Update-Based Cache Coherence

In the class, we covered invalidation-based cache coherence protocols for write-back caches. Another
class of protocols is update-based protocols. In an update-based protocol, whenever a cache write
happens, the writer’s cache sends an update to other private caches with the new data. All the private
caches that contain the updated address replace their old contents with the new data. Such a design
ensures that all the cache blocks in private caches contain the latest data. The main memory is only
updated upon the eviction of a cache block.

This handout describes a snoopy, update-based protocol for write-back caches over a synchronous
bus. To simplify the protocol, transient states are not considered.

The protocol has the following 3 states:

Invalid (I): The block is not present in the cache.

Exclusive (E): The block has a single sharer and the sharer has both read and write permissions.
Shared (S): The block may have two or more sharers and all the sharers have both read and write
permissions.

This protocol can be triggered by 3 processor events:
PrRd: A core issues a read request to a cache block.
PrWr: A core issues a write request to a cache block.
Eviction: A cache block is evicted due to cache conflicts.

The protocol has 4 bus requests:

BusRdReq and BusWrReq: Both bus requests are used to fetch the latest data from either the
memory or another private cache. The requests will prioritize fetching data from private caches over
the memory, and the corresponding response will indicate where the data comes from (see below).
BusRdReq is issued upon a read miss, and BusWrReq is issued upon a write miss.

BusUpdReq: A bus request that is used to forward the update of a cache block to the other sharers in
the cache if they exist. BusUpdReq will not update the data in the memory.

BusWBReq: A bus request to write back the data from the private cache to memory. In this baseline
protocol, anytime a cache block is evicted and the block is not Invalid (either in Shared or Exclusive
state), the data needs to be written back to memory by issuing a BusWBReq.

The protocol has 3 bus responses:

BusCacheRdResp and BusCacheWrResp: The two responses return the latest data and indicate that
the data comes from another cache. BusCacheRdResp is the response for a BusRdReq, and
BusCacheWrResp is the response for a BusWrReq.

BusMemResp: This bus response returns the latest data from memory. This response can be used to
reply for both BusRdReq and BusWrReq.

Page 1 of 3



The transition diagram is shown below. In this transition diagram, solid lines represent transitions
that are triggered by processor events, and dashed lines represent transitions that are triggered by bus

requests or responses.

BusRdReq / BusCacheRdResp
BusWrReq / BusCacheWrResp
BusUpdateReq / —

BusCacheRdResp /
BusCacheWrResp / BusUpdReq

PrRd / —
Prwr / BusUpdateReq

BusRdEReq / BusCacheRdResp
~~ _ BusWrReq / BusCacheWrResp

LY

.
"

PrRd /

Eviction / .
Prwr /

BusWBReq

+“ BusMem Resp /

PrRd / BusRdReq
Prwr / BusWrReq

Page 2 of 3



Memory Barriers

Consider a system which uses Weak Ordering(WO), meaning that a read or a write may complete
before a read or a write that is earlier in program order if they are to different addresses and there are
no data dependencies. The WO system introduces four fine-grained memory fence instructions to
allow programmers to explicitly express which reorderings of reads and writes should be prevented.

Below is the description of these instructions:

e FENCE,, guarantees that all read operations initiated before the FENCEy; will be seen
before any read operation initiated after it.

e FENCE,, guarantees that all read operations initiated before the FENCEgy will be seen
before any write operation initiated after it.

e FENCEy; guarantees that all write operations initiated before the FENCEy will be seen
before any read operation initiated after it.

e FENCEy, guarantees that all write operations initiated before the FENCEyy, will be seen
before any write operation initiated after it.

Page 3 of 3



