Last updated:
10/26/2022

Problem M11.1: Synchronization Primitives

The mechanism here is as follows: LdR requests READ access to the address, StC requests
WRITE access to the address. Many students suggested that LdR can request WRITE access to
the address right away, which could lead to live lock.

Problem M11.1.A

If another processor requests Write access to the same cache line.

Problem M11.1.B

Yes. Writeback [P2C_Req(a) S] and [C2P_Req(a) S] are sent normally. The “reservation” is
local (probably in the snooper or in the cache, though that might take too much resources — there
are very few reservations needed at the same time for any processor).

Problem M11.1.C

Bus doesn’t need to be aware of them.
Everything is local.

No ping-pong.

No extra hardware (tied to 1)

PwbhE

Problem M11.1.D

No — our bus invalidates before transitioning from S to M. In general, maybe.

Last updated:
10/26/2022

Problem M11.2: Implementing Directories

Problem M11.2.A

Overhead for a 4-processor system: 4 bits/ 32 bytes=4/(32 * 8) = 1/64

Overhead for a 64-processor system: 64 bits / 32 bytes =64 /(32 * 8) = 1/4

Problem M11.2.B

0 1

0 1

For the bit-vector scheme: No invalidate-requests are sent.

For the single-sharer scheme:
1 invalidate-request is sent to PO when P1 reads B.
1 invalidate-request is sent to P1 when PO reads B the second time.

For the bit-vector scheme:
1 invalidate-request is sent to each shared processor (PO and P1) when P2 writes B.
-> 2 invalidate-requests are sent.

For the single-sharer scheme:
1 invalidate-request is sent to PO when P1 reads B.
1 invalidate-request is sent to the only sharer (P1) when P2 writes B.

Last updated:
10/26/2022

Problem M11.2.C

For the global-bit scheme: No invalidate-requests are sent.

64

For the global-bit scheme:
1 invalidate-request is sent to each of the 64 processors because the global bit is set when P2
writes B. -> 64 invalidate-requests are sent.

Note: If the protocol is optimized, no invalidate-request would be sent to P2 and the number of
invalidate-requests would be 63 instead of 64.

Last updated:

10/26/2022
Problem M11.3: Tracing the Directory-based Protocol
Processor A Processor B Processor C
AL:ST X, 1 B1:R:=LD X CL:ST X, 6
A2:R:=LD X B2: R:=ADDR,1 |[C2R:=LDX
A3:R:=ADDR,R |B3:STX,R C3:R:=ADDR,R
A4:ST X, R B4:R:=LD X C4:ST X,R
B5:R:=ADDR,R
B6: ST X, R
Problem M11.3.A
<M,B,Req,x,5> <M,C,Req,x,M>
<A M,Req,x,S> <B,M,Req,x,1>

<M,A,Rep,x,M,S,2>
<B,M,Rep,x,1,S,2>

<M,B,Rep,x,M,1,6>
<C,M,Rep,x,1,M,6>

<M,B,Req,x,M>

<A,M,Req,x, 1>
<M,A Rep,x,S,1,->
<B,M,Rep,x,5,M,->

How many messages are generated?

Last updated:

10/26/2022
Problem M11.3.B
Ins
<M,A,Req,x,M> <M,C,Req,x,M>
Al <B,M,Req,x,1> <M,B,Req,x,5> 8 <A,M,Req,x, 1>
<M,B,Rep,x,M,1,2> <B,M,Rep,x,1,S,0> <M,A Rep,x,M,1,2>
<A,M,Rep,x,1,M,2> <C,M,Rep,x,1,M,2>
<M,B,Req,x,M>
A2
<B,M,Rep,x,S,M,-> ?
A4 10

How many messages are generated?

Problem M11.3.C

12

Yes — all the requests can be eliminated using voluntary rules. Total number of messages would
be 6 instead of 12.

Last updated:

10/26/2022
Problem M11.3.D
Ins
<M,C,Req,x,M>
<M,B,Req,x,S> <A,M,Req,x, 1>
AL <M, A Req,x,M>) <A ,M,Req,x,S> <B,M,Req,x, 1>
<A,M,Rep,x,1,M,0> <M,A Rep,x,M,S,1> <M,A,Rep,x,S,1>
<B,M,Rep,x,1,5,1> <M,B,Rep,x,S,1>
<C,M,Rep x,1,M,1>
<M,B,Req,x,M>
<M,A,Req,Xx,S> <A,M,Req,x, 1> <M,C,Req,x,S>
A2 <C,M,Req,x,5> 5 <C,M,Req,x, 1> <B,M,Req,x,S>
<M,C,Rep,x,M,S,6> <M,A,Rep x,S, 1> <M,B,Rep,x,M,S,2>
<A,M,Rep,x,S,6> <M,C,Rep x,S, 1> <C,M,Repx,l1,S,2>
<B,M,Rep,x,1,M,6>
<M,A,Req,x,M> <M,C,Req,x,M>
<B,M,Req,x,1> <M,B,Req,x,5> <A,M,Req,x, 1>
A <C,M,Req,x, 1> 8 <A,M,Req,x,S> <B,M,Req,x,1>
<M,B,Rep,x,S,I1> <M,A,Rep,x,M,S,12> <M,A,Rep,x,S, 1>
<M,C,Rep,x,S,1> <B,M,Rep,x,S5,12> <M,B,Rep,x,S,1>
<A,M,Rep,x,1,M,2> <C,M,Rep,x,1,M,12>
<M,B,Req,x,M>
10 <C,M,Req,x, 1>

<M,C,Rep,x,M,1,4>
<B,M,Rep,x,1,M,4>

How many messages are generated?

46

Last updated:
10/26/2022

Problem M11.4: Snoopy Cache Coherent Shared Memory

Problem M11.4.A

Where in the Memory System is the Current Value

See Table M11.4-1, M11.4-2 and M11.4-3.

Problem M11.4.B

MBus Cache Block State Transition Table

See Table M11.4-1, M11.4-2 and M11.4-3.

Problem M11.4.C

Adding atomic memory operations to MBus

The problem is that CPU B can read the value in location x while CPU A is performing the fetch-
and-increment operation—which violates the idea of fetch-and-increment being atomic. For
example, consider the following sequence of events and corresponding state transitions and

operations:
Event CPUA CPUB
1 Read(x); I1->CS; send CR
2 Snoop CR; CE->CS
3 Read(x)
4 Write(x); CS->OE; send CI
5 Snoop CI; CS->1
CR CS V v v
cleanShared yes Cl OE \

Last updated:

10/26/2022
initial state other ops actions by this final this other | mem
cached cache state cache | caches
Invalid no none none I \
CPU read CR CE \ V
CPU write CRI OE V
replace none Impossible
CR none I \ \
CRI none I N,
Cl none Impossible
WR none Impossible
Cwi none I v
Invalid yes none [\ \
CPU read CS \ \ V
CPU write OE \
replace same Impossible
CR as [\ v
CRI above I N,
Cl [\
WR [\ v
CWiI [\
v v
none CE N \
none OE \
none [\
none or CCI1 \ \ \
none or CCI1 [\
none Impossible
none Impossible
none I | V
Table M11.4-1
! Some Sun MBus implementations perform CCI from the cleanExclusive state, while others do not. We accept

both answers.

Last updated:

10/26/2022
\/
none OE V
none OE V
WR | v
CCl v v
CCl [v
none Impossible
none Impossible
none I | R
v v
none CS \ \
Cl CE |
none [\
none? CS \ \ v
none I \
none Impossible
none Impossible
none I \
Cs v v v
Cs v v v
CE |
| v v
Cs v v v
| v
| v
Cs v v v
| v
Table M11.4-2

2 Some Sun MBus implementations perform CCI from the cleanShared state.
requests are not broadcast on a bus, but are handled by a central system controller.

which cache with a cleanShared copy provides the data.
response from this state.

However, in these implementations,

The system controller arbitrates

Unless an explanation is provided, CCI is not a valid

Last updated:

10/26/2022
\/
none oS \
Cl OE \
WR [V
CClI 0S \ \
CClI [\
none Impossible
none Impossible
none I \
0S \ \
0S \ \
OE V
[\ v
0S \ \
[\
[\
Impossible
[| | W

Table M11.4-3

Last updated:
10/26/2022

Problem M11.5: Snoopy Cache Coherent Shared Memory

Problem M11.5.A

Fill out the state transition table for the new COS state:

none COS
Cl OE
none |
CClI COS
CClI |
none |
Impossible
Or: none COS
none [

Note that WR is not necessary during replace because the line is clean.
Also, an incoming WR operations is Impossible because other caches can only have the block in
the CS state, but (none, COS) was also accepted as a correct answer.

Problem M11.5.B

4. cache 1 replaces block B - I CS CS [
5.cache 4 reads data block B | memory I CS CS CS

Problem M11.5.C

When the CPU does a write, it can change a cache block from CE to OE with no bus operation,
but to transition from COS to OE it must first broadcast a CI on the bus to invalidate any shared
(CS) copies of the block.

Last updated:
10/26/2022

Problem M11.6: Snoopy Caches

Problem M11.6.A

The snooper can allow the CPU to continue executing normally, but cannot allow any new
messages from the outside to enter the caches until AFTER the caches cleared their content.

Problem M11.6.B

Here the snooper MUST respond RETRY and get the cache to write back the value.

Problem M11.6.C

Because otherwise the Wb can happen out of order with some other memory operation and SC
could be broken.

Last updated:
10/26/2022

Problem M11.7: Directory-based Protocol

Problem M11.7.A

The following questions deal with the directory-based protocol discussed in class. Assume XY
routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally,
towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages
with the same source and destination sites are always received in the same order as that in which
they were sent. For_this_guestion, assume that the cache coherence protocol is free from
deadlock, livelock and starvation.

1 k 1 2 | 13
4 A #
h h 4 h 4
4 L 1 5 ——swin

Assume the node 6 serves as the home directory, where the states for memory blocks are stored.
Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is
caused by a request)

Processor 1 Processor 4 Processor 5
1.1: ST X, 10 41: LDR1, X 51: ST X, 20

Suppose the global execution order is as follows:

41 => 51 = 11

Assume that the next instruction will start its execution only when the previous instruction has
completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the
purple link in the above figure).

4.1: <6,4,C2M_Req,X,S> (4.1),

5.1: <6,5,C2M_Req,X,M>, <6,4,C2M_Rep,X,S,I> (5.1),

Last updated:
10/26/2022

1.1: <6,5,C2M_Rep,X,M,1,20> (1.1)

Last updated:
10/26/2022

Problem M11.7.B

For the directory protocol, we assume the message passing to be FIFO, meaning protocol
messages with the same source and destination are always received in the same order as that in
which they were sent. Now suppose messages can be delivered out-of-order for the same source
and destination pairs. Describe one scenario that the cache coherence protocol will break due to
this out-of-order delivery.

1. Core 1: <M,1,C2M_Req,a,S> =><1,M,M2C_Rep,a,l,S,data> (not yet reached)

2. Core 2: <M,2,C2M_Req,a,M> => <1,M,M2C_Reg,a,I>
If <1,M,M2C_Req,a,l> arrives earlier than <1,M,M2C_Rep,a,l,S,data>, it will be ignored, and
the core will not send any reply to home which is waiting. => Deadlock.

Problem M11.7.C

Under the 6823 directory-based protocol, a cache will receive a writeback request from the
directory <M2C_Req, a, S> for address “a” when it is in state M and another cache wants a
shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how
this scenario can occur using the messages passed between the cache and the memory, and the
state transitions.

Cache 1 in M, does voluntary writeback <M,1,M2C_Rep,a,M,S,data> and goes to S state. Now
Cache 2 in | state does a <M,2,C2M_Req,a,S>. If the Mem hasn’t received Cache 1’s response
yet, it will send a <1,M,P2C_Req,a,S> to Cache 1 which isin S.

Last updated:
10/26/2022

Problem M11.8: Synchronicity (Spring 2014 Quiz 4, Part B)

You are writing a queue to be used in a multi-producer/single-consumer application. (Producer
threads write messages that are read by one consumer.) We assume here a queue with infinite
space. The basic code is shown below.

TST rs, Imm(rt) Iis the test-and-set instruction, which atomically loads the value at
Imm (rt) into rs, and if the value is zero, updates the memory location at Tmm (rt) to 1. This
atomic instruction is useful for implementing locks: a value of 1 at the memory location indicates
that someone holds the lock, and a value of 0 means the lock is free.

Producer pushes a message onto queue: (memory operations in bold)

void push(int** tail ptr, int* tail write lock, int message) {
while (lock try(tail write lock) == false);
**tail ptr = message;
*tail ptr++;
lock release(tail write lock);

}

Rl - contains address of data to enqueue

R2 - contains the address of the tail pointer of queue

R3 - address of tail pointer write lock

Pl SpinLock:TST R4, O0(R3) # try to acquire tail write lock
P2 BNEZ R4, R4, SpinLock

P3 LD R4, 0(R2) # get tail pointer

P4 ST R1, O0(R4) # write message to tail

P5 ADD R4, R4, 4 # update tail pointer

P6 ST R4, O0(R2)

P7 ST RO, O(R3) # release lock

Consumer pops a message off queue: (memory operations in bold)

int pop(int** head ptr, int** tail ptr) {
while (*head ptr == *tail ptr);
int message = **head ptr;
*head ptr++;
return message;

}

Rl - will receive address contained in message

R2 - contains the address of the head pointer of queue

R3 - contains the address of the tail pointer of the queue
Cl Retry: LD R4, O0(R2) # get head pointer

Cc2 LD R5, 0(R3) # get tail pointer

C3 SUB R5, R4, R5 # is there a message?

C4 BNEZ R5, Pop

C5 JMP Retry

C6 Pop: LD R1, O(R4) # read message from queue
Cc7 ADD R4, R4, 4 # update head pointer

cs8 ST R4, 0 (R2)

Last updated:
10/26/2022

Problem M11.8.A

(@) The directory should a ShResp with the data to Core 0’s cache. (The directory stays in the
shared state, and Core O remains a sharer.

(b) Core 0’s cache should send an InvResp without data. (It is already in I so no state
transition is necessary.

Last updated:
10/26/2022

Problem M11.8.B

(@) 9 (Each core performs 3 evictions. The final line read by each core can stay in the cache.)

(b) Zero

Last updated:
10/26/2022

Problem M11.8.C

(@) 1 writeback due to eviction + 1 invalidation (= 2 total)

(b) No writeback messages on evictions + 2 invalidations (= 2 total) (Cache 3’s store triggers
invalidations to caches 1 and 2. This is similar to the scenario described earlier in
problem 1(b).)

Last updated:
10/26/2022

Problem M11.8.D

@ A

(B causes deadlock as the directory has decided to serve the ExReq first, and will not
send a ShResp in response to the ShReq until after it receives acknowledgement of the
invalidation.)

(b) B

(A violates coherence because Cache 0 may end up forever holding stale data from the
ShResp. The directory and Cache 1 will think Cache 0 has invalidated the data, and may
send no more invalidations.

Last updated:
10/26/2022

Problem M11.9: Cache Coherence (Spring 2015 Quiz 3, Part B)

Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back caches.
Under the standard MSI protocol, when a cache observes a Bus Read Exclusive message
(BusRdX), it has to invalidate its own copy of the cache block. Ben instead proposes an
optimization, called delayed invalidation, to potentially reduce the number of read misses. The
optimization works as follows:

Delayed invalidation: When a cache observes a Bus Read Exclusive message (BusRdX) and it
has a copy of the block in the Shared (S) state, the cache delays the invalidation of the block until
before a cache miss happens. In other words, the cache will treat any subsequent requests from its
own processor as if the BusRdX had not happened, until one of those requests causes a miss. At
that point, all pending invalidations are performed before processing the miss.

Problem M11.9.A

Suppose processors P1 and P2 are have private, snoopy caches. Both caches are initially empty.
Consider the following sequence of accesses:

I0 P2: read
I1 Pl: write
12 P2: read
I3 Pl: write
I4 P2: read
I5 P2: read
16 P2: read

vl i i

Assume blocks A and B do not conflict in the cache. Compare Ben’s delayed invalidation
optimization with the standard MSI protocol by filling the states (on the next page) for each
cache block after each operation is done and calculate the number of misses in both cases.

Last updated:
10/26/2022

Assume we use the standard MSI protocol. Fill in the following table.

Standard MSI Protocol
Processor P1’s Cache Processor P2’s Cache
Initial State Al B: | Al B: I
After P2 reads A | A: | B: I A:S B: 1
After P1 writes A | A: M B: | Al B: |
After P2 reads A | A: S B: | A:S B: |
After P1 writes A | A: M B: | Al B: |
After P2 reads A | A: S B: | A:S B: |
After P2 readsB | A: S B: I A:S B: S
After P2 reads A | A: S B: | A:S B: S

How many misses occur in the two caches? 2 write misses + 4 read misses = 6 misses

Assume we adopt Ben’s delayed invalidation optimization. Fill in the following table. If there is
a delayed invalidation, write it in the invalidation queue (the “Inv Queue” column). For example,
“Inv L means there is a delayed invalidation on block L.

MSI Protocol with Delayed Invalidation
Processor P1’s Cache Processor P2’s Cache
MSI state Inv Queue MSI state Inv Queue
Initial State Al |B:l Al B: I
After P2 reads A | A: | B: I A:S |B:l
After P1 writes A | A: M | B: | A:S |B:l Inv A
After P2 reads A |A: M | B: | A:S |B:l Inv A
After P1 writes A | A: M | B: | A:S |B:l Inv A
After P2 reads A |A: M | B: | A:S |B:l Inv A
After P2readsB | A: M | B: | Al B: S
After P2reads A |A:S | B: | A:S |B:S

How many misses occur in the two caches? 1 write miss + 3 read misses = 4 misses

Last updated:
10/26/2022

Problem M11.9.B

Does Ben’s delayed invalidation optimization violate cache coherence rules? Please explain your
answer in one or two sentences.

No. There are two coherence rules:
(1) Write propagation: Writes eventually become visible to all processors.

=> Yes. With delayed invalidation, writes from other processors become visible when a
local miss, either a read miss (I->S) or a write miss (I->M or S->M), occurs.

(2) Write serialization: Writes to the same location are serialized, and all processors see them
in the same order.

= Yes. With delayed invalidation, all processors still see the same global ordering of
writes.

Problem M11.9.C

Suppose the original system guarantees sequential consistency. Does adding the delayed
invalidation optimization break sequential consistency? Please explain your answer in one or two
sentences. If your answer is yes, please provide a sequence of load/store operations that violates
sequential consistency.

No. The system is sequential consistent if the following conditions are met:

(1) The result of any execution is the same as if the operations of all the processors were
executed in some sequential order. In other words, all processors agree on a global
ordering of reads and writes.

= Yes. With delayed invalidation, the reads that happen before the invalidation is
processed can be seen as reads happening before the write that causes BusRdX.
Those reads hit in the cache and are not visible to other processors.
For example, in Question 1, all processors agree on a logical ordering:
0->12->14->11->13->15->16.

(2) The operations of each individual processor appear in program order.

=> Yes. Delayed invalidation only tries to re-order reads from other processors’ writes.

Last updated:
10/26/2022

Problem M11.9.D

Ben only applies delayed invalidation on cache blocks that are in the S state. When a cache
observes a Bus Read Exclusive message (BusRdX) and the associated cache block is in the
Modified (M) state, it sends out the data in response to a BusRdX message and changes the cache
state to Invalid (I).

Is it possible to delay invalidation when the cache block is in the Modified (M) state? If it is not,
please explain why. If it is possible, please describe how to make delayed invalidations work
when the block is in the M state. In other words, please describe the actions the cache needs to
take when the cache observes a BusRdX message, how to handle subsequent read and write
accesses if the invalidation is delayed, and when the invalidation needs to be processed.

When observing a BusRdX message, change the cache state from M to S and send the data value
to the bus. The invalidation needs to be processed before processing any subsequent read or write
miss.

Last updated:
10/26/2022

Problem M11.10: Cache Coherence (Spring 2015 Quiz 3, Part C)

Problem M11.10.A

Ben designs an architecture that does not have the atomic compare-and-swap (CAS) instruction
but has load-reserve (LR) and store-conditional (SC) instructions.

Help Ben implement a Boolean compare-and-swap instruction BCAS old, new,
Imm (base) using load-reserve and store-conditional instructions:

LR rs, Imm(rt):
<flag, addr> € <1, rt + Imm>

rs € Memory[rt + Imm]

SC rs, Imm(rt):

If <flag, addr> == <1, rt + Imm>:
Memory[rt + Imm] € rs
rs € 1 # Succeed
Else:
rs € 0 # Fail

BCAS is a simplified CAS instruction that only deals with values 0 and 1. You can use
temporary registers (tmpl, tmp2, tmp3...) and any algorithmic, logical, memory, and
branch instructions in the MIPS instruction set.

BCAS old, new, Imm(base):
LR tmpl, Imm(base)
BNE tmpl, old, fail
MOV tmp2, new
SC tmp2, Imm(base)
BNEZ tmp2, skip
NOR tmpl, tmpl, tmpl

load M[Imm+base] into tmpl

if tmpl !'= old, go to fail
copy new to tmp2

try to store tmp2

check if SC succeeds

invert the value of tmpl
(since M[Imm+tbase] is changed)
fail: MOV old, tmpl # copy tmpl to old

skip: NOP

= e e S S

Last updated:
10/26/2022

Problem M11.10.B

Suppose the hardware where the shared-memory queue from Handout #15 is executed has a
weak consistency model that relaxes all the orderings of reads and writes. Give an example of
memory orderings between the producer and consumer that would result in incorrect behavior.
Please fully explain your answer to get full credit.

Your memory ordering example should look something like:
p1, C2, p2, C4, P4, C5, C7, C9, ClO0

If the tail write is visible to the consumer before the message write, then we have a problem.
Thus any sequence that contains the subsequence:

P4, C7, P2

will read an invalid message.

Problem M11.10.C

Last updated:
10/26/2022

Please add the minimum number of memory fences (FENCEwr, FENCEry, FENCEwy, OF
FENCERgg) to the producer and consumer codes to ensure correctness with a weak consistency
model. Please explain your answer fully.

Code for producer to enqueue a message:

Pl: LD R3, 0(R2)
P2: ST R1l, O(R3)
P3: ADD R3, R3, 4

FENCEWW # don’ t
P4: ST R3, 0(R2)

get tail pointer

write message to tail

update tail pointer
update tail before writing message

Code for consumer to dequeue a message:

Cl: SpinLock: MOV

C2: CAS
C3: BNEZ
FENCEwr # don’t
C4: LD
C5: Retry: LD
Cb6: BEQ
FENCEgzrz # don’t
C7: LD
C8: ADD
C9: ST
FENCEWW # don’t
Cl0: ST

R6, RO # set R6 to 0

R6, R5, O(R4) # try to acquire lock
R6, SpinLock

read head pointer before getting lock
R7, 0(R2) # get head pointer

R8, 0 (R3) # get tail pointer

R7, R8, Retry # is there a message-?
read message before tail is updated

R1, O(R7) # read message from queue
R7, R7, 4 # update head pointer
R7, 0(R2)

release lock before updating head

RO, O(R4) # release lock

