
Last updated:

10/17/2022

Problem M10.1: Multithreading

Problem 10.1.A

Since there is no penalty for conditional branches, instructions take one cycle to execute unless

there is a dependency problem. The following table summarizes the execution time for each

instruction. From the table, the loop takes 104 cycles to execute.

Instruction Start Cycle End Cycle

LW R3, 0(R1) 1 100

LW R4, 4(R1) 2 101

SEQ R3, R3, R2 101 101

BNEZ R3, End 102 102

ADD R1, R0, R4 103 103

BNEZ R1, Loop 104 104

Problem M10.1.B

If we have N threads and the first load executes in cycle 1, SEQ, which depends on the load,

executes in cycle 2N + 1. To fully utilize the processor, we need to hide the 100-cycle memory

latency, 2N + 1 101. The minimum number of thread needed is 50.

Problem M10.1.C

 Throughput Latency

Better ✔

Same

Worse ✔

Problem M10.1.D

In steady state, each thread can execute 6 instructions (SEQ, BNEZ, ADD, BNEZ, LW, LW).

Therefore, to hide 99 cycles between the second LW and SEQ, a processor needs ⌈99/6⌉+1 = 18

threads.

Last updated:

10/17/2022

Problem M10.2: Multithreaded architectures

Problem M10.2.A

4, since the largest latency for any instruction is 4.

Problem M10.2.B

2/12 = 0.17 flops/cycle, on average we complete a loop every 12 cycles

Problem M10.2.C

Yes, we can hide the latency of the floating point instructions by moving the add instructions in

between floating point and store instructions – we’d only need 3 threads. Moving the third load up

to follow the second load would further reduce thread requirement to only 2.

Last updated:

10/17/2022

Problem M10.3: Multithreading

Problem M10.3.A

This is dictated by the CRC latency. Here is what issues look like:

Cycle 0: CRC, ADDI // source r3 will be ready in cycle 5

Cycle 1: BNE, LW // source r2 will be ready in cycle 4

Cycle 2: -

Cycle 3: -

Cycle 4: -

Cycle 5: CRC, ADDI

Cycle 6: BNE, LW

IPC = 4 instructions / 5 cycles = 0.8 instructions/cycle

Problem M10.3.B

No. The critical path is dictated by CRC latency.

Last updated:

10/17/2022

Problem M10.3.C

5 threads. (Instructions from thread 1 are highlighted)

Cycle 0: BNE0, LW0, CRC1, ADDI1

Cycle 1: BNE1, LW1, CRC2, ADDI2

Cycle 2: BNE2, LW2, CRC3, ADDI3

Cycle 3: BNE3, LW3, CRC4, ADDI4

Cycle 4: BNE4, LW4, CRC0, ADDI0

Cycle 5: BNE0, LW0, CRC1, ADDI1

Cycle 6: BNE1, LW1, CRC2, ADDI2

Cycle 7: BNE2, LW2, CRC3, ADDI3

Cycle 8: BNE3, LW3, CRC4, ADDI4

Cycle 9: BNE4, LW4, CRC0, ADDI0

Another way to think about the question:

Maximum IPC = 4 instructions/cycle

Current IPC = 0.8 instructions/cycle

So if IPC = 4 is reachable, then at least 4 / 0.8 = 5 threads are needed.

Problem M10.3.D

IPC = 4 instructions / cycle

Last updated:

10/17/2022

Problem M10.4: Multithreading (Spring 2015 Quiz 2, Part D)

Consider the following instruction sequence.

 addi r3, r0, 256
loop: lw f1, r1, #0
 lw f2, r2, #0
 mul f3, f1, f2
 sw f3, r2, #0
 addi r1, r1, #4
 addi r2, r2, #4
 addi r3, r3, #-1
 bnez r3, loop

Assume that memory operations take 4 cycles (i.e., if instruction I1 starts execution at cycle N,

then instructions that depend on the result of I1 can only start execution at or after cycle N+4);

multiply instructions take 6 cycles; and all other operations take 1 cycle. Assume the multiplier

and memory are pipelined (i.e., they can start a new request every cycle). Also assume perfect

branch prediction.

Problem M10.4.A

Suppose the processor performs fine-grained multithreading with fixed round-robin switching: the

processor switches to the next thread every cycle, and if the instruction of the next thread is not

ready, it inserts a bubble into the pipeline. What is the minimum number of threads required to

fully utilize the processor every cycle while running this code?

6 threads to cover the latency between mul and sw

4

Last updated:

10/17/2022

Problem M10.4.B

Suppose the processor performs coarse-grained multithreading, i.e. the processor only switches to

another thread when there is a L2 cache miss. Will the following three metrics increase or decrease,

compared to fixed round-robin switching? Use a couple of sentences to answer the following

questions.

1) Compared to fixed round-robin switching, will the number of threads needed for the highest

achievable utilization increase or decrease? Why?

It will decrease because the processor will switch less frequently and stall for instructions with

long latency (e.g. mul).

2) Compared to fixed round-robin switching, will the highest achievable pipeline utilization

increase or decrease? Why?

It will decrease because the processor will stall for instructions with long latency (e.g. mul) and

insert bubbles into pipeline.

3) Compared to fixed round-robin switching, will cache hit rate increase or decrease? Why?

It will increase since there will be less threads competing the cache capacity.

