches, branch predict hints
— solution: anti-n bit

e Dynamically dead instructions
— instructions whose results will not be used in future
— solution: = bit beyond commit

April 22, 2019 MIT 6.5900 Fall 2022

L19-34

Thank you!

Next Lecture: Transactional
Memory

April 22, 2019 MIT 6.5900 Fall 2022 L20-67

