
Last updated:

10/26/2022

Problem M11.1: Synchronization Primitives

One of the common instruction sequences used for synchronizing several processors are the

LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair).

The LdR instruction reads a value from the specified address and sets a local reservation for the

address. The StC attempts to write to the specified address provided the local reservation for the

address is still held. If the reservation has been cleared the StC fails and informs the CPU.

Problem M11.1.A

Describe under what events the local reservation for an address is cleared.

Problem M11.1.B

Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e.,

unaware of the addition of these new instructions? Explain

Problem M11.1.C

Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-

modify instructions such as the TEST&SET instruction.

Problem M11.1.D

LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these

instructions make sense in our directory-based system in Handout #13? Do they still offer an

advantage over atomic read-test-modify instructions in a directory-based system? Please explain.

Last updated:

10/26/2022

Problem M11.2: Implementing Directories

Ben Bitdiddle is implementing a directory-based cache coherence invalidate protocol for a 64-

processor system. He first builds a smaller prototype with only 4 processors to test out the

cache coherence protocol described in Handout #13. To implement the list of sharers, S, kept

by home, he maintains a bit vector per cache block to keep track of all the sharers. The bit

vector has one bit corresponding to each processor in the system. The bit is set to one if the

processor is caching a shared copy of the block, and zero if the processor does not have a copy of

the block. For example, if Processors 0 and 3 are caching a shared copy of some data, the

corresponding bit vector would be 1001.

Problem M11.2.A

The bit vector worked well for the 4-processor prototype, but when building the actual 64-

processor system, Ben discovered that he did not have enough hardware resources. Assume

each cache block is 32 bytes. What is the overhead of maintaining the sharing bit vector for a

4-processor system, as a fraction of data storage bits? What is the overhead for a 64-

processor system, as a fraction of data storage bits?

Overhead for a 4-processor system: ________________________

Overhead for a 64-processor system: _______________________

Last updated:

10/26/2022

Problem M11.2.B

Since Ben does not have the resources to keep track of all potential sharers in the 64-processor

system, he decides to limit S to keep track of only 1 processor using its 6-bit ID as shown in

Figure M11.2-A (single-sharer scheme). When there is a load [C2P_Req(a) S] request for

a shared cache block, Ben invalidates the existing sharer to make room for the new sharer (home

sends a invalidate request [P2C_Req(a) I] to the existing sharer, the existing sharer sends

an invalidate response [C2P_Rep(a) I] to home, home replaces the exiting sharer's ID with

the new sharer's ID and sends the load response [P2C_Rep(a) I S] to the new sharer).

6

Sharer ID

Figure M11.2-A

Consider a 64-processor system. To determine the efficiency of the bit-vector scheme and

single-sharer scheme, fill in the number of invalidate-requests that are generated by the

protocols for each step in the following two sequences of events. Assume cache block B is

uncached initially for both sequences.

Sequence 1 bit-vector scheme

of invalidate-requests

single-sharer scheme

of invalidate-requests

Processor #0 reads B 0 0

Processor #1 reads B

Processor #0 reads B

Sequence 2 bit-vector scheme

of invalidate-requests

single-sharer scheme

of invalidate-requests

Processor #0 reads B 0 0

Processor #1 reads B

Processor #2 writes B

Last updated:

10/26/2022

Page 4 of 29

Problem M11.2.C

Ben thinks that he can improve his original scheme by adding an extra “global bit” to S as

shown in Figure M11.2-B (global-bit scheme). The global bit is set when there is more than 1

processor sharing the data, and zero otherwise.

1 6

0 Sharer ID

 global

 Figure M11.2-B

When the global bit is set, home stops keeping track of a specific sharer and assumes that all

processors are potential sharers.

1 6

1 XXXXXX

 global
 Figure M11.2-C

Consider a 64-processor system. To determine the efficiency of the global-bit scheme, fill in the

number of invalidate-requests that are generated for each step in the following two sequences

of events. Assume cache block B is uncached initially for both sequences.

Sequence 1 global-bit scheme

of invalidate-requests

Processor #0 reads B 0

Processor #1 reads B

Processor #0 reads B

Sequence 2 global-bit scheme

of invalidate-requests

Processor #0 reads B 0

Processor #1 reads B

Processor #2 writes B

Last updated:

10/26/2022

Problem M11.3: Tracing the Directory-based Protocol

For the problem we will be using the following sequences of instructions. These are small

programs, each executed on a different processor, each with its own cache and register set. In the

following R is a register and X is a memory location. Each instruction has been named (e.g., B3)

to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C

A1: ST X, 1 B1: R := LD X C1: ST X, 6

A2: R := LD X B2: R := ADD R, 1 C2: R := LD X

A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R

A4: ST X, R B4: R:= LD X C4: ST X, R

 B5: R := ADD R, R

 B6: ST X, R

These questions relate to the directory-based protocol in Handout #13 (as well as Lecture 15).

Unless specified otherwise, assume all caches are initially empty and no voluntary responses are

sent (i.e. responses are sent only on receiving a request).

Problem M11.3.A

Suppose we execute Program A, followed by Program B, followed by Program C and all caches

are initially empty. Write down the sequence of messages that will be generated. We have

omitted ADD instructions because they cannot generate any messages. EO indicates the global

execution order.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 1
<M,A,Req,x,M>

<A,M,Rep,x,I,M,0>
B1 4 C1 8

A2 2 B3 5 C2 9

A4 3 B4 6 C4 10

 B6 7

How many messages are generated? ___________________

Last updated:

10/26/2022

Problem M11.3.B

Is there an execution sequence that will generate even fewer messages? Fill in the EO columns

to indicate the global execution order. Also, fill in the messages.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 B1 C1

A2 B3 C2

A4 B4 C4

 B6

How many messages are generated? ___________________

Problem M11.3.C

Can the number of messages in Problem M11.3.B be decreased by using voluntary responses?

Explain.

Last updated:

10/26/2022

Problem M11.3.D

What is the execution sequence that generates the most messages without any voluntary

responses? Fill in the global execution order (EO) and the messages generated. Partial credit

will be given for identifying a bad, but not necessarily the worst sequence.

Processor A Processor B Processor C

Ins EO Messages Ins EO Messages Ins EO Messages

A1 B1 C1

A2 B3 C2

A4 B4 C4

 B6

How many messages are generated? ___________________

Last updated:

10/26/2022

Problem M11.4: Snoopy Cache Coherent Shared Memory

In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout

#14.

The following questions are to help you check your understanding of the coherence protocol.

• Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the

actions that must be taken by memory and by the different caches involved.

• Explain why WR is not snooped on the bus.

• Explain the I/O coherence problem that CWI helps avoid.

Problem M11.4.A Where in the Memory System is the Current Value

In Table M11.4-1, M11.4-2, and M11.4-3, column 1 indicates the initial state of a certain address

X in a cache. Column 2 indicates whether address X is currently cached in any other cache. (The

“cached” information is known to the cache controller only immediately following a bus

transaction. Thus, the action taken by the cache controller must be independent of this signal, but

state transition could depend on this knowledge.) Column 3 enumerates all the available

operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI,

CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are

impossible; you should mark them as such. (See the first table for examples). In columns 6, 7,

and 8 (corresponding to this cache, other caches and memory, respectively), check all possible

locations where up-to-date copies of this data block could exist after the operation in

column 3 has taken place and ignore column 4 and 5 for now. Table M11.4-1 has been

completed for you. Make sure the answers in this table make sense to you.

Problem M11.4.B MBus Cache Block State Transition Table

In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5,

fill in the resulting state after the operation in column 3 has taken place. In column 4, list the

necessary MBus transactions that are issued by the cache as part of the transition. Remember, the

protocol should be optimized such that data is supplied using CCI whenever possible, and only

the cache that owns a line should issue CCI.

Last updated:

10/26/2022

Problem M11.4.C Adding atomic memory operations to MBus

We have discussed the importance of atomic memory operations for processor synchronization.

In this problem you will be looking at adding support for an atomic fetch-and-increment to the

MBus protocol.

Imagine a dual processor machine with CPUs A and B. Explain the difficulty of CPU A

performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s

cache. You may wish to illustrate the problem with a short sequence of events at processor A

and B.

Fill in the rest of the table below as before, indicating state, next state, where the block in

question may reside, and the CPU A and MBus transactions that would need to occur atomically

to implement a fetch-and-increment on processor A.

State other

cached

ops actions by this

cache

next

state

this

cache

other

caches

mem

Invalid yes read

 write

Last updated:

10/26/2022

Page 10 of 29

initial state other

cached

ops actions by this

cache

final

state

this

cache

other

caches

mem

Invalid no none none I 

 CPU read CR CE  

 CPU write CRI OE 

 replace none Impossible

 CR none I  

 CRI none I 

 CI none Impossible

 WR none Impossible

 CWI none I 

Invalid yes none I  

 CPU read CS   

 CPU write OE 

 replace same Impossible

 CR as I  

 CRI above I 

 CI I 

 WR I  

 CWI I 

initial state other

cached

ops actions by this

cache

final

state

this

cache

other

caches

mem

cleanExclusive no none none CE

 CPU read

 CPU write

 replace

 CR CS

 CRI

 CI

 WR

 CWI

Table M11.4-1

Last updated:

10/26/2022

Page 11 of 29

initial state other

cached

ops actions by this

cache

final

state

this

cache

other

caches

mem

ownedExclusive no none none OE

 CPU read

 CPU write

 replace

 CR OS

 CRI

 CI

 WR

 CWI

initial state other

cached

ops actions by this

cache

final

state

this

cache

other

caches

mem

cleanShared no none none CS

 CPU read

 CPU write

 replace

 CR

 CRI

 CI

 WR

 CWI

cleanShared yes none

 CPU read

 CPU write

 replace same

 CR as

 CRI above

 CI

 WR

 CWI

Table M11.4-2

Last updated:

10/26/2022

Page 12 of 29

initial state other

cached

ops actions by this

cache

final

state

this

cache

other

caches

mem

ownedShared no none none OS

 CPU read

 CPU write

 replace

 CR

 CRI

 CI

 WR

 CWI

ownedShared yes none

 CPU read

 CPU write

 replace same

 CR as

 CRI above

 CI

 WR

 CWI

Table M11.4-3

Last updated:

10/26/2022

Page 13 of 29

Problem M11.5: Snoopy Cache Coherent Shared Memory

This problem improves the snoopy cache coherence protocol presented in Handout #14. As a

review of that protocol:

When multiple shared copies of a modified data block exist, one of the caches owns the current copy of the data

block instead of the memory (the owner has the data block in the OS state). When another cache tries to

retrieve the data block from memory, the owner uses cache to cache intervention (CCI) to supply the data

block. CCI provides a faster response relative to memory and reduces the memory bandwidth demands.

However, when multiple shared copies of a clean data block exist, there is no owner and CCI is not used when

another cache tries to retrieve the data block from memory.

To enable the use of CCI when multiple shared copies of a clean data block exist, we introduce a

new cache data block state: Clean owned shared (COS). This state can only be entered from

the clean exclusive (CE) state. The state transition from CE to COS is summarized as follows:

initial state other

cached

ops actions by this

cache

final

state

cleanExclusive (CE) no CR CCI COS

There is no change in cache bus transactions but a slight modification of cache data block states.

Here is a summary of the possible cache data block states (differences from problem set

highlighted in bold):

• Invalid (I): Block is not present in the cache.

• Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.

This cache is responsible for supplying this data instead of memory when other caches

request copies of this data.

• Owned exclusive (OE): The cached data is different from memory, and no other cache has it.

This cache is responsible for supplying this data instead of memory when other caches

request copies of this data.

• Clean shared (CS): The data has not been modified by the corresponding CPU since cached.

Multiple CS copies and at most one OS copy of the same data could exist.

• Owned shared (OS): The data is different from memory. Other CS copies of the same data

could exist. This cache is responsible for supplying this data instead of memory when other

caches request copies of this data. (Note, this state can only be entered from the OE state.)

• Clean owned shared (COS): The cached data is consistent with memory. Other CS

copies of the same data could exist. This cache is responsible for supplying this data

instead of memory when other caches request copies of this data. (Note, this state can

only be entered from the CE state.)

Last updated:

10/26/2022

Page 14 of 29

Problem M11.5.A

Fill out the state transition table for the new COS state:

initial state other

cached

ops actions by this

cache

final

state

COS yes none none COS

 CPU read

 CPU write

 replace

 CR

 CRI

 CI

 WR

 CWI

Problem M11.5.B

The COS protocol is not ideal. Complete the following table to show an example sequence of

events in which multiple shared copies of a clean data block (block B) exist, but CCI is not used

when another cache (cache 4) tries to retrieve the data block from memory.

cache transaction

source

for data

state for data block B

cache 1 cache 2 cache 3 cache 4

0. initial state — I I I I

1. cache 1 reads data block B memory CE I I I

2. cache 2 reads data block B CCI COS CS I I

3. cache 3 reads data block B CCI COS CS CS I

4.

5.

Problem M11.5.C

As an alternative protocol, we could eliminate the CE state entirely, and transition directly from I

to COS when the CPU does a read and the data block is not in any other cache. This modified

protocol would provide the same CCI benefits as the original COS protocol, but its performance

would be worse. Explain the advantage of having the CE state. You should not need more

than one sentence.

Last updated:

10/26/2022

Page 15 of 29

Problem M11.6: Snoopy Caches

This part explores multi-level caches in the context of the bus-based snoopy protocol discussed

in Lecture 14 (2017). Real systems usually have at least two levels of cache, smaller, faster L1

cache near the CPU, and the larger but slower L2. The two caches are usually inclusive, that is,

any address in L1 is required to be present in L2. L2 is able to answer every snooper inquiry

immediately but usually operates at 1/2 to 1/4th the speed of CPU-L1 interface. For performance

reasons it is important that snooper steals as little bandwidth as possible from L1, and does not

increase the latency of L2 responses.

Problem M11.6.A

Consider a situation when the L2 cache has a cache line marked Sh, and an ExReq comes on the

bus for this cache line. The snooper asks both L1 and L2 caches to invalidate their copies but

responds OK to the request, even before the invalidations are complete. Suppose the CPU ends

up reading this value in L1 before it is truly discarded. What must the cache and snooper system

do to ensure that sequential consistency is not violated here?

Hint: Consider how much processing can be performed safely on the following sequences after

an invalidation request for x has been received

Ld x; Ld y; Ld x

Ld x; St y; Ld x

Problem M11.6.B

Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this

cache line. What should the snooper do in this case, and why?

Problem M11.6.C

When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue

waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another

processor, why is it important to first write back the already modified cache line? Does your

answer change if cache lines are restricted to be one word? Explain.

Last updated:

10/26/2022

Page 16 of 29

Problem M11.7: Directory-based Protocol

Problem M11.7.A

The following questions deal with the directory-based protocol discussed in class. Assume XY

routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally,

towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages

with the same source and destination sites are always received in the same order as that in which

they were sent. For this question, assume that the cache coherence protocol is free from

deadlock, livelock and starvation.

Assume the node 6 serves as the home directory, where the states for memory blocks are stored.

Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is

caused by a request)

 Processor 1 Processor 4 Processor 5

I1.1: ST X, 10 I4.1: LD R1, X I5.1: ST X, 20

Suppose the global execution order is as follows:

I4.1 => I5.1 => I1.1

Assume that the next instruction will start its execution only when the previous instruction has

completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the

purple link in the above figure).

I4.1: ShReq (I4.1),

I5.1: ExReq/InvRep (I5.1),

I1.1: FlushRep (I1.1)

Last updated:

10/26/2022

Page 17 of 29

Problem M11.7.B

For the directory protocol, we assume the message passing to be FIFO, meaning protocol

messages with the same source and destination are always received in the same order as that in

which they were sent. Now suppose messages can be delivered out-of-order for the same source

and destination pairs. Describe one scenario that the cache coherence protocol will break due to

this out-of-order delivery.

1. Core A: ShReq => home -> A: ShRep (not yet reached)

2. Core B: ExReq => home -> A: InvReq

If InvReq arrives earlier than ShRep, the InvReq will be ignored, and the core A will not send

any InvRep to home. Deadlock.

Problem M11.7.C

Under the 6823 directory-based protocol, a cache will receive a writeback request from the

directory <M2C_Req, a, S> for address “a” when it is in state M and another cache wants a

shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how

this scenario can occur using the messages passed between the cache and the memory, and the

state transitions.

Cache A in C-exclusive, does voluntary WbRep and goes to C-shared. Now Cache B in C-

nothing does a ShReq, Mem which hasn’t received WbRep yet, sends WbReq when Cache A is

in C-shared

Last updated:

10/26/2022

Page 18 of 29

Problem M11.8: Cache Coherence (Spring 2020 Quiz 2, Part B)

Ben Bitdiddle wants to study design tradeoffs in a directory-based MSI coherence protocol. Ben

starts by considering the directory-based MSI protocol presented in lecture. The protocol is

described in the quiz handout and summarized in this cache-side state transition diagram:

In this protocol, evictions of a cache line in the S state require sending a WBReq (without data)

to notify the directory, so the directory can remove the cache from the sharer set.

Ben thinks that he can reduce the number of messages sent on the network during cache

evictions. Ben wants to silently drop cache lines when evicting cache lines in the S state,

sending no message on the network. This means that a cache line can move from S to I without

informing the directory.

Problem M11.8.A

Consider a machine with two cores, where each core has a private cache that uses Ben’s proposal

for silent drops. Suppose a cache line A is in S state and it is in Core 0’s cache. Core 0’s cache

evicts line A, silently dropping it. The directory still has Core 0 in the sharer set for cache line A.

(a) Assume that after the silent drop by Core 0’s cache, Core 0 performs a read of the evicted

cache line A. To reobtain the cache line, Core 0’s cache sends a ShReq to the directory.

Assume there have been no writes to cache line A. What network message, if any, should the

directory send to respond to the ShReq to make the protocol work?

Last updated:

10/26/2022

Page 19 of 29

(b) Assume that after the silent drop by Core 0’s cache, Core 1 performs a write to cache line A.

Core 1’s cache sends an ExReq to the directory. Since Core 0 is in the sharer set, the

directory sends an InvReq to Core 0. What network message, if any, should Core 0’s cache

send when receiving the InvReq while the requested cache line is in the I state?

Problem M11.8.B

Consider the three-core system below. Each core has a private cache that can only hold a single

cache line, and the caches start out empty. Each core runs a thread that performs four reads,

alternating between reading two addresses. Each thread accesses different addresses on different

cache lines. (Core 1’s thread reads addresses A and B, Core 2’s thread reads C and D, etc.) Due

to evictions, all 12 accesses will be cache misses. Assume the directory has unlimited capacity.

(a) How many writeback requests are sent in the original MSI protocol from lecture?

(c) How many writeback requests are sent with Ben’s proposal for silent drops?

Last updated:

10/26/2022

Page 20 of 29

Problem M11.8.C

Consider a different workload where the threads access shared data, as shown below. The

number in parenthesis indicates the global order of the accesses (i.e. Core 1’s LD A happens

before LD B, which happens before Core 2’s LD A, etc.). Each access completes before the next

one begins. Again, assume all caches start empty and each cache can only hold a single line at a

time.

(a) How many WBReq and InvReq messages are sent in the original MSI protocol from lecture?

Count an invalidation of multiple caches as multiple requests. Do not count response

messages.

(b) How many writeback requests and invalidation requests are sent with Ben’s proposal for

silent drops?

Last updated:

10/26/2022

Page 21 of 29

Problem M11.8.D

So far, we assumed each coherence transaction completes before the next transaction begins.

Alyssa P. Hacker points out that Ben’s silent drops make it harder to solve races when there are

concurrent coherence requests. To see this, we will consider two scenarios. In each scenario,

Core 0 silently drops a line from its private cache that it later needs to read, while Core 1

attempts to write to the same cache line. In each scenario, Core 0 receives an InvReq, and you

must pick one of the three following answers:

A: Acknowledge the InvReq by sending an InvResp, remaining in the I→S

transient state to wait for a later ShResp.

B: Buffer or NACK the InvReq, waiting for a ShResp to first serve its read before

performing an invalidation.

C: Performing either of A or B will result in correct behavior.

(a) In this scenario, the directory receives Cache 1’s ExReq before Cache 0’s ShReq. While

Cache 0 is waiting for a ShResp, it receives a InvReq from the directory.

To maintain coherence, what action should Cache 0 take in response to the InvReq while in

the I→S transient state?

Last updated:

10/26/2022

Page 22 of 29

(b) In this scenario, the directory receives Cache 0’s ShReq before Cache 1’s ExReq. The

directory sends a ShResp to Core 0 followed by a InvReq. However, the ShResp is traveling

slowly in the network, and Cache 0 receives the InvReq before the ShResp.

To maintain coherence, what action should Cache 0 take in response to the InvReq while in

the I→S transient state?

Last updated:

10/26/2022

Page 23 of 29

Problem M11.9: Cache Coherence (Spring 2015 Quiz 3, Part B)

Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back caches.

Under the standard MSI protocol, when a cache observes a Bus Read Exclusive message

(BusRdX), it has to invalidate its own copy of the cache block. Ben instead proposes an

optimization, called delayed invalidation, to potentially reduce the number of read misses. The

optimization works as follows:

Delayed invalidation: When a cache observes a Bus Read Exclusive message (BusRdX) and it

has a copy of the block in the Shared (S) state, the cache delays the invalidation of the block until

before a cache miss happens. In other words, the cache will treat any subsequent requests from

its own processor as if the BusRdX had not happened, until one of those requests causes a miss.

At that point, all pending invalidations are performed before processing the miss.

Problem M11.9.A

Suppose processors P1 and P2 are have private, snoopy caches. Both caches are initially empty.

Consider the following sequence of accesses:

I0 P2: read A
I1 P1: write A
I2 P2: read A
I3 P1: write A

I4 P2: read A
I5 P2: read B
I6 P2: read A

Assume blocks A and B do not conflict in the cache. Compare Ben’s delayed invalidation

optimization with the standard MSI protocol by filling the states (on the next page) for each

cache block after each operation is done and calculate the number of misses in both cases.

Last updated:

10/26/2022

Page 24 of 29

Assume we use the standard MSI protocol. Fill in the following table.

Standard MSI Protocol

 Processor P1’s Cache Processor P2’s Cache

Initial State A: I B: I A: I B: I

After P2 reads A A: I B: I A: S B: I

After P1 writes A A: B: A: B:

After P2 reads A A: B: A: B:

After P1 writes A A: B: A: B:

After P2 reads A A: B: A: B:

After P2 reads B A: B: A: B:

After P2 reads A A: B: A: B:

How many misses occur in the two caches?

Assume we adopt Ben’s delayed invalidation optimization. Fill in the following table. If there is

a delayed invalidation, write it in the invalidation queue (the “Inv Queue” column). For example,

“Inv L” means there is a delayed invalidation on block L.

MSI Protocol with Delayed Invalidation

 Processor P1’s Cache Processor P2’s Cache

 MSI state Inv Queue MSI state Inv Queue

Initial State A: I B: I A: I B: I

After P2 reads A A: I B: I A: S B: I

After P1 writes A A: B: A: B:

After P2 reads A A: B: A: B:

After P1 writes A A: B: A: B:

After P2 reads A A: B: A: B:

After P2 reads B A: B: A: B:

After P2 reads A A: B: A: B:

How many misses occur in the two caches?

Last updated:

10/26/2022

Page 25 of 29

Problem M11.9.B

Does Ben’s delayed invalidation optimization violate cache coherence rules? Please explain your

answer in one or two sentences.

Problem M11.9.C

Suppose the original system guarantees sequential consistency. Does adding the delayed

invalidation optimization break sequential consistency? Please explain your answer in one or two

sentences. If your answer is yes, please provide a sequence of load/store operations that violates

sequential consistency.

Last updated:

10/26/2022

Page 26 of 29

Problem M11.9.D

Ben only applies delayed invalidation on cache blocks that are in the S state. When a cache

observes a Bus Read Exclusive message (BusRdX) and the associated cache block is in the

Modified (M) state, it sends out the data in response to a BusRdX message and changes the

cache state to Invalid (I).

Is it possible to delay invalidation when the cache block is in the Modified (M) state? If it is not,

please explain why. If it is possible, please describe how to make delayed invalidations work

when the block is in the M state. In other words, please describe the actions the cache needs to

take when the cache observes a BusRdX message, how to handle subsequent read and write

accesses if the invalidation is delayed, and when the invalidation needs to be processed.

Last updated:

10/26/2022

Page 27 of 29

Problem M11.10: Cache Coherence (Spring 2015 Quiz 3, Part C)

Please use Handout #15 to answer the questions in this part.

Problem M11.10.A

Ben designs an architecture that does not have the atomic compare-and-swap (CAS) instruction

but has load-reserve (LR) and store-conditional (SC) instructions.

Help Ben implement a Boolean compare-and-swap instruction BCAS old, new,

Imm(base) using load-reserve and store-conditional instructions:

LR rs, Imm(rt):

 <flag, addr>  <1, rt + Imm>

 rs  Memory[rt + Imm]

SC rs, Imm(rt):

 If <flag, addr> == <1, rt + Imm>:

 Memory[rt + Imm]  rs

 rs  1 # Succeed
 Else:

 rs  0 # Fail

BCAS is a simplified CAS instruction that only deals with values 0 and 1. You can use

temporary registers (tmp1, tmp2, tmp3…) and any algorithmic, logical, memory, and

branch instructions in the MIPS instruction set.

Last updated:

10/26/2022

Page 28 of 29

Problem M11.10.B

Suppose the hardware where the shared-memory queue from Handout #15 is executed has a

weak consistency model that relaxes all the orderings of reads and writes. Give an example of

memory orderings between the producer and consumer that would result in incorrect behavior.

Please fully explain your answer to get full credit.

Your memory ordering example should look something like:
P1, C2, P2, C4, P4, C5, C7, C9, C10

Last updated:

10/26/2022

Page 29 of 29

Problem M11.10.C

Please add the minimum number of memory fences (FENCEWR, FENCERW, FENCEWW, or

FENCERR) to the producer and consumer codes to ensure correctness with a weak consistency

model. Please explain your answer fully.

Code for producer to enqueue a message:

P1: LD R3, 0(R2) # get tail pointer

P2: ST R1, 0(R3) # write message to tail

P3: ADD R3, R3, 4 # update tail pointer

P4: ST R3, 0(R2)

Code for consumer to dequeue a message:

C1: SpinLock: MOV R6, R0 # set R6 to 0

C2: CAS R6, R5, 0(R4) # try to acquire lock

C3: BNEZ R6, SpinLock

C4: LD R7, 0(R2) # get head pointer

C5: Retry: LD R8, 0(R3) # get tail pointer

C6: BEQ R7, R8, Retry # is there a message?

C7: LD R1, 0(R7) # read message from queue

C8: ADD R7, R7, 4 # update head pointer

C9: ST R7, 0(R2)

C10: ST R0, 0(R4) # release lock

