Cache Coherence
(Continued)

Miguel Gomez-Garica
6.823 Fall 2022
Adapted from prior course offerings

Cache Coherence

» Two necessary conditions:

1. Write propagation: Writes eventually become visible
to other processors

2. Write serialization: All processors observe writes to
one location appear to happen in a consistent order

» MSI protocol provides a sufficient condition via
single-writer multi-reader policy
- Only one cache may have write permission at any given
point in time
- Multiple caches can have read-only permission at a
given point in time

Write-back caches: MSI

» Three stable states per cache-line
- Invalid (1): Cache does not have a copy
- Shared (S): Cache has read-only copy; clean

- Modified (M): Cache has only copy; writable;
(potentially) dirty

» Processor-initiated actions:
- Read: needs to upgrade permission to S
- Write: needs to upgrade permission to M

- Evict: relinquish permissions (caused by access to a
different cache line)

MSI directory states

»Uncached (Un): No cache has a valid copy

»Shared (Sh): One or more caches in S state. Must
track sharers.

» Exclusive (Ex): One of the caches in M state. Must
track owner.

» Does the directory need transient states?

- Yes on downgrades/invalidations, to guarantee
serialization

Oddber 25, 2021

MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

Processor Read (PrRd)
Processor Write (PrWr)
Shared Request (ShReq)

Exclusive Request (ExReq)

MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

Processor Read (PrRd)
S Processor Write (PrWr)

T Shared Request (ShReq)
PrRd / ShReq Exclusive Request (ExReq)

0

Oddber 25, 2021

MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

PrWr /

ExReq
Processor Read (PrRd)

Processor Write (PrWr)

Shared Request (ShReq)
PrRd / ShReq Exclusive Request (ExReq)

Oddber 25, 2021

MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

PrWr /
ExReq

Processor Read (PrRd)
S PrRd / --
Processor Write (PrWr)
T Shared Request (ShReq)
PrRd / ShReq Exclusive Request (ExReq)

Oddber 25, 2021

MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

PrWr / ExReq

Processor Read (PrRd)
S PrRd / --
Processor Write (PrWr)
T Shared Request (ShReq)
PrRd / ShReq Exclusive Request (ExReq)

PrWr /
ExReq

Oddber 25, 2021

MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

PrWr / ExReq

Processor Read (PrRd)
S PrRd / --
Processor Write (PrWr)
T Shared Request (ShReq)
PrRd / ShReq Exclusive Request (ExReq)

PrWr /
ExReq

Odeber 25, 2021

MSI Protocol: Caches (2/3)

Transitions initiated by directory requests:

Invalidation Request (InvReq)
Downgrade Request

(DownReq)

Invalidation Response
(InvResp)

Downgrade Response
(DownResp)

Odeber 25, 2021

MSI Protocol: Caches (2/3)

Transitions initiated by directory requests:

InvReq / InvResp (with data)

Invalidation Request (InvReq)
Downgrade Request
(DownReq)

Invalidation Response
(InvResp)

Downgrade Response
(DownResp)

Odeber 25, 2021

MSI Protocol: Caches (2/3)

Transitions initiated by directory requests:

DownReq / InvReq / InvResp (with data)

DownResp
(with data)

Invalidation Request (InvReq)

Downgrade Request
(DownReq)
Invalidation Response
(InvResp)

Downgrade Response
(DownResp)

Odeber 25, 2021

MSI Protocol: Caches (2/3)

Transitions initiated by directory requests:

InvReq / InvResp (with data)

DownReq /
DownResp
(with data)
Invalidation Request (InvReq)
Downgrade Request
InvReq / (DownReq)
InvResp Invalidation Response
(without (InvResp)

Downgrade Response
(DownResp)

data) Q
I

Odeber 25, 2021

MSI Protocol: Caches (3/3)

@ Writeback Request (WbReq)

Odeber 25, 2021

MSI Protocol: Caches (3/3)

@ Eviction /

WbReq
(with data)

@ Writeback Request (WbReq)

Odeber 25, 2021

MSI Protocol: Caches (3/3)

@ Eviction /

WbReq
(with data)

@ Writeback Request (WbReq)

Eviction /
WDbReq
(without data)

Odeber 25, 2021

MSI Protocol: Caches

—> Transitions initiated by processor accesses

—> Transitions initiated by directory requests

Odeber 25, 2021

MSI Protocol: Directory (1/2)

Transitions initiated by data requests:

©
<
()

Odeber 25, 2021

MSI Protocol: Directory (1/2)

Transitions initiated by data requests:

@ ShReq / Sharers = Sharers + {P}; ShResp

N

ShReq / Sharers = {P}; ShResp

()

Odeber 25, 2021

MSI Protocol: Directory (1/2)

Transitions initiated by data requests:

ExReq / Sharers = {P}; ExResp

@ ShReq / Sharers = Sharers + {P}; ShResp

AN

ShReq / Sharers = {P}; ShResp

Odeber 25, 2021

MSI Protocol: Directory (1/2)

Transitions initiated by data requests:

ExReq / Sharers = {P}; ExResp

ExReq / Inv(Sharers — {P}); Sharers = {P}; ExResp

GEZ) ShReq / Sharers = Sharers + {P}; ShResp

AN

ShReq / Sharers = {P}; ShResp

Odeber 25, 2021

MSI Protocol: Directory (1/2)

Transitions initiated by data requests:

ExReq / Sharers = {P}; ExResp

ShReq / Down(Sharer); Sharers = Sharer + {P}; ShResp

ExReq / Inv(Sharers — {P}); Sharers = {P}; ExResp

EZ) ShReq / Sharers = Sharers + {P}; ShResp

\

ShReq / Sharers = {P}; ShResp

O3eter 25, 2021

MSI Protocol: Directory (2/2)

©
<

O3eter 25, 2021

MSI Protocol: Directory (2/2)

(=)

WbReq / Sharers = {}; WbResp

<
()

O3eter 25, 2021

MSI Protocol: Directory (2/2)

(=)

WbReq / Sharers = {}; WbResp

Sh WbReq && |Sharers| >1/
Sharers = Sharers - {P}; WbResp

()

O3eter 25, 2021

MSI Protocol: Directory (2/2)

®
WbReq / Sharers = {}; WbResp
Sh WbReq && |Sharers| >1/
Sharers = Sharers - {P}; WbResp

WbReq && |Sharers| ==1/
Sharers = {}; WbResp

()

Optimizations

» Problem: Frequent read-upgrade sequences
- private read-modify-write
- Requires two bus transactions even for private blocks

» Solution: Add Exclusive (E) state
- E: Only one copy, writable, and clean

- Core silently updates to M upon a write to indicate dirty
line.

Optimizations

» Problem: Writeback to memory upon M->S
downgrade

- Sometimes wastes bandwidth e.g. producer-consumer
scenarios

- Simplicitly assumes line is clean, allowing silent
evictions.

»Solution: Add Owner (O) state

- O: Multiple copies, read-only, and dirty. Also responsible
for writing back the data

- Core entres O upon a downgrade.

Lab Task: MSI Coherence Protocol

» Implement with Murphi description language
- Rules: Define transitions between states
- Invariants and asserts: Capture protocol correctness

» Murphi verifier

- Explores reachable states until it finds:

e Aviolation of an invariant or assertion, or
* A state with no possible transitions (deadlock), or
* It has explored all reachable states and found no errors.

- Exploits symmetry to reduce redundant states

Races

» Occur when there are multiple messages/requests in flight
concerning a single cache line.

» Try to minimize the opportunity for races by waiting for
previous messages before sending new ones.

» Multiple processors may concurrently initiate conflicting
requests.

- L13-25 shows one case

» If network may deliver messages out of order, the protocol
must handle this. For example:
- The directory has two messages in flight to one private cache.
- One processor/cache has two messages in flight to the directory.

» 3-hop protocol may require you to add more handling for
additional races.

Tips

» Feel free to add to or rename states and messages.

» Get a 4-hop protocol working first, before
attempting 3-hop.

» Get your protocol working with ProcCount set to 2
before handling the 3-processor case.

» Write more of assertions and/or invariants.
- Add assertions/invariants about your transient states.

