
L20-1MIT 6.5900 Fall 2022

Reliable Architectures

Joel Emer
Computer Science & Artificial Intelligence Lab

M.I.T.

April 22, 2019

MIT 6.5900 Fall 2022

Event Changes State of a Single Bit

April 22, 2019

0

L19-2

MIT 6.5900 Fall 2022

Event Changes State of a Single Bit

April 22, 2019

01

• Soft Error – Changes that are not permanent
• Hard Error – Changes that are permanent

L19-2

MIT 6.5900 Fall 2022April 22, 2019

Impact of Neutron Strike on a Si Device

• Secondary source of upsets: Alpha particles from packaging

Strikes release electron &
hole pairs that can be
absorbed by source &
drain to alter the state of
the device

+- ++ +-- -

Transistor Device

source drain

neutron strike

L19-3

MIT 6.5900 Fall 2022

Cosmic Rays Come From Deep Space

• Neutron flux is higher at higher altitudes
– 3–5x increase in Denver at 5,000 feet
– 100x increase in airplanes at 30,000+ feet

April 22, 2019 L19-4

Earth’s Surface

p

n p

p

n

n

p

p

n

n

n

MIT 6.5900 Fall 2022

Basics of Charge Generation

L19-5April 22, 2019

Energy
(eV)

Electron-Hole
Pairs

Charge
(Femtocoulombs)

3.6eV 1 3.2x10-4

1MeV ~2.8x105 ~44

1GeV ~2.8x108 ~44x103

In 2010:
• Critical charge on a DRAM: ~25 fCoulomb
• Critical charge on an SRAM: <4 fCoulomb

Cosmic rays of >1GeV result in neutrons of >1MeV

MIT 6.5900 Fall 2022

• Publicly disclosed incidences
– Error logs in large servers, E. Normand, “Single Event Upset at

Ground Level,” IEEE Trans. on Nucl Sci, Vol. 43, No. 6, Dec 1996.

– Sun Microsystems found cosmic ray strikes on L2 cache with
defective error protection caused Sun’s flagship servers to crash,
R. Baumann, IRPS Tutorial on SER, 2000.

– Cypress Semiconductor reported in 2004 a single soft error
brought a billion-dollar automotive factory to a halt once a
month, Zielger & Puchner, “SER – History, Trends, and
Challenges,” Cypress, 2004.

– In 2003, a "single-event upset" was blamed for an electronic
voting error in Schaerbeekm, Belgium. A bit flip in the electronic
voting machine added 4,096 extra votes to one candidate.

April 22, 2019 L19-6

Cosmic Ray Strikes:
Evidence & Reaction

MIT 6.5900 Fall 2022

Physical solutions are hard

• Shielding?
– No practical absorbent (e.g., approximately > 10 ft of concrete)
– This is unlike Alpha particles which are easily blocked

• Technology solution?
– Partially-depleted SOI of some help, effect on logic unclear
– Fully-depleted SOI may help, but is challenging to manufacture
– FinFETs are showing significantly lower vulnerability

• Circuit-level solution?
– Radiation-hardened circuits can provide 10x improvement with

significant penalty in performance, area, cost
– 2–4x improvement may be possible with less penalty

L19-7April 22, 2019

MIT 6.5900 Fall 2022

Triple Modular Redundancy
(Von Neumann, 1956)

L19-8April 22, 2019

V does a majority vote on the results

M

M

M

V Result

MIT 6.5900 Fall 2022

Dual Modular Redundancy
(e.g., BINAC 1949, Stratus)

• Processing stops on mismatch
• Error signal used to decide which processor be used

to restore state to other

L19-9April 22, 2019

M

M

C Mismatch?

Error?

Error?

MIT 6.5900 Fall 2022

Pair and Spare Lockstep
(e.g., Tandem, 1975)

• Primary creates periodic checkpoints
• Backup restarts from checkpoint on mismatch

L19-10April 22, 2019

M

M

C Mismatch?

Primary

M

M

C Mismatch?

Backup

MIT 6.5900 Fall 2022

Redundant Multithreading
(e.g., Reinhardt, Mukherjee, 2000)

• Writes are checked

L19-11April 22, 2019

X W X X W X X W

X W X X W X X W

C Fault?

Leading Thread

Trailing Thread

C Fault? C Fault?

MIT 6.5900 Fall 2022

Component Protection

• Fujitsu SPARC in 130 nm technology (ISSCC 2003)
– 80% of 200k latches protected with parity

L19-12April 22, 2019

Error?

ECC

1 1 0

Parity

Parity

1 1 0

ECC

0

1 1

… …

…

MIT 6.5900 Fall 2022

Strike on a bit (e.g., in register file)

April 22, 2019 L19-13

Bit
Read?

Bit has error
protection?

yes
no

detection &
correctionno no error

Benign fault
no error

detection only

Affects program
outcome?

True DUE False DUE

noyesyes no

Affects program
outcome?

Benign fault
no errorSDC

yes no

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

MIT 6.5900 Fall 2022

Metrics

• Interval-based
– MTTF = Mean Time to Failure
– MTTR = Mean Time to Repair
– MTBF = Mean Time Between Failures = MTTF + MTTR
– Availability = MTTF / MTBF

• Rate-based
– FIT = Failure in Time = 1 failure in a billion hours
– 1 year MTTF = 109 / (24 * 365) FIT = 114,155 FIT
– SER FIT = SDC FIT + DUE FIT

L19-14April 22, 2019

Total of 158K FIT

+

Cache: 0 FIT
IQ: 100K FIT
FU: 58K FIT

+

Hypothetical Example

MIT 6.5900 Fall 2022

Number of Vulnerable Bits
Growing with Moore’s Law

L19-15April 22, 2019

1

10

100

1000

10000
20

03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

Year

100% Vulnerable

20% Vulnerable

1000 year MTBF Goal

12x GAP

Typical SDC goal: 1000 year MTBF
Typical DUE goal: 10-25 year MTBF

MIT 6.5900 Fall 2022

Architectural Vulnerability Factor
(AVF)
AVFbit = Probability Bit Matters

=

L19-16April 22, 2019

MIT 6.5900 Fall 2022

Architectural Vulnerability Factor
(AVF)
AVFbit = Probability Bit Matters

=

L19-16April 22, 2019

of Visible Errors
of Bit Flips from Particle Strikes

MIT 6.5900 Fall 2022

Architectural Vulnerability Factor
(AVF)
AVFbit = Probability Bit Matters

=

L19-16April 22, 2019

of Visible Errors
of Bit Flips from Particle Strikes

FITbit = intrinsic FITbit * AVFbit

MIT 6.5900 Fall 2022

Statistical Fault Injection (SFI)
with RTL

L19-17April 22, 2019

1

0

output
Logic

MIT 6.5900 Fall 2022

Statistical Fault Injection (SFI)
with RTL

L19-17April 22, 2019

1

0

Simulate strike on latch

output
Logic

MIT 6.5900 Fall 2022

Statistical Fault Injection (SFI)
with RTL

L19-17April 22, 2019

1

0

Simulate strike on latch

0

output
Logic

MIT 6.5900 Fall 2022

Statistical Fault Injection (SFI)
with RTL

L19-17April 22, 2019

1

0

Simulate strike on latch

0

output

Check whether fault propagates
to architectural state

Logic

MIT 6.5900 Fall 2022

Statistical Fault Injection (SFI)
with RTL

+ Naturally characterizes all logical structures

L19-17April 22, 2019

1

0

Simulate strike on latch

0

output

Check whether fault propagates
to architectural state

Logic

MIT 6.5900 Fall 2022

Statistical Fault Injection (SFI)
with RTL

+ Naturally characterizes all logical structures

– RTL not available until late in the design cycle
– Numerous experiments to flip all bits

– Generally done at the chip level
– Limited structural insight

L19-17April 22, 2019

1

0

Simulate strike on latch

0

output

Check whether fault propagates
to architectural state

Logic

MIT 6.5900 Fall 2022

Architectural Vulnerability Factor
Does a bit matter?
• Branch Predictor

• Program Counter

L19-18April 22, 2019

MIT 6.5900 Fall 2022

Architecturally Correct Execution
(ACE)

• ACE path requires only a subset of values to flow correctly
through the program’s data flow graph (and the machine)

• Anything else (un-ACE path) can be derated away

L19-19April 22, 2019

Program Input

Program Outputs

MIT 6.5900 Fall 2022

Example of un-ACE instruction:
Dynamically Dead Instruction

• Most bits of an un-ACE instruction do not affect program
output

April 22, 2019 L19-20

Dynamically
Dead
Instruction

MIT 6.5900 Fall 2022

Vulnerability of a structure

L19-21April 22, 2019

AVF = fraction of cycles a bit contains ACE state

MIT 6.5900 Fall 2022

Vulnerability of a structure

L19-21April 22, 2019

AVF = fraction of cycles a bit contains ACE state

T = 1 ACE% = 2/4

MIT 6.5900 Fall 2022

Vulnerability of a structure

L19-21April 22, 2019

AVF = fraction of cycles a bit contains ACE state

T = 2 ACE% = 1/4

MIT 6.5900 Fall 2022

Vulnerability of a structure

L19-21April 22, 2019

AVF = fraction of cycles a bit contains ACE state

T = 3 ACE% = 0/4

MIT 6.5900 Fall 2022

Vulnerability of a structure

L19-21April 22, 2019

AVF = fraction of cycles a bit contains ACE state

T = 4 ACE% = 3/4

MIT 6.5900 Fall 2022

Vulnerability of a structure

L19-21April 22, 2019

AVF = fraction of cycles a bit contains ACE state

(2 + 1 + 0 + 3) / 4
4=

MIT 6.5900 Fall 2022

Vulnerability of a structure

L19-21April 22, 2019

AVF = fraction of cycles a bit contains ACE state

Average number of ACE bits in a cycle
Total number of bits in the structure

=

(2 + 1 + 0 + 3) / 4
4=

MIT 6.5900 Fall 2022

Little’s Law for ACEs

April 22, 2019 L19-22

aceaceace LTN 

totalN

N
AVF

ace


MIT 6.5900 Fall 2022

Computing AVF

• Approach is conservative
– Assume every bit is ACE unless proven otherwise

• Data Analysis using a Performance Model
– Prove that data held in a structure is un-ACE

• Timing Analysis using a Performance Model
– Tracks the time this data spent in the structure

L19-23April 22, 2019

MIT 6.5900 Fall 2022

ACE Lifetime Analysis (1)
(e.g., write-through data cache)

• Idle is unACE

• Assuming all time intervals are equal
• For 3/5 of the lifetime the bit is valid
• Gives a measure of the structure’s utilization

– Number of useful bits
– Amount of time useful bits are resident in structure
– Valid for a particular trace

L19-24April 22, 2019

Idle IdleValidValidValid

Fill Read Read Evict

MIT 6.5900 Fall 2022

ACE Lifetime Analysis (2)
(e.g., write-through data cache)

• Valid is not necessarily ACE

• ACE % = AVF = 2/5 = 40%
• Example Lifetime Components

– ACE: fill-to-read, read-to-read
– unACE: idle, read-to-evict, write-to-evict

L19-25April 22, 2019

Idle Idle

Fill Read Read Evict

Write-through Data Cache

MIT 6.5900 Fall 2022

ACE Lifetime Analysis (3)
(e.g., write-through data cache)

• Data ACEness is a function of instruction ACEness

• Second Read is by an unACE instruction

• AVF = 1/5 = 20%

L19-26April 22, 2019

Idle Idle

Fill Read Read Evict

Write-through Data Cache

MIT 6.5900 Fall 2022

Dynamic Instruction Breakdown

L19-27April 22, 2019

DYNAMICALLY
DEAD
20%

PERFORMANCE
INST
1%

NOP
26%

ACE
46%PREDICATED

FALSE
7%

Average across Spec2K slices

MIT 6.5900 Fall 2022

Mapping ACE & un-ACE Instructions
to the Instruction Queue

L19-28April 22, 2019

Architectural un-ACE Micro-architectural un-ACE

Wrong-
Path
Inst

IdleNOP Prefetch
ACE
Inst

ACE
Inst

MIT 6.5900 Fall 2022

Mapping ACE & un-ACE Instructions
to the Instruction Queue

L19-28April 22, 2019

Architectural un-ACE Micro-architectural un-ACE

Wrong-
Path
Inst

IdleNOP Prefetch
ACE
Inst

ACE
Inst
Ex-
ACE
Inst

MIT 6.5900 Fall 2022

Instruction Queue

L19-29April 22, 2019

ACE percentage = AVF = 29%

NOP
15%

ACE
29%

IDLE
31%

Ex-ACE
10%

WRONG PATH
3%

DYNAMICALLY
DEAD

8%

PREDICATED
FALSE

3%

PERFORMANCE
INST
1%

MIT 6.5900 Fall 2022

Strike on a bit (e.g., in register file)

April 22, 2019 L19-30

Bit
Read?

Bit has error
protection?

yes
no

detection &
correctionno no error

Benign fault
no error

detection only

Affects program
outcome?

True DUE False DUE

noyesyes no

Affects program
outcome?

Benign fault
no errorSDC

yes no

SDC = Silent Data Corruption, DUE = Detected Unrecoverable Error

MIT 6.5900 Fall 2022

DUE AVF of Instruction Queue
with Parity

April 22, 2019 L19-31

True DUE AVF
29%

Uncommitted
6%

Neutral
16%

Dynamically
Dead
11%

Idle & Misc
38%

False DUE AVF
33%

CPU2000
Asim
Simpoint
Itanium®2-like

MIT 6.5900 Fall 2022

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RR

MIT 6.5900 Fall 2022

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinst

MIT 6.5900 Fall 2022

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinst

MIT 6.5900 Fall 2022

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinst

MIT 6.5900 Fall 2022

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinst

MIT 6.5900 Fall 2022

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinstX

MIT 6.5900 Fall 2022

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

DECLARE
ERROR

ON ISSUE

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinstX

MIT 6.5900 Fall 2022

Coping with Wrong-Path Instructions
(assume parity-protected instruction queue)

April 22, 2019 L19-32

DECLARE
ERROR

ON ISSUE

• Problem: not enough information at issue

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinstX

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RR

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinst

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinst

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinst

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RR

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RR

POST ERROR
IN  BIT ON

ISSUE

inst ()

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RRinst ()

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RR inst ()

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RR inst ()

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RR inst ()

MIT 6.5900 Fall 2022

The  (Possibly Incorrect) Bit
(assume parity-protected instruction queue)

April 22, 2019 L19-33

At commit point, declare error only if not wrong-path
instruction and  bit is set

IQFetch Decode Execute Commit

Instruction
Cache (IC)

Data Cache

RR inst ()

MIT 6.5900 Fall 2022

Sources of False DUE in an
Instruction Queue
• Instructions with uncommitted results

– e.g., wrong-path, predicated-false
– solution:  (possibly incorrect) bit till commit

• Instruction types neutral to errors
– e.g., no-ops, prefetches, branch predict hints
– solution: anti- bit

• Dynamically dead instructions
– instructions whose results will not be used in future
– solution:  bit beyond commit

L19-34April 22, 2019

L20-67MIT 6.5900 Fall 2022

Thank you!

Next Lecture: Transactional
Memory

April 22, 2019

