Complex Pipelines

Miguel Gomez-Garcia

(slides adapted from prior 6.823 offerings)

Dependence vs. hazard

* Dependence is a property of programs

 Whether a dependence results in a hazard is a
property of pipeline organizations

Data hazard types

Reads/Writes to f0
* RAW 11: ADDI {0, f0, 0 R (12
W (I1)
o WAW 12: ADDI ffB,\?O, 3 R (12)
¥
13: ADDI f4,/f0, 4 R (13)
4: ADDI f0, 5, 1 W (14
|5: XOR f6, f6, f6
I6: ADDI 0, f7, 1 I w as)

9/30/2022 6.823 Spring 2022

Scoreboard

e A data structure that detects hazards dynamically
* Applicable to both in-order and out-of-order issue

* Why do we need this?
* Many execution units
* Variable execution latency
* Dynamic instruction scheduling

Scoreboard

* Can have many implementations!

* Example: In-order issue
 WAR cannot happen (if value is latched to functional unit at

issue)
|11: ADDI f1, fq, 1
; Due to in-order issue
|12: ADDI fO, <= f2, 1

Register read happens
before write
for an instruction

e Can be simplified as Busy[FU#] and WP[reg#] (if WAW
resolved conservatively)

Scoreboard

 What strategy does it use to resolve RAW?
* Stall

 How about bypass?

* Less beneficial since the register write can happen right
after execution finishes

* Can still be incorporated to allow register read and write
to happen in the same cycle

Out of Order (O00) Execution

* Why use it in the first place?

e Stalls of younger instructions prevent dispatch of

younger instructions into functional (execution) units.

MUL
ADD
ADD
MUL
ADD

* By eliding false dependences and head-of-line blocking,

R3 <-R1, R2
R3 <-R3, R1
R1 <- R6, RY
R5 <- R6, R8
R7 <-R3, R5

LD

ADD
ADD
MUL
ADD

R3 <-R1 (0)

R3 <- R3, R1
R1 <- R6, R7
R5 <- R6, R8
R7 <- R3, R5

we are only bound by true data dependences

9/30/2022

6.823 Spring 2022

000 execution dynamically
extracts true dependences

Not ready H —

Ready

Complete

Committed

Execute -

S —

g (Not decoded)

9/30/2022 6.823 Spring 2022

Out-of-order execution

* Want: we want to somehow avoid stalling due to WAR
and WAW hazards...

e Strategy?
Do something else

e Technique?
Register Renaming

9/30/2022 6.823 Spring 2022 9

Renaming + ROB

Renaming table & reg file

Reorder buffer

p data Ins# use exec op pl srcl p2 src2
F1 1 |olo | iD Ly
F2[o w 2 | p] o | L;
F3 3 1] 0| mMu]o w vi | s
F4|o 3 4 Dl o lsuelil w1 vl 4
F5 5 1| o0 |lowv |1 w 4 15
F6|0o 13 :
F7
F8|lao| wa
.]) 1 LD F2, 34(R2)
e Insert instruction in ROB 2 LD F4, 45(R3)
o \\é3ak astpaoEoh 1FoRiSROB y B> B iy e
o ©ormpliste’instruction 2 aDbD 10, o e

e Empty ROB entry

9/30/2022 6.823 Spring 2022

Precise Exceptions

* |[ssue:

* Exception ordering is not accurate

* Instructions that come earlier in program order might not raise an
exception until after later instructions have been completed!

 Solution:
* Introduce in-order commit point!

But where do we store data before commit?

9/30/2022 6.823 Spring 2022

11

Exception-friendly ROB

Search dest field for renaming info

Register File «
(now holds only
committed state) I /\\ i
Ins# |use|exed op |pl| srcl p2| src2 éﬂ desth data t
Reorder l 2
buffer V '
k / t,
h
Load Store |Commit
Unit FU FU FU Unit I
l 1 < t, result >

9/30/2022 6.823 Spring 2021 12

Renaming Table

Rename
Table

Reorder
buffer

ry_t vl tag Register
rz - valid bit File
Ins# |use|exed op |pl] srcl p2| src2 pd| dest | data t,
t;
t,
|
1)|
Load Store Commit
Unit FU FU FU Unit

< t, result >

9/30/2022

Questions?

6.823 Spring 2022

14

