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Security and Information Leakage

e Hardware isolation mechanisms like virtual memory
guarantee that architectural state will not be directly
exposed to other processes...but
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Security and Information Leakage

e Hardware isolation mechanisms like virtual memory
guarantee that architectural state will not be directly
exposed to other processes...but

e [SA is a timing-independent interface, and
— Specify what should happen, not when

e ISA only specifies architectural updates (reg, mem, PC...)
— Micro-architectural changes are left unspecified

e So implementation details and timing behaviors (e.qg.,
microarchitectural state, power, etc.) have been exploited
to breach security mechanisms.
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Security and Information Leakage

e Hardware isolation mechanisms like virtual memory
guarantee that architectural state will not be directly
exposed to other processes...but

e [SA is a timing-independent interface, and
— Specify what should happen, not when

e ISA only specifies architectural updates (reg, mem, PC...)
— Micro-architectural changes are left unspecified

e So implementation details and timing behaviors (e.g.,
microarchitectural state, power, etc.) have been exploited
to breach security mechanisms.

e In specific, they have been used as channels to leak
information!
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Standard Communication Model
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November 28, 2022

Recipient

MIT 6.5900 (ne 6.823) Fall 2022

L22-3



Standard Communication Model

Sender Recipient

Message Message

November 28, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L22-3



Standard Communication Model
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1. Transmitter gets a message
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Standard Communication Model

Sender

Transmitter

e

Message

1. Transmitter gets a message
2. Transmitter modulates channel
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Standard Communication Model

Sender Recipient
/ Transmitter » Channel » Receiver
Message Message

1. Transmitter gets a message
2. Transmitter modulates channel
3. Receiver detects modulation on channel

November 28, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L22-3



Standard Communication Model

Sender Recipient
/ Transmitter » Channel » Receiver \
Message Message

1. Transmitter gets a message

2. Transmitter modulates channel

3. Receiver detects modulation on channel
4. Receiver decodes modulation as message
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Communication Model

[Belay, Devadas, Emer]

of Attacks

Domain of victim

v‘*&

Domain of attacker

\ 4

Channel
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Transmitter
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Communication Model of Attacks
[Belay, Devadas, Emer]

Domain of victim Domain of attacker
S - s > c D
\*& Transmitter Channel Receiver %‘
Secret Secret

e Domains — Distinct architectural domains in which
architectural state is not shared.

e Secret - the "message” that is transmitted on the channel
and detected by the receiver

e Channel - some "state” that can be changed, i.e., modulated,
by the “transmitter” and whose modulation can be detected
by the “receiver”.
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Communication Model of Attacks
[Belay, Devadas, Emer]

Domain of victim Domain of attacker
S - s > c D
\*& Transmitter Channel Receiver %‘
Secret Secret

e Domains — Distinct architectural domains in which
architectural state is not shared.

e Secret - the "message” that is transmitted on the channel
and detected by the receiver

e Channel - some "state” that can be changed, i.e., modulated,
by the “transmitter” and whose modulation can be detected
by the “receiver”.

Because channel is not a “direct” communication channel,
it is often referred to as a “side channel”
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Communication Model|
[Belay, Devadas, Emer]

of Attacks

Domain of victim

Domain of attacker

O

Channel

A

Secret

2 i
ch Transmitter

\ 4

Receiver %‘

Secret

1. Transmitter “accesses” secret

2. Transmitter modulates channel (microarchitectural
state) with a message based on secret

W

the secret
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ATM Acoustic Channels

Domain of victim

Domain of attacker

Channel

A

2 '
VC’V Transmitter
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ATM Acoustic Channels
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‘}c&' Transmitter » Channel » Receiver %‘
Secret Secret
e Secret:
e Transmitter:
e Channel:
e Modulation:
e Recelver:
e Decoders:
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ATM Acoustic Channels
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Domain of victim Domain of attacker
: . : D
‘}C& Transmitter » Channel > Receiver %‘
Secret Secret
e Secret: Pin
e Transmitter: Keypad
e Channel: Air
e Modulation:
e Recelver:
e Decoders:
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ATM Acoustic Channels

Domain of victim

Domain of attacker
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ATM Acoustic Channels

Domain of victim Domain of attacker
‘}C& Transmitter ——1 Channel > Receiver %‘
Secret Secret
e Secret: Pin
e Transmitter: Keypad
e Channel: Alr _
. Modulation: Acoustlc_waves
Cheap Microphone
e Receiver:
e Decoders:
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Physical vs Timing vs uArch Channel

e Types of channels

Physical
channels

@ Power, EM,

sound...

Attacker requires
measurement
equipment 2>

physical access

November 28, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L22-7



Physical vs Timing vs uArch Channel

e Types of channels

Physical
channels

@ Power, EM,

sound...

Attacker requires
measurement
equipment 2>

physical access
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Timing channels

4

Response
time

Attacker may be
remote (e.g., over
an internet
connection)
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Timing Channel Example

def check(input):
size = len(passwd);

for i in range(@,size):

if (input [1] == password[i]):

return ("error");

return (“success”)
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Timing Channel Example

def check(input):
size = len(passwd);

for i in range(@,size):
if (input [i] == password[i]):
return ("error");

return (“success”)

Can you guess the password by monitoring the
execution time?
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Timing Channel Example

def check(input):
size = len(passwd);

for i in range(@,size):
if (input [i] == password[i]):
return ("error");

return (“success”)

Can you guess the password by monitoring the
execution time?

The execution time is dependent on how many characters match

between the input and the correct password. Attacker can brute-
force each character.
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Physical vs Timing vs

uArch Channel

e Types of channels

Physical
channels

sound...

@ Power, EM,

Attacker requires
measurement
equipment 2>

physical access
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Timing channels

4

Response
time

Microarchitectural
channels

Microarch events
(e.g., timing,

perf. counters...)

Victim

Viciim

Attacker may be
remote (e.g., over
an internet
connection)
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Attacker may be
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an internet
connection)
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What can you do with uArch channels?

e Violate privilege boundaries
— Inter-process communication
— Infer an application’s secret

e (Semi-Invasive) application profiling
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What can you do with uArch channels?

e Violate privilege boundaries
— Inter-process communication
— Infer an application’s secret

e (Semi-Invasive) application profiling

Different from traditional software or physical
attacks:

e Stealthy. Sophisticated mechanisms needed to
detect channel

e Usually, no permanent indication one has been
exploited
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Side Channel Attacks in 1977

e A side channel due to disk arm
optimization
- Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

~Track/
=00\ Cylinder

---------
lllllllllllll
' \

Sector

- Heads
= 8 Hexds,
e B 4 Piatters
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Side Channel Attacks in 1977

e A side channel due to disk arm
optimization
- Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

e Example:
— R issues a request to 55
— S issues a request to either 53 or 57
— R then issues requests to both 52 and 58
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Side Channel Attacks in 1977

e A side channel due to disk arm
optimization
- Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

e Example:
— R issues a request to 55
— S issues a request to either 53 or 57
— R then issues requests to both 52 and 58

Q: If the request to 52 returns first, can we
guess what did S issue before?
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Side Channel Attacks in 1977

e A side channel due to disk arm
optimization
- Enqueues requests by ascending cylinder

number and dequeues (executes) them
by the "elevator algorithm."

e Example:
— R issues a request to 55
— S issues a request to either 53 or 57
— R then issues requests to both 52 and 58

Q: If the request to 52 returns first, can we
guess what did S issue before?

53
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Side Channel Attacks in 1977

e A side channel due to disk arm
optimization
— Enqueues requests by ascending cylinder

number and dequeues (executes) them it
by the "elevator algorithm." RN

~Track/
~ Cylinder

---------
llllllllll

''''''
4 !

e Example: Sector
- R issues a request to 55 -
— S issues a request to either 53 or 57 —*® ) Heads
- R then issues requests to both 52 and 58 —) St

Q: If the request to 52 returns first, can we
guess what did S issue before?

>3 Note this requires an “active” receiver

that preconditions the channel
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Communication w/ Active Receiver

Domain of victim

Domain of attacker

A

Transmitter Channel

v‘*&

Secret
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Communication w/ Active Receiver

Domain of victim

Domain of attacker

Channel

A

Transmitter

v‘*&

Secret

\ 4

Receiver

O

oy

Secret

e An active receiver may need to “precondition” the channel to
prepare for detecting modulation
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Communication w/ Active Receiver

Domain of victim

Domain of attacker

S . s > . D@
\>°& Transmitter Chann% Receiver %‘
Secret Secret
Channel

Preconditioning

e An active receiver may need to “precondition” the channel to
prepare for detecting modulation
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Communication w/ Active Receiver

Domain of victim

Domain of attacker

\ 4

66 1 >
ch Transmitter Chann%
Secret
Channel

e An active receiver may need to “precondition” the channel to

O

Receiver %‘

Secret

Preconditioning

prepare for detecting modulation

e An active receiver also needs to deal with synchronization of

transmission (modulation) activity with reception
(demodulation) activity.
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A Cache-based Channel

Process 1
(Xmtr)

Cache:

b

@ 4 Process 2
_f"*_) / (Receiver)
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A Cache-based Channel

Process 1
(Xmtr)

(Receiver)

Cache:
b
@ 4 Process 2
#
._f+ /
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A Cache-based Channel

Cache:

Process 1
(Xmtr)

p Process 2

/ (Receiver)

|

write to set
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A Cache-based Channel

Process 1
(Xmtr)

if (send '0")

idle —
else
write to a set
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A Cache-based Channel

Process 1
(Xmtr)

if (send '0")
idle

else
write to a set
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A Cache-based Channel

Cache:
)
0
Process 1 s Process 2
. A .
(Xmtr) SN / (Receiver)
if (send "0’) write to set t1 = rdtsc()
idle read from the set
else t2 = rdtsc()

write to a set
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A Cache-based Channel

Cache:
)
0
Process 1 s Process 2
. A .
(Xmtr) SN / (Receiver)
if (send "0’) write to set t1 = rdtsc()
idle read from the set
else t2 = rdtsc()

write to a set

if t2 - t1 > hit_time:
decode ‘1’

else
decode ‘0’
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A Cache-based Channel

Cache:
0
4&;
Process 1 7] Process 2
. A )
(Xmtr) / (Receiver)
if (send "0’) write to set t1 = rdtsc()
idle read from the set
else t2 = rdtsc()

if t2 - t1 > hit_time:
decode ‘1’

else
decode ‘0’
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A Cache-based Channel

Cache:
0
4&;
Process 1 7] Process 2
. A :
(Xmtr) > / (Receiver)
if (send "0’) write to set t1 = rdtsc()
idle read from the set
else t2 = rdtsc()

write to a set

if t2 - t1 > hit_time:
decode ‘1’

else
decode ‘0’
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Transmitter in RSA [Percival 2005]

e Assume square-and-multiply based exponentiation

Input : base b, modulo m,
exponent e = (e,_1 -«:€9 )>
Output: b mod m
r=1
for/ = n—-1 down to O do
r = sqgrt(r)
r = mod(r,m)
if e, == 1 then
r = mul(r,b)
r = mod(r,m)
end
end
return r
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Transmitter in RSA [Percival 2005]

e Assume square-and-multiply based exponentiation

Input : base b, modulo m,
exponent e = (e,_1 -«:€9 )>
Output: b mod m
r=1
fori = n—-1 down to 0 do
r = sqrt(r)
r = mod(r,m)
if e, == 1 then

r=mod(r,m)

end
end
return r

r = mul(r,b) /

Secret-dependent
_—~ Memory access -
transmitter
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A Multi-way Cache-based Channel

Cache:
b
Process 1 a Process 2
# o
(Xmtr) .. ( //(Recewer)
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A Multi-way Cache-based Channel

Cache:
b
Process 1 a Process 2
# o
(Xmtr) .. ( //(Recewer)

fill a set
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A Multi-way Cache-based Channel

Cache:
b
Process 1 a Process 2
# o
(Xmtr) .. ( //(Recewer)

fill a set
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A Multi-way Cache-based Channel

if (send '0")
idle

else
write to a set

November 28, 2022

Cache:
b
Process 1 s
(Xmtr) _/#—>

Process 2

( /7'( Receiver)

fill a set
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A Multi-way Cache-based Channel

Process 2

( /7'( Receiver)

Cache:
)
0
Process 1 0
(Xmtr) _/E)
if (send "0") fill a set
idle
else
write to a set
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A Multi-way Cache-based Channel

Process 2

( /7'( Receiver)

Cache:
)
0
Process 1 0
(Xmtr) _/E)
if (send "0") fill a set
idle
else
write to a set
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A Multi-way Cache-based Channel

Cache:
)
v
Process 1 s Process 2
* < '
(Xmtr) .. //(Recewer)
if (send *0’) fill a set t1 = rdtsc()
idle read all of the set
else t2 = rdtsc()
write to a set
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A Multi-way Cache-based Channel

Cache:
)
v
Process 1 s Process 2
* < '
(Xmtr) .. //(Recewer)
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A Multi-way Cache-based Channel

Cache:
)
0
Process 1 s Process 2
(Xmtr) _/*L) ( //(Receiver)
if (send *0’) fill a set t1 = rdtsc()
idle read all of the set
else t2 = rdtsc()
write to a set
if t2 - t1 > hit_time:
decode ‘1’
else
decode ‘0’
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A Multi-way Cache-based Channel

Cache:
b
Process 1 a Process 2
# o
(Xmtr) .. ( //(Recelver)

(Prime)

Receive
(Probe)

if (send "0’) fill a set t1 = rdtsc()
idle read all of the set
else t2 = rdtsc()
write to a set
if t2 - t1 > hit_time:
decode ‘1’
else
decode ‘0’
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Generalizes to Other Resources

Hardware .
Xmtr resource Receiver
—-\* </\\
\/Z
if (send '1") t1 = rdtsc() if (t2 — t1 > THRESH)
Use resource Use resource read '1’
else t2 = rdtsc() else
idle read '0’
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Generalizes to Other Resources

Hardware .
Xmtr resource Receiver
\§ </\\
\/Z
if (send '1") t1 = rdtsc() if (t2 — t1 > THRESH)
Use resource Use resource read '1’
else t2 = rdtsc() else
idle read '0’

November 28, 2022
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Channel Examples

Private cache (L1, L2) Intra-core
Shared cache (LLC) On-socket cross core
Cache directory Cross socket
DRAM row buffer Cross socket
TLB (private/shared) Intra-core/Inter-core
Branch Predictor Intra-core
Network-on-chip On-socket cross core
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Disrupting Communication

Cache:

Process 1
(Xmtr)

Track/
~ Cylinder

Process 2

A(Receiver)
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Disrupting Communication

Cache:

7)) Track/
46 Z [ Cylinder
Process 1 o (i M Process 2
Xmtr # O\ ) ( A(Receiver
( ) ,_f+ \ \t\:}—:/// Sector / ( )

“"We found that identifying all of the sources of accurate
clocks was much easier than finding all of the possible
timing channels in the system.

... If we could make the clocks less accurate, then the
effective bandwidth of all timing channels in the system
would be lowered.” (1991)
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Secret-independent Channel Modulation

Domain of victim Domain of attacker
\}C»W Transmitter Receiver %.
Secret Secret

e Different from conventional communication, this is a side
channel (unintended communication).
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Secret-independent Channel Modulation

Domain of victim Domain of attacker
VCW Transmitter Receiver %.
Secret Secret

e Different from conventional communication, this is a side
channel (unintended communication).

e One mitigation is to not use the channel.
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Secret-independent Channel Modulation

Domain of victim

Domain of attacker

Transmitter =-=

v‘*&

Secret

\ 4

Receiver

O

oy

Secret

e Different from conventional communication, this is a side
channel (unintended communication).

e One mitigation is to not use the channel.

-> "data-oblivious execution” or “constant-time programming”.

November 28, 2022
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Secret-independent Channel Modulation

Input : base b, modulo m,
exponent e = (e,-1 ---€9 )>
Output: b mod m
r=1
for/ = n—1 down to O do
r = sqgrt(r)
r = mod(r,m)
if e, == 1 then
r = mul(r,b)
r = mod(r,m)
end
end
return r

November 28, 2022
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How to make the code
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Secret-independent Channel Modulation

Input : base b, modulo m,
exponent e = (e,-1 ---€9 )>
Output: b mod m
r=1
for/ = n—1 down to O do
r = sqgrt(r)
r = mod(r,m)
if e, == 1 then
r = mul(r,b)
r = mod(r,m)
end
end
return r

November 28, 2022

MIT 6.5900 (ne 6.823) Fall 2022

How to make the code
execution independent
of the secret?

No secret-dependent
branches, memory
accesses, floating point
operations
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Secret-independent Channel Modulation

Input : base b, modulo m, How to make the code
exponent e = (e,-1 ---€9 )> execution independent
Output: be mod m of the secret?
r=1
. N -
fori = n—-1 down to 0 do b%ﬁgﬁreest CrLeepnqufsnt
r = sqrt(r) accesses, floating point
r = mod(r,m) operations
ife;==1then , _ (¢, -= 1)
r = mul(r,b) r2 = mul(r,b)
r=mod(r,m)  pr2 = mod(r,m)
end cmov [p] r, r2
end
return r
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Secret-independent Channel Modulation

Input : base b, modulo m, How to make the code
exponent e = (e,-1 ---€9 )> execution independent
Output: be mod m of the secret?
r=1
; N -
for/ = n—1 down to O do b%ﬁiﬁreest CrLeepnqufsnt
r = sqrt(r) accesses, floating point
r = mod(r,m) operations
ife;==1then , _ (¢, -= 1)
F= mugr,b) r2 = mul(r,b) After removing the
enr r mod(r,m)  r2 = mod(r,m) secret-dependent
and cmov [p] r, r2  pranch, how about code
inside these functions?
return r
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Secret-independent Channel Modulation

Input : base b, modulo m, How to make the code
exponent e = (e,-1 ---€9 )> execution independent
Output: be mod m of the secret?
r=1
; N -
for/ = n—1 down to O do b%ﬁgﬁreest CrLeepnqufsnt
r = sqrt(r) accesses, floating point
r = mod(r,m) operations
ife;==1then , _ (¢, -= 1)
F= mugr,b) r2 = mul(r,b) After removing the
enr r mod(r,m)  r2 = mod(r,m) secret-dependent
and cmov [p] r, r2  pranch, how about code
inside these functions?
return r

Constant-time programming is hard
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Disrupting Communication

Cache:
b
Process 1 a Process 2
# o
(Xmtr) .. ( //(Recewer)
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Disrupting Communication

Cache:
b2
Process 1 8 _ Process 2
(Xmtr) _/*L) ( A (Receiver)

Kirianski et. al. Dawg, Micro’18
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Disrupting Communication

Cache:
b2
Process 1 8 _ Process 2
(Xmtr) _/*L) ( A (Receiver)

fill a set

Kirianski et. al. Dawg, Micro’18
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Disrupting Communication

Cache:
b2
Process 1 8 _ Process 2
(Xmtr) _/*L) i A (Receiver)

fill a set

Kirianski et. al. Dawg, Micro’18
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Disrupting Communication

Cache:
b2
Process 1 8 _ Process 2
(Xmtr) _/*L) i A (Receiver)

if (send '0")
idle

else
write to a set

fill a set

Kirianski et. al. Dawg, Micro’18
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Disrupting Communication

Cache:
b2
Process 1 8 _ Process 2
(Xmtr) _/*L) i A (Receiver)

if (send '0")
idle
else

write to a set

fill a set

Kirianski et. al. Dawg, Micro’18
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Disrupting Communication

Cache:
b2
Process 1 8 _ Process 2
(Xmtr) _/*L):- i A (Receiver)

if (send '0")
idle
else

write to a set

fill a set

Kirianski et. al. Dawg, Micro’18
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Disrupting Communication

Cache:
b2
Process 1 8 _ Process 2
(Xmtr) _/*L):- i A (Receiver)
if (send *0’) fill a set t1 = rdtsc()
idle read all of the set
else t2 = rdtsc()

write to a set
if t2 — t1 > hit_time:
decode ‘1’
else
Kirianski et. al. Dawg, Micro’18 decode ‘0’
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Disjoint Channels

Domain of victim

A Channel

Transmitter v

v‘*&

Secret

Channel

Domain of attacker

O

Receiver %‘

Secret

e Making disjoint channels makes communication impossible.

e Channel can be allocated by “"domain” and will need to be
“cleaned” as processes enter and leave running state, so next
process cannot see any "modulation” on the channel.
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Obfuscating the channel (1)

Cache:

Process 1
(Xmtr)

! # sets

Same hash

Process 2
(Receiver)

e Adding a single hash makes it difficult for the

receiver to craft an address that monitors a specific
set because addresses in each process will not
match one-to-one.
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Obfuscating the channel (1)

Cache:

Process 1
(Xmtr)

! # sets

Same hash

Process 2
(Receiver)

e Adding a single hash makes it difficult for the

receiver to craft an address that monitors a specific
set because addresses in each process will not
match one-to-one.
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Obfuscating the channel (1)

Cache:

Process 1
(Xmtr)

; # sets

Same hash

Process 2
(Receiver)

e Adding a single hash makes it difficult for the

receiver to craft an address that monitors a specific

set because addresses in each process will not
match one-to-one.

November 28, 2022

MIT 6.5900 (ne 6.823) Fall 2022
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Communication with subchannels

Domain of victim
L

Subchannel

N

|_—W

Subchannel

— |

v‘*&

Secret

Transmitter<

A

Subchannel

Domain of attacker

% Receiver %‘
de

Secret

/

e Transmissions may now occur on one of many subchannels
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Communication with subchannels

Domain of victim

//, Subchannelx\\\

v‘*&

Transmitter

Secret

)
Subchannel

Domain of attacker

Subchannel .
— "3 Receiver ~Zec,
o WA
o

Secret

e Transmissions may now occur on one of many subchannels

e With a single hash, analysis by the receiver can, however,
figure out (reverse engineer) which subchannel will be

modulated.
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Simple Transmitter

secret = oneof(0..1)

if secret ==
X = channel
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Simple Transmitter

November 28, 2022

secret = oneof(0..1)

if secret ==
X = channel

1.2

0.8
0.6
0.4
0.2

Modulation for Sending 0 or 1

Xmit O Xmit 1

m Channel
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Simple Transmitter

Like an amplitude modulated (AM) radio transmission

secret = oneof(0..1)

if secret ==
X = channel

1.2

0.8
0.6
0.4
0.2

Modulation for Sending 0 or 1

Xmit O Xmit 1

m Channel

(RSA example)
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Another Transmitter

secret = oneof(0..3)
subchannel/secret] = 1
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Another Transmitter

November 28, 2022

1.2

0.8
0.6
0.4
0.2

secret = oneof(0..3)
subchannel[secret] = 1

Modulation for sending 0..3

Xmit O Xmit 1 Xmit 2
msubch O msubch 1l msubch 2 sub ch 3

MIT 6.5900 (ne 6.823) Fall 2022
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Another Transmitter

Like a frequency modulated (FM) radio transmission

1.2

0.8
0.6
0.4
0.2

secret = oneof(0..3)
subchannel[secret] = 1

Modulation for sending 0..3

Xmit O Xmit 1 Xmit 2
msubch O msubch 1l msubch 2 sub ch 3

(See later Meltdown)
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Obfuscating the channel (2)

Process 1
(Xmtr)

Cache:

# sets

hash @

Different hashes

Process 2
(Receiver)

e Adding a process dependent hash makes the
needed cache collision probabilistic.

e Now the receiver needs an extra step to find a way
to probe a variety of “channels” to detect

modulation.
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Receiver Calibration

Domain of victim

v‘*&

Secret

Transmitter<

Subchannel

7

|_—W

Subchannel

November 28, 2022

Subchannel

N
e

Domain of attacker

% Receiver %‘
e

Secret
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Receiver Calibration

Domain of victim

2

v‘*V

Secret

Transmitter<

Subchannel

7

|_—W

Subchannel

\\ﬁ Subchannel

=

Domain of attacker

O

Secret

Receiver &‘
de

\

Calibration

e The calibration unit determines which subchannels the
receiver needs to use to detect modulation by a transmission
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Receiver Calibration

Domain of victim % Subchannel Domain of attacker
. _—» Subchannel .
c& Transmitter Receiver %
> A
e X
Subchannel \

Secret Secret

Calibration

e The calibration unit determines which subchannels the
receiver needs to use to detect modulation by a transmission

e During calibration, the receiver may just observe known
transmissions by the transmitter or provoke the transmitter to
make a particular transmission.
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Hashing* variations

e Nature of hash
- Well-known
— Secret
— Cryptographic (per machine key)

*Hash -> address to set index mapping
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Hashing* variations

e Nature of hash
- Well-known
— Secret
— Cryptographic (per machine key)

e Hashes per core
— Single for all processes
— Per process hash

*Hash -> address to set index mapping
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Hashing* variations

e Nature of hash
- Well-known
— Secret
— Cryptographic (per machine key)

e Hashes per core
— Single for all processes
— Per process hash

e Variation with time
- Unchanging
— Fixed interval in accesses (all sets at once or subset of sets)
— Random interval (all sets at once or subset of sets)

*Hash -> address to set index mapping

November 28, 2022 MIT 6.5900 (ne 6.823) Fall 2022 L22-31



Hashing* variations

e Nature of hash
- Well-known
— Secret
— Cryptographic (per machine key)

e Hashes per core
— Single for all processes
— Per process hash

e Variation with time
- Unchanging
— Fixed interval in accesses (all sets at once or subset of sets)
— Random interval (all sets at once or subset of sets)

e Hashes per address
— Single or multiple
*Hash -> address to set index mapping
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Noise in the channel

Process 1
(Xmtr)

Cache:

November 28, 2022

(Receiver)

( /77 Process 2
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Noise in the channel

Process 1
(Xmtr)

Cache:

November 28, 2022

(Receiver)

/ /77 Process 2

write to set
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Noise in the channel

Process 1
(Xmtr)

November 28, 2022

Cache:

# sets

5

p Process 2

(Receiver)

write to set

MIT 6.5900 (ne 6.823) Fall 2022
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Noise in the channel

Cache:
Process 1
)
(Xmtr) 5

9 4 Process 2
#* / (Receiver)

if (send *0") write to set

idle
else

write to a set
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Noise in the channel

Cache:
Process 1
)
(Xmtr) w

7] p Process 2
® / (Receiver)

if (send '0’) :

idle <: write to set
else

write to a set
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Noise in the channel

Cache:

Process 1
(Xmtr)

p Process 2

/ (Receiver)

# sets

Process 3
(Xmtr)

if (send '0") write to set
idle <

else
write to a set
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Noise in the channel

Cache:

Process 1
(Xmtr)

p Process 2

/ (Receiver)

# sets

Process 3
(Xmtr)

if (send '0") write to set
idle <

else
write to a set
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Noise in the channel

Cache:
Process 1
(Xmtr) 2
s P Process 2
i / (Receiver)
Process 3
(Xmtr)
if (send "0’) write to set t1 = rdtsc()
idle < read from the set
else t2 = rdtsc()

write to a set
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Noise in the channel

Cache:
Process 1
(Xmtr) 2
s P Process 2
i / (Receiver)
Process 3
(Xmtr)
if (send "0’) write to set t1 = rdtsc()
idle < read from the set
else t2 = rdtsc()

write to a set
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Noise in the channel

Process 1
(Xmtr)

Process 3
(Xmtr)

if (send '0")

idle <
else
write to a set

November 28, 2022

Cache:

b

@ 4 Process 2
® / (Receiver)

write to set tl = rdtsc()
read from the set
t2 = rdtsc()

if t2 - t1 > hit_time:
decode ‘1’

else
decode ‘0’
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Noise in the channel

Cache:

Process 1
(Xmtr)

# sets

/ (Receiver)

Process 3
(Xmtr)

if (send '0") write to set

idle <
else
write to a set

Receiver interprets “noise” as a signall!

November 28, 2022 MIT 6.5900 (ne 6.823) Fall 2022

p Process 2

t1 = rdtsc()
read from the set
t2 = rdtsc()

if t2 - t1 > hit_time:
decode ‘1’

else
decode ‘0’
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Channel Noise

Domain of victim Domain of attacker
>~ Transmitter > Channel " Receiver ~eq,
?‘CV T WA
Secret Secret
Noise

e Another (or the same) transmitter may introduce changes of
state (noise) into the channel which will confound the receiver
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Channel Noise

Domain of victim Domain of attacker
>~ Transmitter > Channel " Receiver ~eq,
?‘CV T w‘
Secret Secret

Noise

e Another (or the same) transmitter may introduce changes of
state (noise) into the channel which will confound the receiver

e Reception now becomes probabilistic, and a stochastic

analysis is needed for the receiver to decode the modulation it
sees in the channel.
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Channel Noise

Domain of victim Domain of attacker
>~ Transmitter > Channel " Receiver ~eq,
?‘CV T w‘
Secret Secret
Noise

e Another (or the same) transmitter may introduce changes of
state (noise) into the channel which will confound the receiver

e Reception now becomes probabilistic, and a stochastic

analysis is needed for the receiver to decode the modulation it
sees in the channel.

e Increases in reliability of reception can be improved by
improved message encoding, e.g., by repeating the message.
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Noise makes signal probabilistic

November 28, 2022

0.8
0.6
0.4
0.2

secret = oneof(0..3)
subchannel[secret] = 1

Modulation for sending 0..3

Xmit O Xmit 1 Xmit 2
msubch O msubch 1l msubch?2 sub ch 3

MIT 6.5900 (ne 6.823) Fall 2022
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So far...

Domain of victim

v‘*&

\ 4

Domain of attacker

Transmitter Channel

Secret

\ 4

Receiver

%

Secret

e The communication model provides a systematic way to
reason about microarchitectural side channels
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So far...

Domain of victim Domain of attacker

Receiver %‘
de

Secret

\ 4

Channel

\ 4

2 '
VCV Transmitter

Secret

The communication model provides a systematic way to
reason about microarchitectural side channels

Different attack strategies are usually different ways of
modulating channels
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So far...

Domain of victim Domain of attacker
. | R . D
v‘*& Transmitter » Channel » Receiver %‘
Secret Secret

e The communication model provides a systematic way to
reason about microarchitectural side channels

o Different attack strategies are usually different ways of
modulating channels

e To improve channel precision, need precondition, calibration,
decoding techniques, noise => all have analogies to
telecommunication
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Types

of Transmitters

Domain of victim

Domain of attacker

A

Transmitter Channel

»@@'

Secret

\ 4

Receiver

O

%‘

Secret

e Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
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Reminder: Speculative Execution

Address Space

November 28, 2022

0x0

OxFF...F

U

S€

18

g
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Reminder: Speculative Execution

Address Space

0x0

OxFF...F

U

S€

18

Pc

=S

g

Ker

NE

DA

||

ges

e In x86, a page table can have kernel pages which are

only accessible in kernel mode:

— This avoids switching page tables on context switches, but
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Reminder: Speculative Execution

0x0 OxFF...F

Address Space | User pages Kerpel pages

e In x86, a page table can have kernel pages which are
only accessible in kernel mode:

— This avoids switching page tables on context switches, but

— Hardware speculatively assumes that there will not be an
illegal access, so instructions following an illegal
instruction are executed speculatively.
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Reminder: Speculative Execution

Address Space

0x0

OxFF...F

U

S€

18

Pc

g

=S

Ker

NE

||

DA

ges

e In x86, a page table can have kernel pages which are

only accessible in kernel mode:

— This avoids switching page tables on context switches, but

— Hardware speculatively assumes that there will not be an
illegal access, so instructions following an illegal
instruction are executed speculatively.

e So what does the following code do when run in user

mode do?

val = *kernel address;
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Reminder: Speculative Execution

0x0 OxFF...F
Address Space | User pages Kernel pages

e In x86, a page table can have kernel pages which are
only accessible in kernel mode:
— This avoids switching page tables on context switches, but

— Hardware speculatively assumes that there will not be an
illegal access, so instructions following an illegal
instruction are executed speculatively.

e So what does the following code do when run in user
?
mode do: val = *kernel address;

e Causes a protection fault, but data at “kernel_address”
is speculatively read and loaded into val!
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"FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines
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"FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

uint8 t secret = *kernel address;
subchannels[secret] = 1;
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"FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

uint8 t secret = *kernel address;
subchannels[secret] = 1;

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was "modulated” to decode the secret.
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"FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

uint8 t secret = *kernel address;
subchannels[secret] = 1;

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was "modulated” to decode the secret.

e Result: Attacker can read arbitrary kernel data!
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"FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

uint8 t secret = *kernel address;
subchannels[secret] = 1;

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the

subchannel that was "modulated” to decode the secret.

e Result: Attacker can read arbitrary kernel data!

— For higher performance, use transactional memory (protection
fault aborts transaction on exception instead of invoking kernel)
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"FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

uint8 t secret = *kernel address;
subchannels[secret] = 1;

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was "modulated” to decode the secret.

e Result: Attacker can read arbitrary kernel data!

— For higher performance, use transactional memory (protection
fault aborts transaction on exception instead of invoking kernel)

— Mitigation?
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"FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

uint8 t secret = *kernel address;
subchannels[secret] = 1;

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was "modulated” to decode the secret.

e Result: Attacker can read arbitrary kernel data!

— For higher performance, use transactional memory (protection
fault aborts transaction on exception instead of invoking kernel)

— Mitigation? Do not map kernel data in user page tables
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"FM” Transmitter
Meltdown [Lipp et al. 2018]

1. Preconditioning: Receiver allocates an array
subchannels[256] and flushes all its cache lines

2. Transmit: Transmitter (controlled by attacker) executes

uint8 t secret = *kernel address;
subchannels[secret] = 1;

3. Receive: After handling protection fault, receiver times
accesses to all of subchannels[256], finds the
subchannel that was "modulated” to decode the secret.

e Result: Attacker can read arbitrary kernel data!
— For higher performance, use transactional memory (protection
fault aborts transaction on exception instead of invoking kernel)
— Mitigation? Do not map kernel data in user page tables

Return zero upon permission check failure
(supporting precise exception)
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Types

of Transmitters

Domain of victim

VC&

Domain of attacker

Channel

A

Transmitter

Secret

\ 4

Receiver

O

%‘

Secret

e Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)
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Spectre variant 1
[Kocher et al. 2018]

e Consider a situation where there is some kernel code
that looks like the following:

xmit: uint8 t index = *kernel address;
uint8 t dummy = random array[index];
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Spectre variant 1
[Kocher et al. 2018]

e Consider a situation where there is some kernel code
that looks like the following:

xmit: uint8 t index = *kernel address;
uint8 t dummy = random array[index];

e Interpret that code as an FM transmitter:

xmit: uint8 t secret = *kernel address;
uint8 t dummy = subchannels[secret];
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Spectre variant 1
[Kocher et al. 2018]

e Consider a situation where there is some kernel code
that looks like the following:

xmit: uint8 t index = *kernel address;
uint8 t dummy = random array[index];

e Interpret that code as an FM transmitter:

xmit: uint8 t secret = *kernel address;
uint8 t dummy = subchannels[secret];

e But this kernel code is protected by a branch. Can we
make the kernel speculatively execute "xmit”?
if (kernel address is public region) {
uint8 t index = *kernel address;
uint8 t dummy = subchannels[index];

¥
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Spectre variant 1
[Kocher et al. 2018]

e Consider a situation where there is some kernel code
that looks like the following:

xmit: uint8 t index = *kernel address;
uint8 t dummy = random array[index];

e Interpret that code as an FM transmitter:

xmit: uint8 t secret = *kernel address;
uint8 t dummy = subchannels[secret];

e But this kernel code is protected by a branch. Can we
make the kernel speculatively execute "xmit”?
if (kernel address is public region) {
uint8_t index = *kernel_address; Conditional branch
uint8 t dummy = subchannels[index]; misprediction

¥
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Spectre variant 1
[Kocher et al. 2018]

e Consider the following kernel code, e.g., in a system call

if (x < arrayl size)
y = array2[arrayl[x] * 4096];

1. Precondition: Flush all the elements in array2 from cache
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Spectre variant 1
[Kocher et al. 2018]

e Consider the following kernel code, e.g., in a system call

if (x < arrayl size)
y = array2[arrayl[x] * 4096];

1. Precondition: Flush all the elements in array2 from cache

2. Train: Attacker invokes this kernel code with small values of
x to train the branch predictor to be taken
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Spectre variant 1
[Kocher et al. 2018]

e Consider the following kernel code, e.g., in a system call

if (x < arrayl size)
y = array2[arrayl[x] * 4096];

1. Precondition: Flush all the elements in array2 from cache

2. Train: Attacker invokes this kernel code with small values of
x to train the branch predictor to be taken

3. Transmit: Attacker invokes this code with an out-of-bounds
X, SO that &arrayl[x] points to a desired kernel address.

Core mispredicts branch, speculatively fetches address
&array2[arrayl[x] * 4096] into the cache.
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Spectre variant 1
[Kocher et al. 2018]

e Consider the following kernel code, e.g., in a system call

if (x < arrayl size)
y = array2[arrayl[x] * 4096];

1. Precondition: Flush all the elements in array2 from cache

2. Train: Attacker invokes this kernel code with small values of
x to train the branch predictor to be taken

3. Transmit: Attacker invokes this code with an out-of-bounds
X, SO that &arrayl[x] points to a desired kernel address.

Core mispredicts branch, speculatively fetches address
&array2[arrayl[x] * 4096] into the cache.

4. Receive: Attacker probes cache to infer which line of array2
was fetched, learns data at kernel address
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Spectre variant 2
[Kocher et al. 2018]

e Can also exploit indirect branch predictor:
— Most BTBs store partial tags for source addresses
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Spectre variant 2
[Kocher et al. 2018]

e Can also exploit indirect branch predictor:
— Most BTBs store partial tags for source addresses

kernel address = a_desired address;
Gl jump some where else

kernel address = a_safe_address;
242 jump xmit

xmit: uint8 t secret = *kernel address;
uint8 t dummy = subchannels[secret];

November 28, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L22-42



Spectre variant 2
[Kocher et al. 2018]

e Can also exploit indirect branch predictor:
— Most BTBs store partial tags for source addresses

kernel address a_desired address;
jump some_where_else

abc

kernel address = a_safe_address;
jump xmit

xmit: uint8 t secret = *kernel address;
uint8 t dummy = subchannels[secret];

1. Train: trigger xyz->xmit many times

2. Transmit: ‘abc’ and 'xyz’ alias in BTB, so we can
speculatively trigger abc->xmit

3. Receive: similar to Spectre v1

November 28, 2022 MIT 6.5900 (ne 6.823) Fall 2022

L22-42



Types of Transmitters

Domain of victim Domain of attacker
S . . . D
v‘*&' Transmitter » Channel » Receiver %‘
Secret Secret

e Types of transmitter:
1. Pre-existing so victim itself leaks secret, (e.g., RSA keys)
2. Programmed and invoked by attacker (e.g., Meltdown)

3. Synthesized from existing victim code and invoked by
attacker (e.qg., Spectre v2)
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Spectre variants and mitigations

e Spectre relies on speculative execution, not late
exception handling > Much harder to fix than Meltdown
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Spectre variants and mitigations

e Spectre relies on speculative execution, not late
exception handling > Much harder to fix than Meltdown

e Several other Spectre variants reported

— Leveraging the speculative store buffer, return address stack,
leaking privileged registers, etc.
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Spectre variants and mitigations

e Spectre relies on speculative execution, not late
exception handling > Much harder to fix than Meltdown

e Several other Spectre variants reported

— Leveraging the speculative store buffer, return address stack,
leaking privileged registers, etc.

e Can attack any type of VM, including OSs, VMMs,
JavaScript engines in browsers, and the OS network
stack (NetSpectre)
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Spectre variants and mitigations

e Spectre relies on speculative execution, not late
exception handling > Much harder to fix than Meltdown

e Several other Spectre variants reported

— Leveraging the speculative store buffer, return address stack,
leaking privileged registers, etc.

e Can attack any type of VM, including OSs, VMMs,
JavaScript engines in browsers, and the OS network
stack (NetSpectre)

e Short-term mitigations:
— Microcode updates (disable sharing of speculative state when possible)
— OS and compiler patches to selectively avoid speculation
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Spectre variants and mitigations

e Spectre relies on speculative execution, not late
exception handling > Much harder to fix than Meltdown

e Several other Spectre variants reported

— Leveraging the speculative store buffer, return address stack,
leaking privileged registers, etc.

e Can attack any type of VM, including OSs, VMMs,
JavaScript engines in browsers, and the OS network
stack (NetSpectre)

e Short-term mitigations:
— Microcode updates (disable sharing of speculative state when possible)
— OS and compiler patches to selectively avoid speculation

e Long-term mitigations:
— Disabling speculation?
— Closing side channels?
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Summary

e [SA is a timing-independent interface, and
- Specify what should happen, not when

e ISA only specifies architectural updates
— Micro-architectural changes are left unspecified

e So implementation details (e.g., speculative execution)
and timing behaviors (e.g., microarchitectural state,
power, etc.) have been exploited to breach security
mechanisms.

e ISA, as a software-hardware contract, is insufficient for
reasoning about microarchitectural security
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Coming Spring 2023:
Secure Hardware Design

Learn to attack processors...

Side channel attacks
Transient/ speculative execution attacks SGX Enclave Design
Row-hammer attacks Hardware support for memory safety

And morel!

And learn to defend them!

Take 6.5983 This Spring! (ne 6.888)

.- Graduate-Level/ AUS
Mengjia Yan
12 Units (3-0-9)

mengjia@csail.mit.edu MW 1:00 - 2:30

November 28, 2022 http://csg.csail.mit.edu/6.888Yan/ L22-46



Thank you!
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