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Quiz 2 logistics

 Time: 1pm EST on Wednesday, November 9

* Location: 32-141

* Handout posted on website/Piazza



Topics

Advanced memory operations

Multithreading

On-chip Networks

Topology

Routing

Flow control

Router micro-architecture

Cache coherence

Snooping-based vs. Directory-based
VI, MSI, MESI, MOSI, ...

Transient states

Synchronization primitives

Memory consistency model

Sequential consistency
Total Store Order (TSO)
Relaxed consistency



Advanced memory operations

* Write policy
— Hits: write through vs. write back
— Misses: write allocate vs. write no allocate

e Speculative loads/stores
— Cause 1: control dependency: All instructions are speculative until
commit
» Just like other instructions
* Solution: buffer the stores and commit them in order

— Cause 2: (memory-location-based) data dependency
e Simple solution: buffer stores; loads search addresses of all previous stores
* Problem: addresses of previous stores may be unknown

e Solution: speculate no data dependency
— Use a data structure to keep track of this speculation: speculative load buffer



» Enables data forwarding
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» On store execute:
- mark valid and speculative; save tag, data and

instruction number.

» On store commit:
- clear speculative bit and eventually move data to

cache

» On store abort:
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clear valid bit
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» One entry per store
» Written by stores
» Searched by loads

» Writes to data cache |
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Ben Bitdiddle designed an out-of-order vector machine with store buffers. This machine executes
memory operations (both load and store) “in order”, although other instructions can be executed
out-of-order. (All the instructions are committed “in order”.) There is a load/store issue queue to
maintain the execution order of all the memory operations. Every load must check if the value it
needs is in the store buffer, and to determine the proper value, every instruction is assigned a

unique instruction number (Inum).

Store Buffer
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Problem M9.2.A

Memory

Suppose 10% of instructions are stores and the average lifetime of instructions in the store buffer
is 100 cycles. Assuming the desired throughput of this machine to be 1 instruction per cycle, how
many entries will the store buffer be holding at a given time on average?

Does this machine store into memory greedily or lazily?
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Ben did not like the store buffers in the previous design, because the store buffers need to be looked
up for every load instruction, and implementing a fast lookup to the buffers was too expensive.
Thus, instead of using the store buffers, Ben decided to directly update the memory during
execution (before the store instruction actually commits), and keep the old values in “store logs”™.
Each entry in the store logs consists of a valid bit, Inum, memory address and data value.
The data field holds the value that was in the memory before the store to the location writes to the
memory.

Store Log
Vv Inum Address Data
C P U M em Ory V Inum Address Data
S — Vv Inum Address Data
V Inum Address Data
\' Inum Address Data
Vv Inum Address Data

Is this a greedy update or a lazy update?

Assume an arithmetic exception occurred, and thus, the processor state and memory need to be
recovered appropriately. Which machine design (store buffer machine or store log machine) has
the higher recovery cost, and why?

6.5900 Fall 2022

DRI



Load Buffer

» On load execute:

A4

Speculative
_ - Load Address
mark en.try valid, and Load Buffer
instruction number and tag
of data.
» On load commit:
A M Inum Tag
- clear valid bit v inum Tag
» On load abort: M Inum Tag
A M Inum Tag
- clear valid bit Vi Inum Tag
» One entry per load » Enables aggressive load scheduling
» Written by loads » Detects ordering violations

» Searched by stores
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Multithreading

* Fine-grain multithreading
* Coarse-grain multithreading

* Simultaneous multithreading

— Scheduling policies
* Round-robin: Equalize throughput between threads
* |COUNT: Equalize instr. in flight between threads



On-chip networks

* Allow sharing communication resource

* Topology

— Metrics: routing distance, diameter, average
distance, bisection bandwidth, ...

* Routing

— Properties: deterministic, adaptive, deadlock-free,



On-chip networks

* Flow control

— Bufferless

* Circuit switching, dropping, misrouting, ...

— Buffered

e Store-and-forward, virtual cut-through, wormhole,
virtual channel

e Router architecture
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Problem M12.6.A

Determine whether the following routing algorithms are deadlock-free for a 2D-mesh. State your
reasoning.

a) (3 points) Randomized dimension-order: All packets are routed minimally. Half of the
packets are routed completely in the X dimension before the Y dimension, and the other
packets are routed in the Y dimension before the X dimension.

b) (3 points) Less randomized dimension-order: All packets are routed minimally. Packets
whose minimal direction is increasing in both X and Y always route X before Y. Packets
whose minimal direction is decreasing in both X and Y always route Y before X. All
other packets choose randomly between X before Y and vice-versa.
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Problem M12.6.B

Consider the following topology:

\E'

() (2 points) What is the diameter of this topology?

(b) (2 points) What is the bisection bandwidth (in flits/cycle) of this topology?
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Cache coherence

* Simplify building shared memory systems

* Definition:
— Write propagation Liveness: do something good
* Writes eventually become visible to all processors

— Write serialization Safety: don’t do anything bad

* Writes to the same location are serialized (all
processors see them in the same order)
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Cache coherence

* Transient states: required by lack of atomicity
— Two types

 Split states: to implement one transaction

— E.g., S transitions to SM* (instead of M), waiting for an ExResp
(“A” denotes acknowledgement)

* Race states: to handle overlaps of two transactions
— Not all such overlaps require transient states
— See the following examples



Cache coherence

* Split example
— SMA

Cache O Directory Cache 1
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Cache coherence

* Race example

Cache 0 Directory Cache 1

If the arriving message is from a younger

transaction:

* Either defers processing it

* Or handles it immediately and
transitions to a race state (e.g., SMAI)



Memory (consistency) model

* Concerns reads/writes to multiple memory
locations

* Interacts with many parts and optimizations of
the system

— Probably more than what you would have imagined...

* Coherence is an useful (but not necessary)
building block

— Recall: Coherence guarantees writes are visible in
some global order.



Sequential consistency

Definition
— “The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the

operations of each individual processor appear in the order specified
by the program”

— Arbitrary order-preserving interleaving of memory references of
sequential programs

Implementation
— In-order instruction execution + atomic loads and stores

Advantage: easy to understand

Disadvantage: limits performance

— Uniprocessor optimizations often violate them!

e E.g., committed store buffers, non-blocking caches, speculative execution,
memory address speculation, ...



Total Store Order (TSO)

* Allows loads to go ahead of stores waiting in
the store buffer

* Implementation

— Sequential consistency implementation + per-core
FIFO store buffer with store-load bypassing



Relaxed memory consistency

* Allows more reordering
— Store-load
— Store-store
— Load-load
— Load-store

* Re-ordering can be disabled by fences/barriers



Tips on consistency problems

e Keep definitions in mind

* Think systematically

— E.g., For questions asking all allowed execution
results: search invariants to minimize brute-force
search

— E.g., For questions asking to add minimal
barriers/fences: find the precise reordering that
violates the target model



Wish you all the best!



