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• Soft Error – Changes that are not permanent
• Hard Error – Changes that are permanent
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Impact of Neutron Strike on a Si Device

• Secondary source of upsets: Alpha particles from packaging

Strikes release electron & 
hole pairs that can be 
absorbed by source & 
drain to alter the state of 
the device

+- ++ +-- -

Transistor Device

source drain

neutron strike
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Cosmic Rays Come From Deep Space

• Neutron flux is higher at higher altitudes
– 3–5x increase in Denver at 5,000 feet
– 100x increase in airplanes at 30,000+ feet

April 22, 2019 L19-4
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Basics of Charge Generation
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Energy
(eV)

Electron-Hole
Pairs

Charge
(Femtocoulombs)

3.6eV 1 3.2x10-4

1MeV ~2.8x105 ~44

1GeV ~2.8x108 ~44x103

In 2010:
• Critical charge on a DRAM: ~25 fCoulomb
• Critical charge on an SRAM: <4 fCoulomb

Cosmic rays of >1GeV result in neutrons of >1MeV
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• Publicly disclosed incidences
– Error logs in large servers, E. Normand, “Single Event Upset at 

Ground Level,” IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996.

– Sun Microsystems found cosmic ray strikes on L2 cache with 
defective error protection caused Sun’s flagship servers to crash, 
R. Baumann, IRPS Tutorial on SER, 2000. 

– Cypress Semiconductor reported in 2004 a single soft error 
brought a billion-dollar automotive factory to a halt once a 
month, Zielger & Puchner, “SER – History, Trends, and 
Challenges,” Cypress, 2004.

– In 2003, a "single-event upset" was blamed for an electronic 
voting error in Schaerbeekm, Belgium. A bit flip in the electronic 
voting machine added 4,096 extra votes to one candidate. 

April 22, 2019 L19-6

Cosmic Ray Strikes:
Evidence & Reaction
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Physical solutions are hard

• Shielding?
– No practical absorbent (e.g., approximately > 10 ft of concrete)
– This is unlike Alpha particles which are easily blocked

• Technology solution? 
– Partially-depleted SOI of some help, effect on logic unclear
– Fully-depleted SOI may help, but is challenging to manufacture
– FinFETs are showing significantly lower vulnerability

• Circuit-level solution?
– Radiation-hardened circuits can provide 10x improvement with 

significant penalty in performance, area, cost
– 2–4x improvement may be possible with less penalty

L19-7April 22, 2019
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Triple Modular Redundancy
(Von Neumann, 1956)
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V does a majority vote on the results
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Dual Modular Redundancy
(e.g., BINAC 1949, Stratus)

• Processing stops on mismatch
• Error signal used to decide which processor be used 

to restore state to other

L19-9April 22, 2019
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Pair and Spare Lockstep
(e.g., Tandem, 1975)

• Primary creates periodic checkpoints
• Backup restarts from checkpoint on mismatch
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Redundant Multithreading
(e.g., Reinhardt, Mukherjee, 2000)

• Writes are checked

L19-11April 22, 2019
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Component Protection

• Fujitsu SPARC in 130 nm technology (ISSCC 2003)
– 80% of 200k latches protected with parity
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Strike on a bit (e.g., in register file)

April 22, 2019 L19-13

Bit
Read?

Bit has error 
protection?

yes
no

detection &
correctionno no error

Benign fault
no error

detection only

Affects program 
outcome?

True DUE False DUE

noyesyes no

Affects program 
outcome?

Benign fault
no errorSDC

yes no

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error
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Metrics

• Interval-based
– MTTF = Mean Time to Failure 
– MTTR = Mean Time to Repair
– MTBF = Mean Time Between Failures = MTTF + MTTR
– Availability = MTTF / MTBF

• Rate-based
– FIT = Failure in Time = 1 failure in a billion hours
– 1 year MTTF = 109 / (24 * 365) FIT = 114,155 FIT
– SER FIT = SDC FIT + DUE FIT

L19-14April 22, 2019

Total of 158K FIT

+

Cache: 0 FIT
IQ: 100K FIT
FU: 58K FIT

+

Hypothetical Example
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Number of Vulnerable Bits
Growing with Moore’s Law
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Architectural Vulnerability Factor 
(AVF)
AVFbit = Probability Bit Matters 

=
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# of Visible Errors
# of Bit Flips from Particle Strikes
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Architectural Vulnerability Factor 
(AVF)
AVFbit = Probability Bit Matters 

=
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# of Visible Errors
# of Bit Flips from Particle Strikes

FITbit = intrinsic FITbit * AVFbit
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Statistical Fault Injection (SFI)
with RTL
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Statistical Fault Injection (SFI)
with RTL

+ Naturally characterizes all logical structures
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Statistical Fault Injection (SFI)
with RTL

+ Naturally characterizes all logical structures

– RTL not available until late in the design cycle
– Numerous experiments to flip all bits

– Generally done at the chip level 
– Limited structural insight

L19-17April 22, 2019
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Architectural Vulnerability Factor
Does a bit matter? 
• Branch Predictor

• Program Counter

L19-18April 22, 2019
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Architecturally Correct Execution 
(ACE)

• ACE path requires only a subset of values to flow correctly 
through the program’s data flow graph (and the machine)

• Anything else (un-ACE path) can be derated away 

L19-19April 22, 2019

Program Input

Program Outputs
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Example of un-ACE instruction: 
Dynamically Dead Instruction

• Most bits of an un-ACE instruction do not affect program 
output

April 22, 2019 L19-20

Dynamically 
Dead 
Instruction
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Vulnerability of a structure
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AVF = fraction of cycles a bit contains ACE state
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AVF = fraction of cycles a bit contains ACE state

T = 1 ACE% = 2/4
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Vulnerability of a structure
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AVF = fraction of cycles a bit contains ACE state

T = 2 ACE% = 1/4
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Vulnerability of a structure
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AVF = fraction of cycles a bit contains ACE state

T = 3 ACE% = 0/4
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Vulnerability of a structure
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AVF = fraction of cycles a bit contains ACE state

T = 4 ACE% = 3/4



MIT 6.5900 Fall 2022

Vulnerability of a structure
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AVF = fraction of cycles a bit contains ACE state

( 2 + 1 + 0 + 3 ) / 4
4=
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Vulnerability of a structure
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AVF = fraction of cycles a bit contains ACE state

Average number of ACE bits in a cycle
Total number of bits in the structure

=

( 2 + 1 + 0 + 3 ) / 4
4=
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Little’s Law for ACEs

April 22, 2019 L19-22

aceaceace LTN 

totalN

N
AVF

ace

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Computing AVF 

• Approach is conservative 
– Assume every bit is ACE unless proven otherwise

• Data Analysis using a Performance Model
– Prove that data held in a structure is un-ACE

• Timing Analysis using a Performance Model
– Tracks the time this data spent in the structure

L19-23April 22, 2019
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ACE Lifetime Analysis (1)
(e.g., write-through data cache)

• Idle is unACE

• Assuming all time intervals are equal
• For 3/5 of the lifetime the bit is valid
• Gives a measure of the structure’s utilization 

– Number of useful bits 
– Amount of time useful bits are resident in structure 
– Valid for a particular trace

L19-24April 22, 2019

Idle IdleValidValidValid

Fill Read Read Evict
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ACE Lifetime Analysis (2)
(e.g., write-through data cache)

• Valid is not necessarily ACE

• ACE % = AVF = 2/5 = 40%
• Example Lifetime Components 

– ACE: fill-to-read, read-to-read
– unACE: idle, read-to-evict, write-to-evict

L19-25April 22, 2019

Idle Idle

Fill Read Read Evict

Write-through Data Cache
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ACE Lifetime Analysis (3)
(e.g., write-through data cache)

• Data ACEness is a function of instruction ACEness

• Second Read is by an unACE instruction 

• AVF = 1/5 = 20%

L19-26April 22, 2019

Idle Idle

Fill Read Read Evict

Write-through Data Cache
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Dynamic Instruction Breakdown
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DYNAMICALLY 
DEAD
20%

PERFORMANCE 
INST
1%

NOP
26%

ACE
46%PREDICATED 

FALSE
7%

Average across Spec2K slices
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Mapping ACE & un-ACE Instructions 
to the Instruction Queue

L19-28April 22, 2019

Architectural un-ACE Micro-architectural un-ACE

Wrong-
Path
Inst

IdleNOP Prefetch
ACE 
Inst

ACE
Inst
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Mapping ACE & un-ACE Instructions 
to the Instruction Queue
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Architectural un-ACE Micro-architectural un-ACE
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Path
Inst

IdleNOP Prefetch
ACE 
Inst

ACE
Inst
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Instruction Queue

L19-29April 22, 2019

ACE percentage = AVF = 29%

NOP
15%

ACE
29%

IDLE
31%

Ex-ACE
10%

WRONG PATH
3%

DYNAMICALLY 
DEAD

8%
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3%

PERFORMANCE 
INST
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Strike on a bit (e.g., in register file)

April 22, 2019 L19-30

Bit
Read?

Bit has error 
protection?

yes
no

detection &
correctionno no error

Benign fault
no error

detection only

Affects program 
outcome?

True DUE False DUE

noyesyes no

Affects program 
outcome?

Benign fault
no errorSDC

yes no

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error
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DUE AVF of Instruction Queue
with Parity

April 22, 2019 L19-31

True DUE AVF
29%

Uncommitted
6%

Neutral
16%

Dynamically 
Dead
11%

Idle & Misc
38%

False DUE AVF 
33%

CPU2000 
Asim
Simpoint
Itanium®2-like
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Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

IQFetch Decode Execute Commit

Instruction 
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Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)
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Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

DECLARE 
ERROR 

ON ISSUE

• Problem: not enough information at issue

IQFetch Decode Execute Commit

Instruction 
Cache (IC)

Data Cache

RRinstX
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The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)
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The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)
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IQFetch Decode Execute Commit

Instruction 
Cache (IC)

Data Cache

RR

POST ERROR 
IN  BIT ON 

ISSUE

inst ()
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The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)
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The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

At commit point, declare error only if not wrong-path 
instruction and  bit is set

IQFetch Decode Execute Commit

Instruction 
Cache (IC)

Data Cache

RR inst ()
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Sources of False DUE in an 
Instruction Queue
• Instructions with uncommitted results

– e.g., wrong-path, predicated-false
– solution:  (possibly incorrect) bit till commit

• Instruction types neutral to errors 
– e.g., no-ops, prefetches, branch predict hints
– solution: anti- bit

• Dynamically dead instructions 
– instructions whose results will not be used in future
– solution:  bit beyond commit

L19-34April 22, 2019
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Thank you!

Next Lecture: Transactional 
Memory

April 22, 2019


