Last updated:
10/17/2022

Problem M10.1: Multithreading

Problem 10.1.A

Since there is no penalty for conditional branches, instructions take one cycle to execute unless
there is a dependency problem. The following table summarizes the execution time for each
instruction. From the table, the loop takes 104 cycles to execute.

Instruction Start Cycle End Cycle
LW R3, 0 (R1) 1 100
LW R4, 4(R1) 2 101
SEQ R3, R3, R2 101 101
BNEZ R3, End 102 102
ADD R1, RO, R4 103 103
BNEZ R1, Loop 104 104

Problem M10.1.B

If we have N threads and the first load executes in cycle 1, sEQ, which depends on the load,
executes in cycle 2N + 1. To fully utilize the processor, we need to hide the 100-cycle memory
latency, 2N + 1 101. The minimum number of thread needed is 50.

Problem M10.1.C

Throughput Latency
Better v
Same
Worse v

Problem M10.1.D

In steady state, each thread can execute 6 instructions (SEQ, BNEZ, ADD, BNEZ, LW, LW).
Therefore, to hide 99 cycles between the second Lw and SEQ, a processor needs [99/6]+1 = 18
threads.



Last updated:
10/17/2022

Problem M10.2: Multithreaded architectures

Problem M10.2.A
4, since the largest latency for any instruction is 4.

Problem M10.2.B
2/12 = 0.17 flops/cycle, on average we complete a loop every 12 cycles

Problem M10.2.C

Yes, we can hide the latency of the floating point instructions by moving the add instructions in
between floating point and store instructions — we’d only need 3 threads. Moving the third load up
to follow the second load would further reduce thread requirement to only 2.




Last updated:
10/17/2022

Problem M10.3: Multithreading

Problem M10.3.A

This is dictated by the CRC latency. Here is what issues look like:

Cycle 0: CRC, ADDI I/ source r3 will be ready in cycle 5
Cycle 1: BNE, LW I/ source r2 will be ready in cycle 4
Cycle 2: -
Cycle 3: -
Cycle 4: -

Cycle 5: CRC, ADDI
Cycle 6: BNE, LW

IPC =4 instructions / 5 cycles = 0.8 instructions/cycle

Problem M10.3.B

No. The critical path is dictated by CRC latency.



Last updated:
10/17/2022

Problem M10.3.C

5 threads. (Instructions from thread 1 are highlighted)
Cycle 0: BNEO, LWO0, CRC1, ADDI1
Cycle 1: BNE1, LW1, CRC2, ADDI2
Cycle 2: BNE2, LW2, CRC3, ADDI3
Cycle 3: BNE3, LW3, CRC4, ADDI4
Cycle 4: BNE4, LW4, CRCO, ADDIO
Cycle 5: BNEO, LWO0, CRC1, ADDI1
Cycle 6: BNE1, LW1, CRC2, ADDI2
Cycle 7: BNE2, LW2, CRC3, ADDI3
Cycle 8: BNE3, LW3, CRC4, ADDI4
Cycle 9: BNE4, LW4, CRCO, ADDIO

Another way to think about the question:

Maximum IPC = 4 instructions/cycle

Current IPC = 0.8 instructions/cycle

So if IPC =4 is reachable, then at least 4 / 0.8 = 5 threads are needed.

Problem M10.3.D

IPC = 4 instructions / cycle



Last updated:
10/17/2022

Problem M10.4: Multithreading (Spring 2015 Quiz 2, Part D)

Consider the following instruction sequence.

addi
loop: 1w
1w
mul
SW
addi
addi
addi
bnez

r3,
f1,
£2,
£3,
f£3,
rl,
r2,
r3,
r3,

rO0, 256
rl, #0
r2, #0
£f1, £2
r2, #0
rl, #4
r2, #4
r3, #-1
loop

Assume that memory operations take 4 cycles (i.e., if instruction 11 starts execution at cycle N,
then instructions that depend on the result of 11 can only start execution at or after cycle N+4);
multiply instructions take 6 cycles; and all other operations take 1 cycle. Assume the multiplier
and memory are pipelined (i.e., they can start a new request every cycle). Also assume perfect

branch prediction.

Problem M10.4.A

Suppose the processor performs fine-grained multithreading with fixed round-robin switching: the
processor switches to the next thread every cycle, and if the instruction of the next thread is not
ready, it inserts a bubble into the pipeline. What is the minimum number of threads required to
fully utilize the processor every cycle while running this code?

6 threads to cover the latency between mul and sw



Last updated:
10/17/2022

Problem M10.4.B

Suppose the processor performs coarse-grained multithreading, i.e. the processor only switches to
another thread when there is a L2 cache miss. Will the following three metrics increase or decrease,
compared to fixed round-robin switching? Use a couple of sentences to answer the following
questions.

1) Compared to fixed round-robin switching, will the number of threads needed for the highest
achievable utilization increase or decrease? Why?

It will decrease because the processor will switch less frequently and stall for instructions with
long latency (e.g. mul).

2) Compared to fixed round-robin switching, will the highest achievable pipeline utilization
increase or decrease? Why?

It will decrease because the processor will stall for instructions with long latency (e.g. mul) and
insert bubbles into pipeline.

3) Compared to fixed round-robin switching, will cache hit rate increase or decrease? Why?

It will increase since there will be less threads competing the cache capacity.



