Last updated:
10/17/2022

Problem M10.1: Multithreading

This problem evaluates the effectiveness of multithreading using a simple database benchmark.
The benchmark searches for an entry in a linked list built from the following structure, which
contains a key, a pointer to the next node in the linked list, and a pointer to the data entry.

struct node { int key;
struct node
*next; struct
data *ptr;

The following MIPS code shows the core of the benchmark, which traverses the linked list and
finds an entry with a particular key. Assume MIPS has no delay slots.

; Rl: a pointer to the linked list
; R2: the key to find

4

loop: LW R3, O0(R1) ; load a key
LW R4, 4(R1) ; load the next pointer
SEQ R3, R3, R2 ; set R3 if R3 == R2
BNEZ R3, End ; found the entry
ADD R1, RO, R4
BNEZ R1, Loop ; check the next node
End:

; Rl contains a pointer to the matching entry or zero
; 1f not found

We run this benchmark on a single-issue in-order processor. The processor can fetch and issue
(dispatch) one instruction per cycle. If an instruction cannot be issued due to a data dependency,
the processor stalls. Integer instructions take one cycle to execute and the result can be used in the
next cycle. For example, if SEQ is executed in cycle 1, BNEZ can be executed in cycle 2. We also
assume that the processor has a perfect branch predictor with no penalty for both taken and not-
taken branches.

Problem 10.1.A

Assume that our system does not have a cache. Each memory operation directly accesses main
memory and takes 100 CPU cycles. The load/store unit is fully pipelined, and non-blocking. After
the processor issues a memory operation, it can continue executing instructions until it reaches an
instruction that is dependent on an outstanding memory operation. How many cycles does it take
to execute one iteration of the loop in steady state?



Last updated:
10/17/2022

Problem M10.1.B

Now we add zero-overhead multithreading to our pipeline. A processor executes multiple threads,
each of which performs an independent search. Hardware mechanisms schedule a thread to execute
each cycle.

In our first implementation, the processor switches to a different thread every cycle using fixed
round robin scheduling (similar to CDC 6600 PPUs). Each of the N threads executes one
instruction every N cycles. What is the minimum number of threads that we need to fully utilize
the processor, i.e., execute one instruction per cycle?

Problem M10.1.C

How does multithreading affect throughput (number of keys the processor can find within a given
time) and latency (time the processor takes to find an entry with a specific key)? Assume the
processor switches to a different thread every cycle and is fully utilized. Check the correct boxes.

Throughput Latency

Better

Same

Worse

Problem M10.1.D

We change the processor to only switch to a different thread when an instruction cannot execute
due to data dependency. What is the minimum number of threads to fully utilize the processor now?
Note that the processor issues instructions in-order in each thread.



Last updated:
10/17/2022
Problem M10.2: Multithreaded architectures

The program we will use is listed below. (In all questions, you should assume that arrays A, B and
C do not overlap in memory.)

C code

for (i=0; i<328; i++) {
A[i] A[i] * B[i];
C[i] C[i] + A[i];

}

In this problem, we will analyze the performance of our program on a multi-threaded architecture.
Our machine is a single-issue, in-order processor. It switches to a different thread every cycle using
fixed round robin scheduling. Each of the N threads executes one instruction every N cycles. We
allocate the code to the threads such that every thread executes every Nth iteration of the original

C code (each thread increments j by N).

Integer instructions take 1 cycle to execute, floating point instructions take 4 cycles and memory
instructions take 3 cycles. All execution units are fully pipelined. If an instruction cannot issue
because its data is not yet available, it inserts a bubble into the pipeline, and retries after N cycles.
Below is our program in assembly code for this machine.

Assembly code

loop: 1d f1, 0(rl) ; f1 = A[i]
1d £2, 0(r2) ; £2 = B[i]
fmul £4, £2, f1 ; £4 = f1 * £2

st f4, O0(rl) ,; A[i] = f4

1d £3, 0(r3) ; £3 = C[1i]
fadd £5, f4, £3 ; £f5 = £f4 + £3
st £5, 0(xr3) ,; C[i] = £5
add rl1, rl, 4

add r2, r2, 4

add «r3, r3, 4

add r4, r4, -1

bnez r4, loop ; loop



Last updated:
10/17/2022
Problem M10.2.A

What is the minimum number of threads this machine needs to remain fully utilized issuing an
instruction every cycle for our program? Explain.

Problem M10.2.B

What will be the peak performance in flops/cycle for this program? Explain briefly.

Problem M10.2.C

Can we reach peak performance running this program using fewer threads by rearranging the
instructions? Explain briefly.



Last updated:
10/17/2022

Problem M10.3: Multithreading

Cyclic redundancy check (CRC) is a popular error-detection code for systems with reliability
concerns. The code below computes the CRC value of an n-element array. This code divides the
input into fixed-size chunks (e.g., each 32-bit array element) and applies computation to them
sequentially. Changes to the input are likely to affect the value of the resulting CRC output res,
so the CRC value can be used to detect whether the input inadvertently changed due to an error.

int res = 0
for (int i 0; 1 < n; 1i++)
res = CRC(res, alil]);

I~

CRC codes can be implemented efficiently in hardware. In fact, several ISAs (e.g., Intel SSE4
and ARM) support CRC instructions. Suppose we include this CRC instruction in our MIPS ISA:

CRC rd, rs, rt

Consider the following instruction sequence.

loop: LW r2, o(rl)
CRC r3, r2, r3
ADDI ri1, ri, 4
BNE rl1, r4, loop

Consider an in-order issue, 4-wide superscalar processor. At each cycle, the processor issues up
to 4 instructions that are in order. The processor has sufficient functional units so that any set of
instructions with no data dependencies can be issued and executed in the same cycle (including
any combination of arithmetic, memory, and control flow instructions). Assume the processor has
perfect branch prediction and unlimited instruction fetch bandwidth.

Memory operations take 3 cycles (i.e., if LW starts execution at cycle N, then instructions that
depend on the result of the LW can start execution only at or after cycle N+3). The CRC
instruction takes 5 cycles. All other operations take 1 cycle.

In this part, all the questions are about the steady state of the loop.



Last updated:
10/17/2022
Problem M10.3.A

Suppose the machine runs the program shown on the previous page.

Show the steady-state schedule of this processor. To do this, consider two consecutive loop
iterations, and list which instructions are issued on each cycle (i.e., write the instructions issued in
cycle 0, then in cycle 1, etc., until you cover two iterations).

In the steady state, what is the IPC (instructions per cycle) of the processor? Hint: The schedule

of the first iteration may not be in the steady state. You might need to experiment with more
iterations.

Problem M10.3.B

Would out-of-order issue improve the performance of the code on this machine?



Last updated:
10/17/2022

Problem M10.3.C

Consider a processor with simultaneous multithreading. At each cycle, the processor issues as
many instructions as it can from one thread, and then considers instructions from the next thread
in a round-robin fashion. This process is repeated until the issue width is saturated (i.e., 4
instructions per cycle). Assume that all threads run the same program but access different data.

What is the minimum number of threads required to ensure maximum throughput (IPC) in the
steady state?

Hint: You could use the steady-state schedule in previous questions as guidance.

Problem M10.3.D

Consider the processor with simultaneous multithreading Problem M10.3.C. If the processor
supports 8 threads, what is the steady-state IPC of the processor, when all 8 threads execute the
same program but access different data?



Last updated:
10/17/2022

Problem M10.4: Multithreading (Spring 2015 Quiz 2, Part D)

Consider the following instruction sequence.

addi
loop: 1w
1w
mul
SW
addi
addi
addi
bnez

r3,
f1,
£f2,
£3,
£3,
rl,
r2,
r3,
r3,

r0, 256
rl, #0
r2, #0
f1, f2
r2, #0
rl, #4
r2, #4
r3, #-1
loop

Assume that memory operations take 4 cycles (i.e., if instruction 11 starts execution at cycle N,
then instructions that depend on the result of 11 can only start execution at or after cycle N+4);
multiply instructions take 6 cycles; and all other operations take 1 cycle. Assume the multiplier
and memory are pipelined (i.e., they can start a new request every cycle). Also assume perfect

branch prediction.

Problem M10.4.A

Suppose the processor performs fine-grained multithreading with fixed round-robin switching: the
processor switches to the next thread every cycle, and if the instruction of the next thread is not
ready, it inserts a bubble into the pipeline. What is the minimum number of threads required to
fully utilize the processor every cycle while running this code?



Last updated:

10/17/2022
Problem M10.4.B

Suppose the processor performs coarse-grained multithreading, i.e. the processor only switches to
another thread when there is a L2 cache miss. Will the following three metrics increase or decrease,
compared to fixed round-robin switching? Use a couple of sentences to answer the following
questions.

1) Compared to fixed round-robin switching, will the number of threads needed for the highest
achievable utilization increase or decrease? Why?

2) Compared to fixed round-robin switching, will the highest achievable pipeline utilization
increase or decrease? Why?

3) Compared to fixed round-robin switching, will cache hit rate increase or decrease? Why?



