
L22-1MIT 6.5900 (ne 6.823) Fall 2022

Mengjia Yan
Computer Science & Artificial Intelligence Lab

M.I.T.

Security

MIT 6.5900 (ne 6.823) Fall 2022

Security and Information Leakage
• Hardware isolation mechanisms like virtual memory

guarantee that architectural state will not be directly
exposed to other processes…but

November 28, 2022 L22-2

MIT 6.5900 (ne 6.823) Fall 2022

Security and Information Leakage
• Hardware isolation mechanisms like virtual memory

guarantee that architectural state will not be directly
exposed to other processes…but

• ISA is a timing-independent interface, and
– Specify what should happen, not when

November 28, 2022 L22-2

MIT 6.5900 (ne 6.823) Fall 2022

Security and Information Leakage
• Hardware isolation mechanisms like virtual memory

guarantee that architectural state will not be directly
exposed to other processes…but

• ISA is a timing-independent interface, and
– Specify what should happen, not when

• ISA only specifies architectural updates (reg, mem, PC…)
– Micro-architectural changes are left unspecified

November 28, 2022 L22-2

MIT 6.5900 (ne 6.823) Fall 2022

Security and Information Leakage
• Hardware isolation mechanisms like virtual memory

guarantee that architectural state will not be directly
exposed to other processes…but

• ISA is a timing-independent interface, and
– Specify what should happen, not when

• ISA only specifies architectural updates (reg, mem, PC…)
– Micro-architectural changes are left unspecified

• So implementation details and timing behaviors (e.g.,
microarchitectural state, power, etc.) have been exploited
to breach security mechanisms.

November 28, 2022 L22-2

MIT 6.5900 (ne 6.823) Fall 2022

Security and Information Leakage
• Hardware isolation mechanisms like virtual memory

guarantee that architectural state will not be directly
exposed to other processes…but

• ISA is a timing-independent interface, and
– Specify what should happen, not when

• ISA only specifies architectural updates (reg, mem, PC…)
– Micro-architectural changes are left unspecified

• So implementation details and timing behaviors (e.g.,
microarchitectural state, power, etc.) have been exploited
to breach security mechanisms.

• In specific, they have been used as channels to leak
information!

November 28, 2022 L22-2

MIT 6.5900 (ne 6.823) Fall 2022

Standard Communication Model

November 28, 2022

Message

Sender Recipient

L22-3

MIT 6.5900 (ne 6.823) Fall 2022

Standard Communication Model

November 28, 2022

Message Message

Sender Recipient

L22-3

MIT 6.5900 (ne 6.823) Fall 2022

Standard Communication Model

November 28, 2022

Message

Transmitter

Message

1. Transmitter gets a message

Sender Recipient

L22-3

MIT 6.5900 (ne 6.823) Fall 2022

Standard Communication Model

November 28, 2022

Message

Transmitter

Message

Channel

1. Transmitter gets a message

Sender Recipient

L22-3

MIT 6.5900 (ne 6.823) Fall 2022

Standard Communication Model

November 28, 2022

Message

Transmitter

Message

Channel

1. Transmitter gets a message
2. Transmitter modulates channel

Sender Recipient

L22-3

MIT 6.5900 (ne 6.823) Fall 2022

Standard Communication Model

November 28, 2022

Message

Transmitter

Message

ReceiverChannel

1. Transmitter gets a message
2. Transmitter modulates channel
3. Receiver detects modulation on channel

Sender Recipient

L22-3

MIT 6.5900 (ne 6.823) Fall 2022

Standard Communication Model

November 28, 2022

Message

Transmitter

Message

ReceiverChannel

1. Transmitter gets a message
2. Transmitter modulates channel
3. Receiver detects modulation on channel
4. Receiver decodes modulation as message

Sender Recipient

L22-3

MIT 6.5900 (ne 6.823) Fall 2022

Communication Model of Attacks
[Belay, Devadas, Emer]

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-4

MIT 6.5900 (ne 6.823) Fall 2022

Communication Model of Attacks
[Belay, Devadas, Emer]

• Domains – Distinct architectural domains in which
architectural state is not shared.

• Secret – the “message” that is transmitted on the channel
and detected by the receiver

• Channel – some “state” that can be changed, i.e., modulated,
by the “transmitter” and whose modulation can be detected
by the “receiver”.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-4

MIT 6.5900 (ne 6.823) Fall 2022

Communication Model of Attacks
[Belay, Devadas, Emer]

• Domains – Distinct architectural domains in which
architectural state is not shared.

• Secret – the “message” that is transmitted on the channel
and detected by the receiver

• Channel – some “state” that can be changed, i.e., modulated,
by the “transmitter” and whose modulation can be detected
by the “receiver”.

November 28, 2022

Because channel is not a “direct” communication channel,
it is often referred to as a “side channel”

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-4

MIT 6.5900 (ne 6.823) Fall 2022

Communication Model of Attacks
[Belay, Devadas, Emer]

1. Transmitter “accesses” secret
2. Transmitter modulates channel (microarchitectural

state) with a message based on secret
3. Receiver detects modulation on channel
4. Receiver decodes modulation as a message containing

the secret

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-5

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022 L22-6

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022 L22-6

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022

Pin

L22-6

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022

Pin
Keypad

L22-6

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022

Pin
Keypad
Air

L22-6

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022

Pin
Keypad
Air
Acoustic waves

L22-6

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022

Pin
Keypad
Air
Acoustic waves
Cheap Microphone

L22-6

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022

Pin
Keypad
Air
Acoustic waves
Cheap Microphone
ML Model

L22-6

MIT 6.5900 (ne 6.823) Fall 2022

ATM Acoustic Channels

• Secret:
• Transmitter:
• Channel:
• Modulation:
• Receiver:
• Decoders:

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

November 28, 2022

Pin
Keypad
Air
Acoustic waves
Cheap Microphone
ML Model

L22-6

MIT 6.5900 (ne 6.823) Fall 2022

Physical vs Timing vs uArch Channel

• Types of channels

Processor

Power, EM,
sound…

Attacker requires
measurement
equipment à

physical access

Physical
channels

Victim

November 28, 2022 L22-7

MIT 6.5900 (ne 6.823) Fall 2022

Physical vs Timing vs uArch Channel

• Types of channels

Processor

Power, EM,
sound…

Attacker requires
measurement
equipment à

physical access

Processor Response
time

Attacker may be
remote (e.g., over

an internet
connection)

Physical
channels

Timing channels

Victim Victim

November 28, 2022 L22-7

MIT 6.5900 (ne 6.823) Fall 2022

Timing Channel Example

def check(input):

size = len(passwd);

for i in range(0,size):
if (input [i] == password[i]):
return ("error");

return (“success”)

L22-8November 28, 2022

MIT 6.5900 (ne 6.823) Fall 2022

Timing Channel Example

def check(input):

size = len(passwd);

for i in range(0,size):
if (input [i] == password[i]):
return ("error");

return (“success”)

L22-8November 28, 2022

Can you guess the password by monitoring the
execution time?

MIT 6.5900 (ne 6.823) Fall 2022

Timing Channel Example

def check(input):

size = len(passwd);

for i in range(0,size):
if (input [i] == password[i]):
return ("error");

return (“success”)

L22-8November 28, 2022

The execution time is dependent on how many characters match
between the input and the correct password. Attacker can brute-
force each character.

Can you guess the password by monitoring the
execution time?

MIT 6.5900 (ne 6.823) Fall 2022

Physical vs Timing vs uArch Channel

• Types of channels

Processor

Power, EM,
sound…

Attacker requires
measurement
equipment à

physical access

Processor Response
time

Attacker may be
remote (e.g., over

an internet
connection)

Physical
channels

Timing channels

Processor

Attacker may be
remote, or be co-

located

Microarchitectural
channels

Microarch events
(e.g., timing,

perf. counters…)

Victim Victim Victim
Attacker

November 28, 2022 L22-9

MIT 6.5900 (ne 6.823) Fall 2022

Physical vs Timing vs uArch Channel

• Types of channels

Processor

Power, EM,
sound…

Attacker requires
measurement
equipment à

physical access

Processor Response
time

Attacker may be
remote (e.g., over

an internet
connection)

Physical
channels

Timing channels

Processor

Attacker may be
remote, or be co-

located

Microarchitectural
channels

Microarch events
(e.g., timing,

perf. counters…)

Victim Victim Victim
Attacker

November 28, 2022 L22-9

MIT 6.5900 (ne 6.823) Fall 2022

What can you do with uArch channels?

• Violate privilege boundaries
– Inter-process communication
– Infer an application’s secret

• (Semi-Invasive) application profiling

November 28, 2022 L22-10

MIT 6.5900 (ne 6.823) Fall 2022

What can you do with uArch channels?

• Violate privilege boundaries
– Inter-process communication
– Infer an application’s secret

• (Semi-Invasive) application profiling

Different from traditional software or physical
attacks:
• Stealthy. Sophisticated mechanisms needed to

detect channel
• Usually, no permanent indication one has been

exploited

November 28, 2022 L22-10

MIT 6.5900 (ne 6.823) Fall 2022

Side Channel Attacks in 1977

• A side channel due to disk arm
optimization
– Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

November 28, 2022 L22-11

MIT 6.5900 (ne 6.823) Fall 2022

Side Channel Attacks in 1977

• A side channel due to disk arm
optimization
– Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

• Example:
– R issues a request to 55
– S issues a request to either 53 or 57
– R then issues requests to both 52 and 58

November 28, 2022 L22-11

MIT 6.5900 (ne 6.823) Fall 2022

Side Channel Attacks in 1977

• A side channel due to disk arm
optimization
– Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

• Example:
– R issues a request to 55
– S issues a request to either 53 or 57
– R then issues requests to both 52 and 58

Q: If the request to 52 returns first, can we
guess what did S issue before?

November 28, 2022 L22-11

MIT 6.5900 (ne 6.823) Fall 2022

Side Channel Attacks in 1977

• A side channel due to disk arm
optimization
– Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

• Example:
– R issues a request to 55
– S issues a request to either 53 or 57
– R then issues requests to both 52 and 58

Q: If the request to 52 returns first, can we
guess what did S issue before?

November 28, 2022 L22-11

53

MIT 6.5900 (ne 6.823) Fall 2022

Side Channel Attacks in 1977

• A side channel due to disk arm
optimization
– Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

• Example:
– R issues a request to 55
– S issues a request to either 53 or 57
– R then issues requests to both 52 and 58

Q: If the request to 52 returns first, can we
guess what did S issue before?

November 28, 2022

Note this requires an “active” receiver
that preconditions the channel

L22-11

53

MIT 6.5900 (ne 6.823) Fall 2022

Communication w/ Active Receiver

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-12

MIT 6.5900 (ne 6.823) Fall 2022

Communication w/ Active Receiver

• An active receiver may need to “precondition” the channel to
prepare for detecting modulation

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-12

MIT 6.5900 (ne 6.823) Fall 2022

Communication w/ Active Receiver

• An active receiver may need to “precondition” the channel to
prepare for detecting modulation

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

Channel
Preconditioning

L22-12

MIT 6.5900 (ne 6.823) Fall 2022

Communication w/ Active Receiver

• An active receiver may need to “precondition” the channel to
prepare for detecting modulation

• An active receiver also needs to deal with synchronization of
transmission (modulation) activity with reception
(demodulation) activity.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

Channel
Preconditioning

L22-12

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to set

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to set

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-13

MIT 6.5900 (ne 6.823) Fall 2022

Transmitter in RSA [Percival 2005]

• Assume square-and-multiply based exponentiation

November 28, 2022

Input : base b, modulo m,
exponent e = (en−1 ...e0)2

Output: be mod m
r = 1
for i = n−1 down to 0 do

r = sqrt(r)
r = mod(r,m)
if ei == 1 then

r = mul(r,b)
r = mod(r,m)

end
end
return r

L22-14

MIT 6.5900 (ne 6.823) Fall 2022

Transmitter in RSA [Percival 2005]

• Assume square-and-multiply based exponentiation

November 28, 2022

Input : base b, modulo m,
exponent e = (en−1 ...e0)2

Output: be mod m
r = 1
for i = n−1 down to 0 do

r = sqrt(r)
r = mod(r,m)
if ei == 1 then

r = mul(r,b)
r = mod(r,m)

end
end
return r

Secret-dependent
memory access à
transmitter

L22-14

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a set

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a set

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-15

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

A Multi-way Cache-based Channel

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-16

Precondition
(Prime)

Receive
(Probe)

Transmit

Decode

MIT 6.5900 (ne 6.823) Fall 2022

Generalizes to Other Resources

Hardware
resourceXmtr Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (send ‘1’)
Use resource

else
idle

if (t2 – t1 > THRESH)
read ‘1’

else
read ‘0’

November 28, 2022 L22-17

MIT 6.5900 (ne 6.823) Fall 2022

Generalizes to Other Resources

Hardware
resourceXmtr Receiver

t1 = rdtsc()
Use resource
t2 = rdtsc()

if (send ‘1’)
Use resource

else
idle

if (t2 – t1 > THRESH)
read ‘1’

else
read ‘0’

November 28, 2022 L22-17

Any other exploitable structures?

MIT 6.5900 (ne 6.823) Fall 2022

Channel Examples

November 28, 2022

Resource Shared by

Private cache (L1, L2) Intra-core

Shared cache (LLC) On-socket cross core

Cache directory Cross socket

DRAM row buffer Cross socket

TLB (private/shared) Intra-core/Inter-core

Branch Predictor Intra-core

Network-on-chip On-socket cross core

… …

L22-18

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

November 28, 2022 L22-19

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

November 28, 2022

“We found that identifying all of the sources of accurate
clocks was much easier than finding all of the possible
timing channels in the system.
… If we could make the clocks less accurate, then the
effective bandwidth of all timing channels in the system
would be lowered.” (1991)

L22-19

MIT 6.5900 (ne 6.823) Fall 2022

Secret-independent Channel Modulation

• Different from conventional communication, this is a side
channel (unintended communication).

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acce

ss DecodeChannel

L22-20

MIT 6.5900 (ne 6.823) Fall 2022

Secret-independent Channel Modulation

• Different from conventional communication, this is a side
channel (unintended communication).

• One mitigation is to not use the channel.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acce

ss DecodeChannel

L22-20

MIT 6.5900 (ne 6.823) Fall 2022

Secret-independent Channel Modulation

• Different from conventional communication, this is a side
channel (unintended communication).

• One mitigation is to not use the channel.
-> ”data-oblivious execution” or “constant-time programming”.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acce

ss DecodeChannel

L22-20

MIT 6.5900 (ne 6.823) Fall 2022

Secret-independent Channel Modulation

How to make the code
execution independent
of the secret?

November 28, 2022

Input : base b, modulo m,
exponent e = (en−1 ...e0)2

Output: be mod m
r = 1
for i = n−1 down to 0 do
r = sqrt(r)
r = mod(r,m)

if ei == 1 then
r = mul(r,b)
r = mod(r,m)

end
end
return r

L22-21

MIT 6.5900 (ne 6.823) Fall 2022

Secret-independent Channel Modulation

How to make the code
execution independent
of the secret?

November 28, 2022

Input : base b, modulo m,
exponent e = (en−1 ...e0)2

Output: be mod m
r = 1
for i = n−1 down to 0 do
r = sqrt(r)
r = mod(r,m)

if ei == 1 then
r = mul(r,b)
r = mod(r,m)

end
end
return r

No secret-dependent
branches, memory
accesses, floating point
operations

L22-21

MIT 6.5900 (ne 6.823) Fall 2022

Secret-independent Channel Modulation

How to make the code
execution independent
of the secret?

November 28, 2022

Input : base b, modulo m,
exponent e = (en−1 ...e0)2

Output: be mod m
r = 1
for i = n−1 down to 0 do
r = sqrt(r)
r = mod(r,m)

if ei == 1 then
r = mul(r,b)
r = mod(r,m)

end
end
return r

No secret-dependent
branches, memory
accesses, floating point
operations

L22-21

p = (ei == 1)
r2 = mul(r,b)
r2 = mod(r,m)
cmov [p] r, r2

MIT 6.5900 (ne 6.823) Fall 2022

Secret-independent Channel Modulation

How to make the code
execution independent
of the secret?

November 28, 2022

Input : base b, modulo m,
exponent e = (en−1 ...e0)2

Output: be mod m
r = 1
for i = n−1 down to 0 do
r = sqrt(r)
r = mod(r,m)

if ei == 1 then
r = mul(r,b)
r = mod(r,m)

end
end
return r

No secret-dependent
branches, memory
accesses, floating point
operations

L22-21

p = (ei == 1)
r2 = mul(r,b)
r2 = mod(r,m)
cmov [p] r, r2

After removing the
secret-dependent
branch, how about code
inside these functions?

MIT 6.5900 (ne 6.823) Fall 2022

Secret-independent Channel Modulation

How to make the code
execution independent
of the secret?

November 28, 2022

Input : base b, modulo m,
exponent e = (en−1 ...e0)2

Output: be mod m
r = 1
for i = n−1 down to 0 do
r = sqrt(r)
r = mod(r,m)

if ei == 1 then
r = mul(r,b)
r = mod(r,m)

end
end
return r

No secret-dependent
branches, memory
accesses, floating point
operations

L22-21

p = (ei == 1)
r2 = mul(r,b)
r2 = mod(r,m)
cmov [p] r, r2

Constant-time programming is hard

After removing the
secret-dependent
branch, how about code
inside these functions?

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

November 28, 2022 L22-22

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

Kirianski et. al. Dawg, Micro’18

November 28, 2022 L22-23

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

fill a set

Kirianski et. al. Dawg, Micro’18

November 28, 2022 L22-23

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

fill a set

Kirianski et. al. Dawg, Micro’18

November 28, 2022 L22-23

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

Kirianski et. al. Dawg, Micro’18

November 28, 2022 L22-23

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

Kirianski et. al. Dawg, Micro’18

November 28, 2022 L22-23

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

Kirianski et. al. Dawg, Micro’18

November 28, 2022 L22-23

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Disrupting Communication

Process 1
(Xmtr)

Process 2
(Receiver)

fill a setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read all of the set
t2 = rdtsc()

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’Kirianski et. al. Dawg, Micro’18

November 28, 2022 L22-23

MIT 6.5900 (ne 6.823) Fall 2022

Disjoint Channels

• Making disjoint channels makes communication impossible.

• Channel can be allocated by “domain” and will need to be
“cleaned” as processes enter and leave running state, so next
process cannot see any “modulation” on the channel.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Channel

Acce
ss Decode

Channel

L22-24

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

Obfuscating the channel (1)

• Adding a single hash makes it difficult for the
receiver to craft an address that monitors a specific
set because addresses in each process will not
match one-to-one.

Process 1
(Xmtr)

Process 2
(Receiver)hash

hash#
 s

et
s

Same hash

November 28, 2022 L22-25

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

Obfuscating the channel (1)

• Adding a single hash makes it difficult for the
receiver to craft an address that monitors a specific
set because addresses in each process will not
match one-to-one.

Process 1
(Xmtr)

Process 2
(Receiver)hash

hash#
 s

et
s

Same hash

November 28, 2022 L22-25

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

Obfuscating the channel (1)

• Adding a single hash makes it difficult for the
receiver to craft an address that monitors a specific
set because addresses in each process will not
match one-to-one.

Process 1
(Xmtr)

Process 2
(Receiver)hash

hash#
 s

et
s

Same hash

November 28, 2022 L22-25

MIT 6.5900 (ne 6.823) Fall 2022

Communication with subchannels

• Transmissions may now occur on one of many subchannels

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver

Subchannel

Acce
ss Decode

Subchannel

Subchannel

L22-26

MIT 6.5900 (ne 6.823) Fall 2022

Communication with subchannels

• Transmissions may now occur on one of many subchannels

• With a single hash, analysis by the receiver can, however,
figure out (reverse engineer) which subchannel will be
modulated.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver

Subchannel

Acce
ss Decode

Subchannel

Subchannel

L22-26

MIT 6.5900 (ne 6.823) Fall 2022

Simple Transmitter

November 28, 2022

secret = oneof(0..1)
if secret == 1:

x = channel

L22-27

MIT 6.5900 (ne 6.823) Fall 2022

Simple Transmitter

November 28, 2022

secret = oneof(0..1)
if secret == 1:

x = channel

0
0.2
0.4
0.6
0.8

1
1.2

Xmit 0 Xmit 1

Modulation for Sending 0 or 1

Channel

L22-27

MIT 6.5900 (ne 6.823) Fall 2022

Simple Transmitter

November 28, 2022

secret = oneof(0..1)
if secret == 1:

x = channel

Like an amplitude modulated (AM) radio transmission
(RSA example)

0
0.2
0.4
0.6
0.8

1
1.2

Xmit 0 Xmit 1

Modulation for Sending 0 or 1

Channel

L22-27

MIT 6.5900 (ne 6.823) Fall 2022

Another Transmitter

November 28, 2022

secret = oneof(0..3)
subchannel[secret] = 1

L22-28

MIT 6.5900 (ne 6.823) Fall 2022

Another Transmitter

November 28, 2022

secret = oneof(0..3)
subchannel[secret] = 1

0

0.2

0.4

0.6

0.8

1

1.2

Xmit 0 Xmit 1 Xmit 2 Xmit 3

Modulation for sending 0..3

sub ch 0 sub ch 1 sub ch 2 sub ch 3

L22-28

MIT 6.5900 (ne 6.823) Fall 2022

Another Transmitter

November 28, 2022

secret = oneof(0..3)
subchannel[secret] = 1

Like a frequency modulated (FM) radio transmission
(See later Meltdown)

0

0.2

0.4

0.6

0.8

1

1.2

Xmit 0 Xmit 1 Xmit 2 Xmit 3

Modulation for sending 0..3

sub ch 0 sub ch 1 sub ch 2 sub ch 3

L22-28

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

Obfuscating the channel (2)

Process 1
(Xmtr)

Process 2
(Receiver)hash

hash#
 s

et
s

Different hashes

• Adding a process dependent hash makes the
needed cache collision probabilistic.

• Now the receiver needs an extra step to find a way
to probe a variety of “channels” to detect
modulation.

November 28, 2022 L22-29

MIT 6.5900 (ne 6.823) Fall 2022

Receiver Calibration

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acce

ss Decode

Subchannel

Subchannel

Subchannel

L22-30

MIT 6.5900 (ne 6.823) Fall 2022

Receiver Calibration

• The calibration unit determines which subchannels the
receiver needs to use to detect modulation by a transmission

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acce

ss Decode

Subchannel

Subchannel

Subchannel

Calibration

L22-30

MIT 6.5900 (ne 6.823) Fall 2022

Receiver Calibration

• The calibration unit determines which subchannels the
receiver needs to use to detect modulation by a transmission

• During calibration, the receiver may just observe known
transmissions by the transmitter or provoke the transmitter to
make a particular transmission.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

Receiver
Acce

ss Decode

Subchannel

Subchannel

Subchannel

Calibration

L22-30

MIT 6.5900 (ne 6.823) Fall 2022

Hashing* variations

• Nature of hash
– Well-known
– Secret
– Cryptographic (per machine key)

November 28, 2022

*Hash -> address to set index mapping

L22-31

MIT 6.5900 (ne 6.823) Fall 2022

Hashing* variations

• Nature of hash
– Well-known
– Secret
– Cryptographic (per machine key)

• Hashes per core
– Single for all processes
– Per process hash

November 28, 2022

*Hash -> address to set index mapping

L22-31

MIT 6.5900 (ne 6.823) Fall 2022

Hashing* variations

• Nature of hash
– Well-known
– Secret
– Cryptographic (per machine key)

• Hashes per core
– Single for all processes
– Per process hash

• Variation with time
– Unchanging
– Fixed interval in accesses (all sets at once or subset of sets)
– Random interval (all sets at once or subset of sets)

November 28, 2022

*Hash -> address to set index mapping

L22-31

MIT 6.5900 (ne 6.823) Fall 2022

Hashing* variations

• Nature of hash
– Well-known
– Secret
– Cryptographic (per machine key)

• Hashes per core
– Single for all processes
– Per process hash

• Variation with time
– Unchanging
– Fixed interval in accesses (all sets at once or subset of sets)
– Random interval (all sets at once or subset of sets)

• Hashes per address
– Single or multiple

November 28, 2022

*Hash -> address to set index mapping

L22-31

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to set

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to set

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

Process 3
(Xmtr)

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

Process 3
(Xmtr)

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

Process 3
(Xmtr)

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

Process 3
(Xmtr)

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

Process 3
(Xmtr)

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Cache:

#
 s

et
s

Noise in the channel

Process 1
(Xmtr)

Process 2
(Receiver)

write to setif (send ‘0’)
idle

else
write to a set

t1 = rdtsc()
read from the set
t2 = rdtsc()

Receiver interprets “noise” as a signal!

Process 3
(Xmtr)

if t2 – t1 > hit_time:
decode ‘1’

else
decode ‘0’

November 28, 2022 L22-32

MIT 6.5900 (ne 6.823) Fall 2022

Channel Noise

• Another (or the same) transmitter may introduce changes of
state (noise) into the channel which will confound the receiver

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

Noise

L22-33

MIT 6.5900 (ne 6.823) Fall 2022

Channel Noise

• Another (or the same) transmitter may introduce changes of
state (noise) into the channel which will confound the receiver

• Reception now becomes probabilistic, and a stochastic
analysis is needed for the receiver to decode the modulation it
sees in the channel.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

Noise

L22-33

MIT 6.5900 (ne 6.823) Fall 2022

Channel Noise

• Another (or the same) transmitter may introduce changes of
state (noise) into the channel which will confound the receiver

• Reception now becomes probabilistic, and a stochastic
analysis is needed for the receiver to decode the modulation it
sees in the channel.

• Increases in reliability of reception can be improved by
improved message encoding, e.g., by repeating the message.

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

Noise

L22-33

MIT 6.5900 (ne 6.823) Fall 2022

Noise makes signal probabilistic

November 28, 2022

secret = oneof(0..3)
subchannel[secret] = 1

0

0.2

0.4

0.6

0.8

1

Xmit 0 Xmit 1 Xmit 2 Xmit 3

Modulation for sending 0..3

sub ch 0 sub ch 1 sub ch 2 sub ch 3

L22-34

MIT 6.5900 (ne 6.823) Fall 2022

So far…

• The communication model provides a systematic way to
reason about microarchitectural side channels

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-35

MIT 6.5900 (ne 6.823) Fall 2022

So far…

• The communication model provides a systematic way to
reason about microarchitectural side channels

• Different attack strategies are usually different ways of
modulating channels

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-35

MIT 6.5900 (ne 6.823) Fall 2022

So far…

• The communication model provides a systematic way to
reason about microarchitectural side channels

• Different attack strategies are usually different ways of
modulating channels

• To improve channel precision, need precondition, calibration,
decoding techniques, noise => all have analogies to
telecommunication

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-35

MIT 6.5900 (ne 6.823) Fall 2022

Types of Transmitters

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)

L22-36

MIT 6.5900 (ne 6.823) Fall 2022

Reminder: Speculative Execution

November 28, 2022

Address Space User pages Kernel pages

0x0 0xFF...F

L22-37

MIT 6.5900 (ne 6.823) Fall 2022

Reminder: Speculative Execution

• In x86, a page table can have kernel pages which are
only accessible in kernel mode:
– This avoids switching page tables on context switches, but

November 28, 2022

Address Space User pages Kernel pages

0x0 0xFF...F

L22-37

MIT 6.5900 (ne 6.823) Fall 2022

Reminder: Speculative Execution

• In x86, a page table can have kernel pages which are
only accessible in kernel mode:
– This avoids switching page tables on context switches, but
– Hardware speculatively assumes that there will not be an

illegal access, so instructions following an illegal
instruction are executed speculatively.

November 28, 2022

Address Space User pages Kernel pages

0x0 0xFF...F

L22-37

MIT 6.5900 (ne 6.823) Fall 2022

Reminder: Speculative Execution

• In x86, a page table can have kernel pages which are
only accessible in kernel mode:
– This avoids switching page tables on context switches, but
– Hardware speculatively assumes that there will not be an

illegal access, so instructions following an illegal
instruction are executed speculatively.

November 28, 2022

Address Space User pages Kernel pages

0x0 0xFF...F

• So what does the following code do when run in user
mode do?

val = *kernel_address;

L22-37

MIT 6.5900 (ne 6.823) Fall 2022

Reminder: Speculative Execution

• In x86, a page table can have kernel pages which are
only accessible in kernel mode:
– This avoids switching page tables on context switches, but
– Hardware speculatively assumes that there will not be an

illegal access, so instructions following an illegal
instruction are executed speculatively.

November 28, 2022

Address Space User pages Kernel pages

0x0 0xFF...F

• So what does the following code do when run in user
mode do?

• Causes a protection fault, but data at “kernel_address”
is speculatively read and loaded into val!

val = *kernel_address;

L22-37

MIT 6.5900 (ne 6.823) Fall 2022

”FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

November 28, 2022 L22-38

MIT 6.5900 (ne 6.823) Fall 2022

”FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

November 28, 2022

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

L22-38

MIT 6.5900 (ne 6.823) Fall 2022

”FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was “modulated” to decode the secret.

November 28, 2022

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

L22-38

MIT 6.5900 (ne 6.823) Fall 2022

”FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was “modulated” to decode the secret.

• Result: Attacker can read arbitrary kernel data!

November 28, 2022

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

L22-38

MIT 6.5900 (ne 6.823) Fall 2022

”FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was “modulated” to decode the secret.

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory (protection

fault aborts transaction on exception instead of invoking kernel)

November 28, 2022

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

L22-38

MIT 6.5900 (ne 6.823) Fall 2022

”FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was “modulated” to decode the secret.

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory (protection

fault aborts transaction on exception instead of invoking kernel)
– Mitigation?

November 28, 2022

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

L22-38

MIT 6.5900 (ne 6.823) Fall 2022

”FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was “modulated” to decode the secret.

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory (protection

fault aborts transaction on exception instead of invoking kernel)
– Mitigation?

November 28, 2022

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

Do not map kernel data in user page tables

L22-38

MIT 6.5900 (ne 6.823) Fall 2022

”FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was “modulated” to decode the secret.

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory (protection

fault aborts transaction on exception instead of invoking kernel)
– Mitigation?

November 28, 2022

uint8_t secret = *kernel_address;
subchannels[secret] = 1;

Do not map kernel data in user page tables
Return zero upon permission check failure
(supporting precise exception)

L22-38

MIT 6.5900 (ne 6.823) Fall 2022

Types of Transmitters

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)

L22-39

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 1
[Kocher et al. 2018]

• Consider a situation where there is some kernel code
that looks like the following:

November 28, 2022

xmit: uint8_t index = *kernel_address;
uint8_t dummy = random_array[index];

L22-40

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 1
[Kocher et al. 2018]

• Consider a situation where there is some kernel code
that looks like the following:

• Interpret that code as an FM transmitter:

November 28, 2022

xmit: uint8_t index = *kernel_address;
uint8_t dummy = random_array[index];

xmit: uint8_t secret = *kernel_address;
uint8_t dummy = subchannels[secret];

L22-40

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 1
[Kocher et al. 2018]

• Consider a situation where there is some kernel code
that looks like the following:

• Interpret that code as an FM transmitter:

• But this kernel code is protected by a branch. Can we
make the kernel speculatively execute “xmit”?

November 28, 2022

xmit: uint8_t index = *kernel_address;
uint8_t dummy = random_array[index];

xmit: uint8_t secret = *kernel_address;
uint8_t dummy = subchannels[secret];

L22-40

if (kernel_address is public_region) {
uint8_t index = *kernel_address;
uint8_t dummy = subchannels[index];

}

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 1
[Kocher et al. 2018]

• Consider a situation where there is some kernel code
that looks like the following:

• Interpret that code as an FM transmitter:

• But this kernel code is protected by a branch. Can we
make the kernel speculatively execute “xmit”?

November 28, 2022

xmit: uint8_t index = *kernel_address;
uint8_t dummy = random_array[index];

xmit: uint8_t secret = *kernel_address;
uint8_t dummy = subchannels[secret];

L22-40

if (kernel_address is public_region) {
uint8_t index = *kernel_address;
uint8_t dummy = subchannels[index];

}

Conditional branch
misprediction

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 1
[Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

1. Precondition: Flush all the elements in array2 from cache

November 28, 2022

if (x < array1_size)
y = array2[array1[x] * 4096];

L22-41

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 1
[Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

1. Precondition: Flush all the elements in array2 from cache
2. Train: Attacker invokes this kernel code with small values of

x to train the branch predictor to be taken

November 28, 2022

if (x < array1_size)
y = array2[array1[x] * 4096];

L22-41

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 1
[Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

1. Precondition: Flush all the elements in array2 from cache
2. Train: Attacker invokes this kernel code with small values of

x to train the branch predictor to be taken
3. Transmit: Attacker invokes this code with an out-of-bounds

x, so that &array1[x] points to a desired kernel address.
Core mispredicts branch, speculatively fetches address
&array2[array1[x] * 4096] into the cache.

November 28, 2022

if (x < array1_size)
y = array2[array1[x] * 4096];

L22-41

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 1
[Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

1. Precondition: Flush all the elements in array2 from cache
2. Train: Attacker invokes this kernel code with small values of

x to train the branch predictor to be taken
3. Transmit: Attacker invokes this code with an out-of-bounds

x, so that &array1[x] points to a desired kernel address.
Core mispredicts branch, speculatively fetches address
&array2[array1[x] * 4096] into the cache.

4. Receive: Attacker probes cache to infer which line of array2
was fetched, learns data at kernel address

November 28, 2022

if (x < array1_size)
y = array2[array1[x] * 4096];

L22-41

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 2
[Kocher et al. 2018]

• Can also exploit indirect branch predictor:
– Most BTBs store partial tags for source addresses

November 28, 2022 L22-42

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 2
[Kocher et al. 2018]

• Can also exploit indirect branch predictor:
– Most BTBs store partial tags for source addresses

November 28, 2022 L22-42

kernel_address = a_desired_address;
jump some_where_else
…
kernel_address = a_safe_address;
jump xmit
…

xmit: uint8_t secret = *kernel_address;
uint8_t dummy = subchannels[secret];

abc

xyz

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variant 2
[Kocher et al. 2018]

• Can also exploit indirect branch predictor:
– Most BTBs store partial tags for source addresses

November 28, 2022 L22-42

kernel_address = a_desired_address;
jump some_where_else
…
kernel_address = a_safe_address;
jump xmit
…

xmit: uint8_t secret = *kernel_address;
uint8_t dummy = subchannels[secret];

abc

xyz

1. Train: trigger xyz->xmit many times
2. Transmit: ‘abc’ and ‘xyz’ alias in BTB, so we can

speculatively trigger abc->xmit
3. Receive: similar to Spectre v1

MIT 6.5900 (ne 6.823) Fall 2022

Types of Transmitters

• Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)
3. Synthesized from existing victim code and invoked by

attacker (e.g., Spectre v2)

November 28, 2022

Domain of victim

Secret

Transmitter

Domain of attacker

Secret

ReceiverChannel
Acce

ss Decode

L22-43

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variants and mitigations

• Spectre relies on speculative execution, not late
exception handling à Much harder to fix than Meltdown

November 28, 2022 L22-44

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variants and mitigations

• Spectre relies on speculative execution, not late
exception handling à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack,

leaking privileged registers, etc.

November 28, 2022 L22-44

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variants and mitigations

• Spectre relies on speculative execution, not late
exception handling à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack,

leaking privileged registers, etc.

• Can attack any type of VM, including OSs, VMMs,
JavaScript engines in browsers, and the OS network
stack (NetSpectre)

November 28, 2022 L22-44

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variants and mitigations

• Spectre relies on speculative execution, not late
exception handling à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack,

leaking privileged registers, etc.

• Can attack any type of VM, including OSs, VMMs,
JavaScript engines in browsers, and the OS network
stack (NetSpectre)

• Short-term mitigations:
– Microcode updates (disable sharing of speculative state when possible)
– OS and compiler patches to selectively avoid speculation

November 28, 2022 L22-44

MIT 6.5900 (ne 6.823) Fall 2022

Spectre variants and mitigations

• Spectre relies on speculative execution, not late
exception handling à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack,

leaking privileged registers, etc.

• Can attack any type of VM, including OSs, VMMs,
JavaScript engines in browsers, and the OS network
stack (NetSpectre)

• Short-term mitigations:
– Microcode updates (disable sharing of speculative state when possible)
– OS and compiler patches to selectively avoid speculation

• Long-term mitigations:
– Disabling speculation?
– Closing side channels?

November 28, 2022 L22-44

MIT 6.5900 (ne 6.823) Fall 2022

Summary

• ISA is a timing-independent interface, and
– Specify what should happen, not when

• ISA only specifies architectural updates
– Micro-architectural changes are left unspecified

• So implementation details (e.g., speculative execution)
and timing behaviors (e.g., microarchitectural state,
power, etc.) have been exploited to breach security
mechanisms.

• ISA, as a software-hardware contract, is insufficient for
reasoning about microarchitectural security

November 28, 2022 L22-45

MIT 6.5900 (ne 6.823) Fall 2022

Coming Spring 2023:
Secure Hardware Design

6.S983 (ne 6.888)

http://csg.csail.mit.edu/6.888Yan/November 28, 2022 L22-46

L22-165MIT 6.5900 (ne 6.823) Fall 2022

Thank you!

