
L21-1MIT 6.5900 (ne 6.823) Fall 2022

Mengjia Yan
Computer Science & Artificial Intelligence Lab

M.I.T.

Based on slides from Christos Kozyrakis

Transactional Memory



MIT 6.5900 (ne 6.823) Fall 2022

Reminder: Why Multicore?

November 23, 2022

Performance

C
os

t 
(a

re
a,

 e
ne

rg
y…

)

Cost/perf curve of
possible core designs

High-perf,
expensive
core

Moderate perf,
efficient core

2 cores

4 cores

L21-2



MIT 6.5900 (ne 6.823) Fall 2022

But Parallel Programming is HARD

• Divide algorithm into tasks
• Map tasks to threads
• Add synchronization (locks, barriers, …) to avoid 

data races and ensure proper task ordering

• Pitfalls: scalability, locality, deadlock, livelock, 
fairness, races, composability, portability…

November 23, 2022 L21-3



MIT 6.5900 (ne 6.823) Fall 2022

Example: Hash Table

• Sequential implementation:

• Not thread-safe
– e.g., concurrent inserts and lookups cause races
– Need synchronization

November 23, 2022

V lookup(K key)  {
int idx = hash(key);
for (;; idx++) {
if (buckets[idx].empty)
return NOT_FOUND;

if (buckets[idx].key == key)
return buckets[idx].val;

}
}

L21-4



MIT 6.5900 (ne 6.823) Fall 2022

Thread-Safe Hash Table with 
Coarse-Grain Locks

• Also add lock(mutex)/unlock(mutex) pairs to all 
other hash table methods (insert, remove, …)

• Problem?
November 23, 2022

Serializes operations to independent buckets

V lookup(K key)  {
int idx = hash(key);
V result = NOT_FOUND;  
lock(mutex);
for (;; idx++) {
if (buckets[idx].empty) break;
if (buckets[idx].key == key) {
result = buckets[idx].val;
break;

}
}
unlock(mutex);
return result;  

}

L21-5



MIT 6.5900 (ne 6.823) Fall 2022

V lookup(K key)  {
int idx = hash(key);
V result = NOT_FOUND;  
for (;; idx++) {

lock(buckets[idx].mutex);
if (buckets[idx].empty) {

unlock(buckets[idx].mutex);
break;

}
if (buckets[idx].key == key) {
result = buckets[idx].val;
unlock(buckets[idx].mutex);
break;

}
unlock(buckets[idx].mutex);

}
return result;

}

Thread-Safe Hash Table with Fine-
Grain Locks

• Per-bucket locks
• Problems?

November 23, 2022

Locking overheads

Still overserializes!
(e.g., concurrent reads
to the same bucket)

L21-6



MIT 6.5900 (ne 6.823) Fall 2022

Performance: Locks

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Processors

E
xe

cu
tio

n 
Ti

m
e

coarse locks fine locks

0

1

2

3

4

5

1 2 4 8 16

Processors

E
xe

cu
tio

n 
Ti

m
e

coarse locks fine locks

B
al

an
ce

d 
Tr

ee
H

as
h-

Ta
bl

e

November 23, 2022 L21-7



MIT 6.5900 (ne 6.823) Fall 2022

Concurrency Control

• We need to implement concurrency control to avoid 
races on shared data!

• Options?
– Stall

• Mutual exclusion: Ensure at most one process
in critical section; others wait

– Speculate
• Guess: No conflicts will occur during the critical section
• Check: Detect whether conflicting data accesses occur
• Recover: If conflict occurs, roll back; otherwise commit

November 23, 2022 L21-8



MIT 6.5900 (ne 6.823) Fall 2022

Transactional Memory (TM)

• Memory transaction [Lomet’77, Knight’86, Herlihy & Moss’93]
– An atomic & isolated sequence of memory accesses 
– Inspired by database transactions

• Atomicity (all or nothing) 
– At commit, all memory writes take effect at once
– On abort, none of the writes appear to take effect

• Isolation
– No other code can observe writes before commit

• Serializability
– Transactions seem to commit in a single serial order
– The exact order is not guaranteed

November 23, 2022 L21-9



MIT 6.5900 (ne 6.823) Fall 2022

Programming with TM

• Declarative synchronization
– Programmers says what but not how
– No declaration or management of locks

• System implements synchronization
– Typically through speculation
– Performance hit only on conflicts (R-W or W-W)

November 23, 2022

void deposit(account, amount) {
lock(account.mutex);
int t = bank.get(account);
t = t + amount;
bank.put(account, t);
unlock(account.mutex);

}

void deposit(account, amount) {
atomic {
int t = bank.get(account);
t = t + amount;
bank.put(account, t);

}
}

L21-10



MIT 6.5900 (ne 6.823) Fall 2022

Advantages of TM

• Easy-to-use synchronization
– As easy to use as coarse-grain locks
– Programmer declares, system implements

• High performance
– Performs at least as well as fine-grain locks
– Automatic read-read & fine-grain concurrency
– No tradeoff between performance & correctness

• Composability
– Safe & scalable composition of software modules

(nested transactions)

November 23, 2022 L21-11



MIT 6.5900 (ne 6.823) Fall 2022

Performance: Locks vs Transactions

November 23, 2022

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Processors

Ex
ec

ut
io

n 
Ti

m
e

coarse locks fine locks TCC

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 4 8 16

Processors

Ex
ec

ut
io

n 
Ti

m
e

coarse locks fine locks TCC

B
al

an
ce

d 
Tr

ee
H

as
hM

ap

TCC: a HW-based TM system
[Hammond et al, ISCA’04]

L21-12



MIT 6.5900 (ne 6.823) Fall 2022

TM Implementation Basics

• Use speculation to provide atomicity and isolation 
without sacrificing concurrency  

• Basic implementation requirements
– Data versioning
– Conflict detection & resolution

• Implementation options
– Hardware transactional memory (HTM)
– Software transactional memory (STM)
– Hybrid transactional memory

• Hardware accelerated STMs and dual-mode systems

November 23, 2022 L21-13



MIT 6.5900 (ne 6.823) Fall 2022

Motivation for Hardware TM
• Single-thread software TM performance:

• Software TM suffers 2-8x slowdown over sequential
– Short-term issue: demotivates parallel programming
– Long-term issue: not energy-efficient

• Industry adopting Hardware TM: Intel (since Haswell), 
IBM (POWER8+, Blue Gene, zSeries), ARM (v9)

November 23, 2022

0.0

0.5

1.0

1.5

2.0

kmeans

Ex
ec

u
ti

on
 T

im
e

(n
or

m
al

iz
ed

 t
o 

se
q

u
en

ti
al

)

0
1
2
3
4
5
6

vacation

STMwrite

STMread

STMcommit

Busy

L21-14



MIT 6.5900 (ne 6.823) Fall 2022

Data Management Policy

• Manage uncommitted (new) and committed (old) 
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
– Update memory location directly
– Maintain undo info in a log
+ Fast commits
– Slow aborts

2. Lazy versioning (write-buffer based)
– Buffer data until commit in a write buffer
– Update actual memory locations at commit
+ Fast aborts
– Slow commits

November 23, 2022 L21-15



MIT 6.5900 (ne 6.823) Fall 2022

Eager Versioning Illustration

November 23, 2022

Begin Xaction

Thread

X: 10 Memory

Undo 
Log

Write X←15

Thread

X: 15 Memory

Undo 
LogX: 10

Commit Xaction 

Thread

X: 15 Memory

Undo 
LogX: 10

Abort Xaction

Thread

X: 10 Memory

Undo 
LogX: 10

L21-16



MIT 6.5900 (ne 6.823) Fall 2022

Lazy Versioning Illustration

November 23, 2022

Begin Xaction

Thread

X: 10 Memory

Write 
Buffer

Write X←15

Thread

X: 10 Memory

Write 
BufferX: 15

Abort Xaction

Thread

X: 10 Memory

Write 
BufferX: 15

Commit Xaction 

Thread

X: 15 Memory

Write 
BufferX: 15

L21-17



MIT 6.5900 (ne 6.823) Fall 2022

Conflict Detection

• Detect and handle conflicts between transaction
– Read-Write and (often) Write-Write conflicts
– Must track the transaction’s read-set and write-set 

• Read-set: addresses read within the transaction
• Write-set: addresses written within transaction

1. Pessimistic detection 
– Check for conflicts during loads or stores

• SW: SW barriers using locks and/or version numbers
• HW: check through coherence actions

– Use contention manager to decide to stall or abort
• Various priority policies to handle common case fast 

November 23, 2022 L21-18



MIT 6.5900 (ne 6.823) Fall 2022

Pessimistic Detection Illustration

November 23, 2022

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

check

check

wr C
check

commit

commit

Success

X0 X1

wr A

rd A

check

check

commit

commit

Early Detect

stall

X0 X1

rd A

wr A

check

check

commit

commit

Abort

restart

rd A
check

X0 X1

rd A

check

No progress

wr A

rd A
wr A

check
restart

rd A

check
wr A

restart

rd A
wr A

check

restart

TIM
E

L21-19



MIT 6.5900 (ne 6.823) Fall 2022

Conflict Detection (cont)

2. Optimistic detection
– Detect conflicts when a transaction attempts to commit
– SW: validate write/read-set using locks or version numbers
– HW: validate write-set using coherence actions

• Get exclusive access for cache lines in write-set
• On a conflict, give priority to committing transaction
• Other transactions may abort later on

– On conflicts between committing transactions, use contention 
manager to decide priority

• Note: optimistic & pessimistic schemes together
– Several STM systems are optimistic on reads, pessimistic on 

writes

November 23, 2022 L21-20



MIT 6.5900 (ne 6.823) Fall 2022

Optimistic Detection Illustration

November 23, 2022

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

wr C

commit

commit

Success

X0 X1

wr A

rd A

commit

Abort

restart

X0 X1

rd A

wr A

commit

Success

X0 X1

rd A

Forward progress

wr A

rd A
wr A

check

check

check

rd A

check

commit
check commit

check

restart

rd A
wr A

commit
check

TIM
E

commit
check

L21-21



MIT 6.5900 (ne 6.823) Fall 2022

Conflict Detection Tradeoffs

1. Pessimistic conflict detection
+ Detect conflicts early

• Undo less work, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases
• Requires additional techniques to guarantee forward progress 

(e.g., backoff, prioritize older transactions)

– Locking issues (SW), fine-grain communication (HW)

2. Optimistic conflict detection
+ Forward progress guarantees
+ Potentially less conflicts, shorter locking (SW), bulk 

communication (HW)
– Detects conflicts late, still has fairness problems

November 23, 2022 L21-22



MIT 6.5900 (ne 6.823) Fall 2022

HTM Implementation Overview
• Data versioning: Use caches

– Cache the write-buffer or the undo-log
– Cache metadata to track read-set and write-set
– Can do with private, shared, and multi-level caches

• Conflict detection: Use the cache coherence protocol
– Coherence lookups detect conflicts between transactions
– Works with snooping & directory coherence

• Note: On aborts, must also restore register state à take 
register checkpoint
– OOO cores support with minimal changes

(recall rename table snapshots…)

November 23, 2022 L21-23



MIT 6.5900 (ne 6.823) Fall 2022

HTM Design

• Cache lines track read-set & write-set
– R bit: indicates data read by transaction; set on load
– W bit: indicates data written by transaction; set on store
– R/W bits can be at word or cache-line granularity
– R/W bits gang-cleared on transaction commit or abort

• Coherence requests check R/W bits to detect 
conflicts 
– Shared request to W-word is a read-write conflict
– Exclusive request to R-word is a write-read conflict
– Exclusive request to W-word is a write-write conflict 

November 23, 2022

V D E Tag R W Word 1 R W Word N...

L21-24



MIT 6.5900 (ne 6.823) Fall 2022

Example HTM: Lazy Optimistic

CPU

Cache

ALUs

TM State

Tag DataV

Registers

• CPU changes
– Register checkpoint
– TM state registers 

(status, pointers to 
handlers, …)

• Cache changes
– Per-line R/W bits

• Assume a bus-based 
system

WR

November 23, 2022 L21-25



MIT 6.5900 (ne 6.823) Fall 2022

HTM Transaction Execution

Xbegin
Load A
Store B Ü 5
Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

• Transaction begin
• Initialize CPU & cache state
• Take register checkpoint

0 0

November 23, 2022 L21-26



MIT 6.5900 (ne 6.823) Fall 2022

HTM Transaction Execution

Xbegin
Load A
Store B Ü 5
Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

0 0

A 3311 0 • Load operation
• Serve cache miss if needed
• Set line’s R-bit

November 23, 2022 L21-27



MIT 6.5900 (ne 6.823) Fall 2022

HTM Transaction Execution

Xbegin
Load A
Store B Ü 5
Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

0 0

A 3311 0
B 510 1

• Store operation
• Serve cache miss if needed 

(if other cores have line, get 
it shared anyway!)

• Set line’s W-bit

November 23, 2022 L21-28



MIT 6.5900 (ne 6.823) Fall 2022

HTM Transaction Execution

Xbegin
Load A
Store B Ü 5
Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0

A 3311 0
B 510 1 upgradeX B

0 0

0 0

0 0

• Fast 2-phase commit:
1. Validate: Request exclusive access to write-set lines (if needed)
2. Commit: Gang-reset R&W bits, turns write-set data to valid (dirty) data

November 23, 2022 L21-29



MIT 6.5900 (ne 6.823) Fall 2022

HTM Conflict Detection

Xbegin
Load A
Store B Ü 5
Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0

A 3311 0
B 510 1

upgradeX D þ

ýupgradeX A

11 0

01 0
00 1

0 0

0 0

0 0

• Fast conflict detection & abort:
– Check: Lookup exclusive requests in the read-set and write-set
– Abort: Invalidate write-set, gang-reset R and W bits, restore checkpoint

November 23, 2022 L21-30



MIT 6.5900 (ne 6.823) Fall 2022

HTM Advantages

• Fast common-case behavior
– Zero-overhead tracking of read-set & write-set
– Zero-overhead versioning
– Fast commits & aborts without data movement 
– Continuous validation of read-set

• Strong isolation
– Conflicts detected on non-transactional loads/stores as well

• Simplifies multi-core coherence and consistency 
[Hammond’04, Ceze’07]
– Recall: Sequential consistency hard to implement
– How would you enforce SC using HTM?

November 23, 2022 L21-31



MIT 6.5900 (ne 6.823) Fall 2022

HTM Challenges
• Performance pathologies: How to handle frequent contention?

– Should HTM guarantee fairness/enforce priorities?
• Size limitations: What happens if read-set + write-set exceed 

size of cache?
• Virtualization, I/O, syscalls…

• Hybrid TMs may get the best of both worlds:
– Handle common case in HW, but with no guarantees

• Abort on cache overflow, interrupt, syscall instruction, …
– On abort, code can revert to software TM
– Current approach in Intel’s RTM…
– … but still unclear how to integrate HTM & STM well

• Currently, slow/limited adoption by programmers,
who must still support non-HTM systems

November 23, 2022 L21-32


