6.823
Pin Optimizations

Adapted from: Prior 6.823 offerings, and
Intel’s Tutorial at CGO 2010

10/07/2022 6.823 Fall 2022

From the Video tutorial...
What is Instrumentation?

* |[nstrumentationis a technique that inserts
extra code into a program to collect runtime
information

* PIN doesinstrumentation

Runtime No need to
re-compile
or re-link

4
Instrumentation: Instruction Count/

Analysis routine

[In o °
Let’s increment ‘ strumentation routine

counter by one
before every instruction!

counter++;
sub $SO0xff, %edx
counter++;
cmp 3Iesi, %sedx

/

counter++;

jle <L1>
counter++;

mov S$0x1, %$edi
counter++;

add $0x10, %eax

10/07/2022 6.823 Fall 2022 3

/

Instrumentation vs. Analysis

* Instrumentation routines define where
instrumentation is inserted

— < Occurs immediately before an instruction is executed
for the first time.

* Analysis routines define what to do when
instrumentation is activated

— < Occurs every time an instruction is executed

10/07/2022 6.823 Fall 2022 4

How to Write Efficient Pintools

10/07/2022 6.823 Fall 2022

.
Reducing Instrumentation Overhead }4

Total Overhead = Pin’s Overhead + Pintool’s Overhead

yd

e The job of Pin developers to minimize this
o ~5% for SPECfp and ~20% for/ SPECint

e Pintool writers can help minimize this!

10/07/2022 6.823 Fall 2022 6

Reducing Pintool’s Overhead }1

Pintool’s Overhead

e N
- N

Instrumentation Routines Overhead -@s Routines Overhead
@cy of calling an Analysis@x Work required in the Analysis Routine

10/07/2022 6.823 Fall 2022 7

;{{

Instrumentation Granularity

e |nstrumentation with Pin can be done at 3 different
granularities:
— Instruction

— Basic block

* A sequence of instructions terminated at a (conditional or
unconditional) control-flow changing instruction

* Single entrance, single exit

— Trace

* A sequence of basic blocks terminated at an unconditional control-flow
changing instruction

* Single entrance, multiple exits

Instrumentation Granularity 7/

 |nstrumentation with Pin can be done at 3 different
granularities:

— Instruction $0xff, Y%oedx
— Basic block %esi, %edx
e Asequence of instruct | <L1>
unconditional) contro
* Single entrance, single $0X1, O%edi
— Trace $0x10, %eax
* A sequence of basic bl <L2> W

changing instruction

* Single entrance, multiple exits

10/07/2022 6.823 Fall 2022 9

Instrumentation Granularity 7/
* Instrumentation with Pin can be done at 3 different

granularities: 6 insts
— Instruction $0xff, Yoedx
— Basic block %esi, Yoedx

* Asequence of instruct <L1>

unconditional) contro

* Single entrance, single $0X1, O%edi
— Trace $OX10, O/OeaX

* A sequence of basic bl <L2> W

changing instruction

* Single entrance, multiple exits

10/07/2022 6.823 Fall 2022 10

Instrumentation Granularity 7/

* |nstrumentation with
granularities:
— Instruction
— Basic block

e Asequence of instruct
unconditional) contro

* Single entrance, single

— Trace

* A sequence of basic bl

pi be d 3 diff
6 insts, 2 basic blocks

sub $0xff, %edx
cmp %esi, Y%edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

changing instruction

* Single entrance, multi

10/07/2022

ple exits

6.823 Fall 2022 11

Instrumentation Granularity 7/

* |nstrumentation with
granularities:
— Instruction
— Basic block

e Asequence of instruct
unconditional) contro

* Single entrance, single

— Trace

* A sequence of basic bl

pi be d 3 diff
6 insts, 2 basic blocks, 1 trace

sub $0xff, %edx
cmp %esi, Y%edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

changing instruction

* Single entrance, multi

10/07/2022

ple exits

6.823 Fall 2022 12

10/07/2022

counter++;
sub S$O0xff, %edx

counter++;
cmp %esi, %edx
counter++;

jle <L1>
counter++;

mov S$O0xl1l, %edi
counter++;

add $0x10, %eax

6.823 Fall 2022

13

~

Recap of Pintool: Instruction Count /{

~

Recap of Pintool: Instruction Count /{

counter++;
sub S$0xff, %edx

» Straightforward, but the counting can be more efficient

counter++;
mov S$0x1, %edi
counter++;

add $0x10, %eax

10/07/2022 6.823 Fall 2022 14

o

}]

Faster Instruction Count

counter += 3
sub S$0xff, %edx

cmp %esi, %edx \\\\\\\

jle <L1> basic blocks (bbl)

counter += 2
mov S$0x1, %edi

add $0x10, %eax

10/07/2022 6.823 Fall 2022 15

s
#include <stdio.h> /
#include "pin.H“ {
UINT64 icount = O0; /
void docount (INT32 c¢) { icount += c; } analysis routine
void Trace (TRACE trace, void *v) {

for (BBL bbl TRACE BblHead (trace) ;
BBL Valid(bbl); bbl = BBL Next(bbl)) {

BBL InsertCall(bbl, IPOINT BEFORE, (AFUNPTR)docount,
IARG UINT32, BBL NumIns(bbl), IARG END) ;

} Instrumentation routine

void Fini (INT32 code, void *v) {
fprintf (stderr, "Count %11d\n", icount);
}
int main(int argc, char * argv[]) {
PIN Init(argc, argv);
TRACE AddInstrumentFunction(Trace, 0);
PIN AddFiniFunction(Fini, 0);
PIN StartProgram() ;

return O;

7/

Reducing Frequency of Calling
Analysis Routines

* Key:

— Instrument at the largest granularity whenever
possible:
* Trace > Basic Block > Instruction

o

Reducing Pintool’s Overhead }4

Pintool’s Overhead

e
a N
Instrumentation Routines Overhead -@s Routines Overhead
A
- N

Frequency of calling an Analysis Routine @required in the Analysis @

10/07/2022 6.823 Fall 2022 18

o

Reducing Pintool’s Overhead }4

Pintool’s Overhead

e
a N
Instrumentation Routines Overhead -@s Routines Overhead
A
- N

Frequency of calling an Analysis Routine @required in the Analysis @

N
a4 2

Work required for transiting to Analysis Routine +@e inside Analysis Routine

10/07/2022 6.823 Fall 2022 19

Example:

10/07/2022

o

o4

Counting Control Flow Edges/

L1l:

L2:

L3:

L4:

jne , <L2> l
jmp @ <L3>
call <L4>

jne |, <L1>

A

How often is
each branch
taken?

ret

6.823 Fall 2022

o

o4

Example: Counting Control Flow Edges/

100 40
(re)49 (mp)

40
N

l How often is
1

each branch
taken?

10/07/2022 6.823 Fall 2022

Edge Counting: a Slower Version

void Instruction (INS ins, void *v) {

if (INS_IsBranchOrCall (ins)) {

INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) docount2,

IARG_INST PTR ARG BRANCH TARGET ADD
IARG_BRANCH_TA§EN : °

} 1 if taken, O if not taken

10/07/2022 6.823 Fall 2022 22

o

}/

Inefficiency in Program

About every 5th instruction executed in a typical
application is a branch.

Edge lookup will be called whenever these
instruction are executed

— significant application slowdown

Direct vs. Indirect Branches

— Branch Address in instruction vs. Branch Address in
Register

— Static vs. Dynamic

Edge Counting: a Faster Version d

void docount (COUNTER* pedge, INT32 taken) {
pedg->count += taken;

}

void docount2 (ADDRINT src, ADDRINT dst, INT32 taken) {
COUNTER *pedg = Lookup (src, dst);
pedg->count += taken;

}

void Instruction (INS ins, void *v) {
if (INS IsDirectBranchOrCall (ins)) ({

COUNTER *pedg = Lookup (INS Address(ins),
INS DirectBranchOrCallTargetAddress (ins)) ;

INS InsertCall(ins, IPOINT BEFORE, (AFUNPT
(:é%%;;;;;;;;73§§£5>IARG_BRANCH_IAKEN, IARG_END) ;
} else if (INS_ IsBranchOrCall (ins))
INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) docount2,
IARG_INST PTR, IARG_BRANCH TARGET ADDR,
IARG_BRANCH TAKEN, IARG END) ;

Eliminating Control Flow

10/07/2022 6.823 Fall 2022

N

Reducing Work Done in Analysis /‘[
Routines
* Key:

— Shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

}/

Some other optimizations...

 Reduce the number of arguments to analysis
routine.

— For example, instead of passing TRUE/FALSE, create 2
analysis functions.

* |f an instrumentation can be inserted anywhere
in a basic block:

— Let Pin know via IPOINT_ANYWHERE (used in
BBL InsertCall())

— Pin will find the best point to insert the
instrumentation to minimize register spilling

Takeaways..

* Reduce frequency of calling analysis routines by
instrumenting at the largest granularity whenever
possible

 Reduce the amount of work done in analysis routines
by shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

10/07/2022 6.823 Fall 2022 28

