
Last updated: 

10/26/2022 

Problem M11.1: Synchronization Primitives  

 

The mechanism here is as follows: LdR requests READ access to the address, StC requests 

WRITE access to the address. Many students suggested that LdR can request WRITE access to 

the address right away, which could lead to live lock. 

 

 

Problem M11.1.A  

 
Describe under what events the local reservation for an address is cleared. 

 

If another processor requests Write access to the same cache line. 

 

 

Problem M11.1.B  

 
Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e., 

unaware of the addition of these new instructions?  Explain 

 

Yes. Writeback [P2C_Req(a) S] and [C2P_Req(a) S] are sent normally. The “reservation” is 

local (probably in the snooper or in the cache, though that might take too much resources – there 

are very few reservations needed at the same time for any processor). 

 

 

Problem M11.1.C  

 
Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-modify 

instructions such as the TEST&SET instruction.  

 

1. Bus doesn’t need to be aware of them. 

2. Everything is local. 

3. No ping-pong. 

4. No extra hardware (tied to 1) 

 

 

Problem M11.1.D  

 
LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these 

instructions make sense in our directory-based system in the handout? Do they still offer an 

advantage over atomic read-test-modify instructions in a directory-based system? Please explain. 

 

No – our bus invalidates before transitioning from S to M. In general, maybe. 



Last updated: 

10/26/2022 

Problem M11.2: Implementing Directories  

 

 

Problem M11.2.A  

 
Overhead for a 4-processor system:  4 bits / 32 bytes = 4 / (32 * 8) = 1/64 

  

Overhead for a 64-processor system:  64 bits / 32 bytes = 64 / (32 * 8) = 1/4 

 

 

Problem M11.2.B  

 
Sequence 1 bit-vector scheme 

# of invalidate-requests 

single-sharer scheme 

# of invalidate-requests 

Processor #0 reads B 0 0 

Processor #1 reads B 0 1 

Processor #0 reads B 0 1 

 

For the bit-vector scheme:  No invalidate-requests are sent. 

 

For the single-sharer scheme: 

1 invalidate-request is sent to P0 when P1 reads B. 

1 invalidate-request is sent to P1 when P0 reads B the second time. 

 

 

Sequence 2 bit-vector scheme 

# of invalidate-requests 

single-sharer scheme 

# of invalidate-requests 

Processor #0 reads B 0 0 

Processor #1 reads B 0 1 

Processor #2 writes B 2 1 

 

For the bit-vector scheme:   

1 invalidate-request is sent to each shared processor (P0 and P1) when P2 writes B. 

-> 2 invalidate-requests are sent. 

 

For the single-sharer scheme: 

1 invalidate-request is sent to P0 when P1 reads B. 

1 invalidate-request is sent to the only sharer (P1) when P2 writes B. 



Last updated: 

10/26/2022 

 

 

Problem M11.2.C  

 
Sequence 1 global-bit scheme 

# of invalidate-requests 

Processor #0 reads B 0 

Processor #1 reads B 0 

Processor #0 reads B 0 

 

For the global-bit scheme:  No invalidate-requests are sent. 

 

Sequence 2 global-bit scheme 

# of invalidate-requests 

Processor #0 reads B 0 

Processor #1 reads B 0 

Processor #2 writes B 64 

 

For the global-bit scheme: 

1 invalidate-request is sent to each of the 64 processors because the global bit is set when P2 

writes B. -> 64 invalidate-requests are sent. 

 

Note: If the protocol is optimized, no invalidate-request would be sent to P2 and the number of 

invalidate-requests would be 63 instead of 64. 

 



Last updated: 

10/26/2022 

 

 

Problem M11.3: Tracing the Directory-based Protocol  
 

 

Processor A Processor B Processor C 

A1: ST X, 1 B1: R := LD X C1: ST X, 6 

A2: R := LD X B2: R := ADD R, 1 C2: R := LD X 

A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R 

A4: ST X, R B4: R:= LD X C4: ST X, R 

 B5: R := ADD R, R  

 B6: ST X, R  

 

 

Problem M11.3.A  

 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1 1 
<M,A,Req,x,M> 

<A,M,Rep,x,I,M,0> 
B1 4 

<M,B,Req,x,S> 

<A,M,Req,x,S> 

<M,A,Rep,x,M,S,2> 

<B,M,Rep,x,I,S,2> 

C1 8 

<M,C,Req,x,M> 

<B,M,Req,x,I> 

<M,B,Rep,x,M,I,6> 

<C,M,Rep,x,I,M,6> 

A2 2  B3 5 

<M,B,Req,x,M> 

<A,M,Req,x,I> 

<M,A,Rep,x,S,I,-> 

<B,M,Rep,x,S,M,-> 

C2 9 

 

A4 3  B4 6  C4 10 
 

   B6 7    
 

 

How many messages are generated?   14 

 



Last updated: 

10/26/2022 

 

 

Problem M11.3.B  

 
 

Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1 5 

<M,A,Req,x,M> 

<B,M,Req,x,I> 

<M,B,Rep,x,M,I,2> 

<A,M,Rep,x,I,M,2> 

B1 1 
<M,B,Req,x,S> 

<B,M,Rep,x,I,S,0> 
C1 8 

<M,C,Req,x,M> 

<A,M,Req,x,I> 

<M,A,Rep,x,M,I,2> 

<C,M,Rep,x,I,M,2> 

A2 6  B3 2 
<M,B,Req,x,M> 

<B,M,Rep,x,S,M,-> 
C2 9 

 

A4 7  B4 3  C4 10 
 

   B6 4    
 

 

How many messages are generated?   12 

 

 

Problem M11.3.C  

 
Can the number of messages in Problem M11.3.B be decreased by using voluntary responses?  

Explain. 

 
Yes – all the requests can be eliminated using voluntary rules. Total number of messages would 

be 6 instead of 12. 



Last updated: 

10/26/2022 

 

 

Problem M11.3.D  

 
Processor A Processor B Processor C 

Ins EO Messages Ins EO Messages Ins EO Messages 

A1 1 
<M,A,Req,x,M> 

<A,M,Rep,x,I,M,0> 
B1 2 

<M,B,Req,x,S> 

<A,M,Req,x,S> 

<M,A,Rep,x,M,S,1> 

<B,M,Rep,x,I,S,1> 

C1 3 

<M,C,Req,x,M> 

<A,M,Req,x,I> 

<B,M,Req,x,I> 

<M,A,Rep,x,S,I> 

<M,B,Rep,x,S,I> 

<C,M,Rep,x,I,M,1> 

A2 4 

<M,A,Req,x,S> 

<C,M,Req,x,S> 

<M,C,Rep,x,M,S,6> 

<A,M,Rep,x,S,6> 

B3 5 

<M,B,Req,x,M> 

<A,M,Req,x,I> 

<C,M,Req,x,I> 

<M,A,Rep,x,S,I> 

<M,C,Rep,x,S,I> 

<B,M,Rep,x,I,M,6> 

C2 6 

<M,C,Req,x,S> 

<B,M,Req,x,S> 

<M,B,Rep,x,M,S,2> 

<C,M,Rep,x,I,S,2> 

A4 7 

<M,A,Req,x,M> 

<B,M,Req,x,I> 

<C,M,Req,x,I> 

<M,B,Rep,x,S,I> 

<M,C,Rep,x,S,I> 

<A,M,Rep,x,I,M,2> 

B4 8 

<M,B,Req,x,S> 

<A,M,Req,x,S> 

<M,A,Rep,x,M,S,12> 

<B,M,Rep,x,S,12> 

C4 9 

<M,C,Req,x,M> 

<A,M,Req,x,I> 

<B,M,Req,x,I> 

<M,A,Rep,x,S,I> 

<M,B,Rep,x,S,I> 

<C,M,Rep,x,I,M,12> 

   B6 10 

<M,B,Req,x,M> 

<C,M,Req,x,I> 

<M,C,Rep,x,M,I,4> 

<B,M,Rep,x,I,M,4> 

  

 

 

How many messages are generated?   46 



Last updated: 

10/26/2022 

 

Problem M11.4: Snoopy Cache Coherent Shared Memory 

 

 

Problem M11.4.A Where in the Memory System is the Current Value 

 

See Table M11.4-1, M11.4-2 and M11.4-3. 

 

 

Problem M11.4.B MBus Cache Block State Transition Table 

 

See Table M11.4-1, M11.4-2 and M11.4-3. 

 

 

Problem M11.4.C Adding atomic memory operations to MBus 

 

Imagine a dual processor machine with CPUs A and B.  Explain the difficulty of CPU A 

performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s 

cache.  You may wish to illustrate the problem with a short sequence of events at processor A 

and B. 

 

The problem is that CPU B can read the value in location x while CPU A is performing the fetch-

and-increment operation—which violates the idea of fetch-and-increment being atomic.  For 

example, consider the following sequence of events and corresponding state transitions and 

operations: 

 

Event CPU A CPU B 

1 Read(x); I->CS; send CR  

2  Snoop CR; CE->CS 

3  Read(x) 

4 Write(x); CS->OE; send CI  

5  Snoop CI; CS->I 

 

Fill in the rest of the table below as before, indicating state, next state, where the block in 

question may reside, and the CPU A and MBus transactions that would need to occur atomically 

to implement a fetch-and-increment on processor A. 

 

State other 

cached 

ops actions by this 

cache 

next 

state 

this 

cache 

other 

caches 

mem 

Invalid yes read CR CS    

cleanShared yes write CI OE    

 



Last updated: 

10/26/2022 

 

initial state other 

cached 

ops actions by this 

cache 

final 

state 

this 

cache 

other 

caches 

mem 

Invalid no none none I    

  CPU read CR CE    

  CPU write CRI OE    

  replace none Impossible 

  CR none I    

  CRI none I    

  CI none Impossible 

  WR none Impossible 

  CWI none I    

Invalid yes none  I    

  CPU read  CS    

  CPU write  OE    

  replace same Impossible 

  CR as I    

  CRI above I    

  CI  I    

  WR  I    

  CWI  I    

 

initial state other 

cached 

ops Actions by this 

cache 

final 

state 

this 

cache 

other 

caches 

mem 

cleanExclusive no none none CE    

  CPU read none CE    

  CPU write none OE    

  replace none I    

  CR none or CCI1 CS    

  CRI none or CCI1 I    

  CI none Impossible 

  WR none Impossible 

  CWI none I    

Table M11.4-1 

                                                 
1 Some Sun MBus implementations perform CCI from the cleanExclusive state, while others do not.  We accept 

both answers. 



Last updated: 

10/26/2022 

 

 

initial state other 

cached 

ops Actions by this 

cache 

final 

state 

this 

cache 

other 

caches 

mem 

ownedExclusive no none none OE    

  CPU read none OE    

  CPU write none OE    

  replace WR I    

  CR CCI OS    

  CRI CCI I    

  CI none Impossible 

  WR none Impossible 

  CWI none I    

 

initial state other 

cached 

ops actions by this 

cache 

final 

state 

this 

cache 

other 

caches 

mem 

cleanShared no none none CS    

  CPU read none CS    

  CPU write CI OE    

  replace none I    

  CR none2 CS    

  CRI none I    

  CI none Impossible 

  WR none Impossible 

  CWI none I    

cleanShared yes none  CS    

  CPU read  CS    

  CPU write  OE    

  replace same I    

  CR as CS    

  CRI above I    

  CI  I    

  WR  CS    

  CWI  I    

Table M11.4-2 

                                                 
2 Some Sun MBus implementations perform CCI from the cleanShared state.  However, in these implementations, 

requests are not broadcast on a bus, but are handled by a central system controller.  The system controller arbitrates 

which cache with a cleanShared copy provides the data.  Unless an explanation is provided, CCI is not a valid 

response from this state. 



Last updated: 

10/26/2022 

 

 

initial state other 

cached 

ops actions by this 

cache 

final 

state 

this 

cache 

other 

caches 

mem 

ownedShared no none none OS    

  CPU read none OS    

  CPU write CI OE    

  replace WR I    

  CR CCI OS    

  CRI CCI I    

  CI none Impossible 

  WR none Impossible 

  CWI none I    

ownedShared yes none  OS    

  CPU read  OS    

  CPU write  OE    

  replace same I    

  CR as OS    

  CRI above I    

  CI  I    

  WR  Impossible 

  CWI  I    

Table M11.4-3 

 

 

 



Last updated: 

10/26/2022 

 

Problem M11.5: Snoopy Cache Coherent Shared Memory 
 

Problem M11.5.A  

 

Fill out the state transition table for the new COS state: 

 

initial state other 

cached 

ops actions by this 

cache 

final 

state 

COS yes none none COS 

  CPU read none COS 

  CPU write CI OE 

  replace none I 

  CR CCI COS 

  CRI CCI I 

  CI none I 

  WR 

Or: 

Impossible 

  none COS 

  CWI none I 

 

Note that WR is not necessary during replace because the line is clean. 

Also, an incoming WR operations is Impossible because other caches can only have the block in 

the CS state, but (none, COS) was also accepted as a correct answer. 

 

 

Problem M11.5.B  

 

cache transaction 

source 

for data 

state for data block B 

cache 1 cache 2 cache 3 cache 4 

0. initial state — I I I I 

1. cache 1 reads data block B memory CE I I I 

2. cache 2 reads data block B CCI  COS CS I I 

3. cache 3 reads data block B CCI COS CS CS I 

4. cache 1 replaces block B - I CS CS I 

5.cache 4 reads data block B memory I CS CS CS 

 

 

Problem M11.5.C  

 

When the CPU does a write, it can change a cache block from CE to OE with no bus operation, 

but to transition from COS to OE it must first broadcast a CI on the bus to invalidate any shared 

(CS) copies of the block. 



Last updated: 

10/26/2022 

 

Problem M11.6: Snoopy Caches 
 

 

Problem M11.6.A  

 

Hint: Consider how much processing can be performed safely on the following sequences after 

an invalidation request for x has been received 

 

Ld x; Ld y; Ld x  

 

Ld x; St y; Ld x  

 

The snooper can allow the CPU to continue executing normally, but cannot allow any new 

messages from the outside to enter the caches until AFTER the caches cleared their content. 

 

 

Problem M11.6.B  

 

Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this 

cache line. What should the snooper do in this case, and why? 

 

Here the snooper MUST respond RETRY and get the cache to write back the value. 

 

 

Problem M11.6.C  

 

When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue 

waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another 

processor, why is it important to first write back the already modified cache line? Does your 

answer change if cache lines are restricted to be one word? Explain. 

 

Because otherwise the Wb can happen out of order with some other memory operation and SC 

could be broken. 

 

 

 

 



Last updated: 

10/26/2022 

 

Problem M11.7: Directory-based Protocol 
 

Problem M11.7.A            

 

The following questions deal with the directory-based protocol discussed in class. Assume XY 

routing, and message passing is FIFO. (XY routing algorithm first routes packets horizontally, 

towards their X coordinates, and then vertically towards their Y coordinates.) Protocol messages 

with the same source and destination sites are always received in the same order as that in which 

they were sent. For this question, assume that the cache coherence protocol is free from 

deadlock, livelock and starvation. 

 
 

Assume the node 6 serves as the home directory, where the states for memory blocks are stored. 

Assume all caches are initially empty and no responses are sent voluntarily (i.e. every response is 

caused by a request) 

 

        Processor 1     Processor 4       Processor 5 

1.1:  ST X, 10                   4.1:  LD R1, X             5.1:   ST X, 20 

 

Suppose the global execution order is as follows: 

 

4.1   =>   5.1   =>   1.1 
 

Assume that the next instruction will start its execution only when the previous instruction has 

completed. For each instruction, list all protocol messages that are sent over the link 5 -> 6 (the 

purple link in the above figure).  

 

4.1: <6,4,C2M_Req,X,S> (4.1), 

 

5.1: <6,5,C2M_Req,X,M>, <6,4,C2M_Rep,X,S,I> (5.1), 

 



Last updated: 

10/26/2022 

 

1.1: <6,5,C2M_Rep,X,M,I,20> (1.1) 



Last updated: 

10/26/2022 

 

Problem M11.7.B            

 

For the directory protocol, we assume the message passing to be FIFO, meaning protocol 

messages with the same source and destination are always received in the same order as that in 

which they were sent. Now suppose messages can be delivered out-of-order for the same source 

and destination pairs. Describe one scenario that the cache coherence protocol will break due to 

this out-of-order delivery. 

 

1. Core 1: <M,1,C2M_Req,a,S>  => <1,M,M2C_Rep,a,I,S,data> (not yet reached) 

2. Core 2: <M,2,C2M_Req,a,M> => <1,M,M2C_Req,a,I> 

If <1,M,M2C_Req,a,I> arrives earlier than <1,M,M2C_Rep,a,I,S,data>, it will be ignored, and 

the core will not send any reply to home which is waiting. => Deadlock.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem M11.7.C            

 

Under the 6823 directory-based protocol, a cache will receive a writeback request from the 

directory <M2C_Req, a, S>  for address “a” when it is in state M and another cache wants a 

shared copy. Is it possible for a cache in the S state to receive <M2C_Req, a, S> ? Describe how 

this scenario can occur using the messages passed between the cache and the memory, and the 

state transitions. 

 

 

Cache 1 in M, does voluntary writeback <M,1,M2C_Rep,a,M,S,data> and goes to S state. Now 

Cache 2 in I state does a <M,2,C2M_Req,a,S>. If the Mem hasn’t received Cache 1’s response 

yet, it will send a <1,M,P2C_Req,a,S> to Cache 1 which is in S. 

 



Last updated: 

10/26/2022 

 

Problem M11.8: Synchronicity (Spring 2014 Quiz 4, Part B) 

 
You are writing a queue to be used in a multi-producer/single-consumer application. (Producer 

threads write messages that are read by one consumer.) We assume here a queue with infinite 

space. The basic code is shown below. 

 

TST rs, Imm(rt) is the test-and-set instruction, which atomically loads the value at 

Imm(rt) into rs, and if the value is zero, updates the memory location at Imm(rt) to 1. This 

atomic instruction is useful for implementing locks: a value of 1 at the memory location indicates 

that someone holds the lock, and a value of 0 means the lock is free. 

 

Producer pushes a message onto queue: (memory operations in bold) 
 

void push(int** tail_ptr, int* tail_write_lock, int message) { 

while (lock_try(tail_write_lock) == false); 

**tail_ptr = message; 

*tail_ptr++; 

lock_release(tail_write_lock); 

} 

 

# R1 – contains address of data to enqueue 

# R2 – contains the address of the tail pointer of queue 

# R3 – address of tail pointer write lock 

P1 SpinLock:TST R4, 0(R3)  # try to acquire tail write lock 

P2  BNEZ R4, R4, SpinLock 

P3  LD R4, 0(R2)  # get tail pointer 

P4  ST R1, 0(R4)  # write message to tail 

P5  ADD R4, R4, 4  # update tail pointer 

P6  ST R4, 0(R2) 

P7  ST R0, 0(R3)   # release lock 

 

Consumer pops a message off queue: (memory operations in bold) 
 

int pop(int** head_ptr, int** tail_ptr) { 

while (*head_ptr == *tail_ptr); 

int message = **head_ptr; 

*head_ptr++; 

return message; 

} 

 

# R1 – will receive address contained in message 

# R2 – contains the address of the head pointer of queue 

# R3 – contains the address of the tail pointer of the queue  

C1 Retry: LD R4, 0(R2)  # get head pointer 

C2  LD R5, 0(R3)  # get tail pointer 

C3  SUB R5, R4, R5  # is there a message? 

C4  BNEZ R5, Pop 

C5  JMP Retry 

C6 Pop: LD R1, 0(R4)  # read message from queue 

C7  ADD R4, R4, 4  # update head pointer 

C8  ST R4, 0(R2) 



Last updated: 

10/26/2022 

 

 

Problem M11.8.A  

 

(a) The directory should a ShResp with the data to Core 0’s cache. (The directory stays in the 

shared state, and Core 0 remains a sharer. 

 

 

(b) Core 0’s cache should send an InvResp without data. (It is already in I so no state 

transition is necessary. 

 



Last updated: 

10/26/2022 

 

 

Problem M11.8.B  

 

(a) 9 (Each core performs 3 evictions. The final line read by each core can stay in the cache.) 

 

 

(b) Zero 



Last updated: 

10/26/2022 

 

 

Problem M11.8.C  

 

 

(a) 1 writeback due to eviction + 1 invalidation (= 2 total) 

 

 

 

(b) No writeback messages on evictions + 2 invalidations (= 2 total) (Cache 3’s store triggers 

invalidations to caches 1 and 2. This is similar to the scenario described earlier in 

problem 1(b).) 



Last updated: 

10/26/2022 

 

 

 

Problem M11.8.D  

 

(a) A  

 

(B causes deadlock as the directory has decided to serve the ExReq first, and will not 

send a ShResp in response to the ShReq until after it receives acknowledgement of the 

invalidation.) 

 

 

 

(b) B  

 

(A violates coherence because Cache 0 may end up forever holding stale data from the 

ShResp. The directory and Cache 1 will think Cache 0 has invalidated the data, and may 

send no more invalidations. 

 

 

 



Last updated: 

10/26/2022 

 

 
Problem M11.9: Cache Coherence (Spring 2015 Quiz 3, Part B) 
 

Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back caches. 

Under the standard MSI protocol, when a cache observes a Bus Read Exclusive message 

(BusRdX), it has to invalidate its own copy of the cache block. Ben instead proposes an 

optimization, called delayed invalidation, to potentially reduce the number of read misses. The 

optimization works as follows:  

 

Delayed invalidation: When a cache observes a Bus Read Exclusive message (BusRdX) and it 

has a copy of the block in the Shared (S) state, the cache delays the invalidation of the block until 

before a cache miss happens. In other words, the cache will treat any subsequent requests from its 

own processor as if the BusRdX had not happened, until one of those requests causes a miss. At 

that point, all pending invalidations are performed before processing the miss.   
 

Problem M11.9.A  

 

Suppose processors P1 and P2 are have private, snoopy caches. Both caches are initially empty. 

Consider the following sequence of accesses:  

 
I0   P2: read   A 
I1   P1: write  A  
I2   P2: read   A  
I3   P1: write  A 

I4   P2: read   A  
I5   P2: read   B 
I6   P2: read   A  

 

Assume blocks A and B do not conflict in the cache. Compare Ben’s delayed invalidation 

optimization with the standard MSI protocol by filling the states (on the next page) for each 

cache block after each operation is done and calculate the number of misses in both cases. 

 

 

 

 

 

 

 

 

 

 



Last updated: 

10/26/2022 

 

 

Assume we use the standard MSI protocol. Fill in the following table.  

 

Standard MSI Protocol 

 Processor P1’s Cache Processor P2’s Cache 

Initial State A: I  B: I A: I  B: I 

After P2 reads A A: I B: I A: S B: I 

After P1 writes A A: M B: I A: I B: I 

After P2 reads A A: S B: I A: S B: I 

After P1 writes A A: M B: I A: I B: I 

After P2 reads A A: S B: I A: S B: I 

After P2 reads B A: S B: I A: S B: S 

After P2 reads A A: S B: I A: S B: S 

 

How many misses occur in the two caches?  2 write misses + 4 read misses = 6 misses 

 

 

 

Assume we adopt Ben’s delayed invalidation optimization. Fill in the following table. If there is 

a delayed invalidation, write it in the invalidation queue (the “Inv Queue” column). For example, 

“Inv L” means there is a delayed invalidation on block L.  

 

MSI Protocol with Delayed Invalidation 

 Processor P1’s Cache Processor P2’s Cache 

 MSI state Inv Queue MSI state Inv Queue 

Initial State A: I  B: I  A: I  B: I  

After P2 reads A A: I B: I  A: S B: I  

After P1 writes A A: M B: I  A: S B: I  Inv A 

After P2 reads A A: M B: I  A: S B: I  Inv A 

After P1 writes A A: M B: I  A: S B: I  Inv A 

After P2 reads A A: M B: I  A: S B: I  Inv A 

After P2 reads B A: M B: I  A: I B: S   

After P2 reads A A: S B: I  A: S B: S  

 

How many misses occur in the two caches?  1 write miss + 3 read misses = 4 misses 

 

 

 

 

 



Last updated: 

10/26/2022 

 

 
Problem M11.9.B  

 

Does Ben’s delayed invalidation optimization violate cache coherence rules? Please explain your 

answer in one or two sentences.  

 

No. There are two coherence rules:  

 

(1) Write propagation: Writes eventually become visible to all processors.  

 

➔ Yes. With delayed invalidation, writes from other processors become visible when a 

local miss, either a read miss (I->S) or a write miss (I->M or S->M), occurs.   

 

(2) Write serialization: Writes to the same location are serialized, and all processors see them 

in the same order.  

 

➔ Yes. With delayed invalidation, all processors still see the same global ordering of 

writes.  

 

 

Problem M11.9.C  

 

Suppose the original system guarantees sequential consistency. Does adding the delayed 

invalidation optimization break sequential consistency? Please explain your answer in one or two 

sentences. If your answer is yes, please provide a sequence of load/store operations that violates 

sequential consistency. 

 

No. The system is sequential consistent if the following conditions are met: 

 

(1) The result of any execution is the same as if the operations of all the processors were 

executed in some sequential order. In other words, all processors agree on a global 

ordering of reads and writes.  

 

➔ Yes. With delayed invalidation, the reads that happen before the invalidation is 

processed can be seen as reads happening before the write that causes BusRdX.  

Those reads hit in the cache and are not visible to other processors.  

For example, in Question 1, all processors agree on a logical ordering:   

I0 -> I2 -> I4 -> I1 -> I3 -> I5 -> I6.  

 

(2) The operations of each individual processor appear in program order.  

 

➔ Yes. Delayed invalidation only tries to re-order reads from other processors’ writes.  

 

 



Last updated: 

10/26/2022 

 

 

Problem M11.9.D  

 

Ben only applies delayed invalidation on cache blocks that are in the S state. When a cache 

observes a Bus Read Exclusive message (BusRdX) and the associated cache block is in the 

Modified (M) state, it sends out the data in response to a BusRdX message and changes the cache 

state to Invalid (I).   

 

Is it possible to delay invalidation when the cache block is in the Modified (M) state? If it is not, 

please explain why. If it is possible, please describe how to make delayed invalidations work 

when the block is in the M state. In other words, please describe the actions the cache needs to 

take when the cache observes a BusRdX message, how to handle subsequent read and write 

accesses if the invalidation is delayed, and when the invalidation needs to be processed. 

 

 

When observing a BusRdX message, change the cache state from M to S and send the data value 

to the bus. The invalidation needs to be processed before processing any subsequent read or write 

miss.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Last updated: 

10/26/2022 

 

 

Problem M11.10: Cache Coherence (Spring 2015 Quiz 3, Part C) 
 

 

Problem M11.10.A  

 

Ben designs an architecture that does not have the atomic compare-and-swap (CAS) instruction 

but has load-reserve (LR) and store-conditional (SC) instructions.  

 

Help Ben implement a Boolean compare-and-swap instruction BCAS old, new, 

Imm(base) using load-reserve and store-conditional instructions: 

 
LR rs, Imm(rt): 

 <flag, addr>  <1, rt + Imm> 

 rs  Memory[rt + Imm] 
 

SC rs, Imm(rt): 

 If <flag, addr> == <1, rt + Imm>: 

  Memory[rt + Imm]  rs 

          rs  1                 # Succeed 
 Else: 

          rs  0                 # Fail 
  
BCAS is a simplified CAS instruction that only deals with values 0 and 1. You can use 

temporary registers (tmp1, tmp2, tmp3…) and any algorithmic, logical, memory, and 

branch instructions in the MIPS instruction set.   

 
BCAS old, new, Imm(base): 

         LR   tmp1, Imm(base)  # load M[Imm+base] into tmp1 

         BNE  tmp1, old, fail  # if tmp1 != old, go to fail 

         MOV  tmp2, new        # copy new to tmp2 

         SC   tmp2, Imm(base)  # try to store tmp2  

         BNEZ tmp2, skip       # check if SC succeeds 

         NOR  tmp1, tmp1, tmp1 # invert the value of tmp1  

                                 (since M[Imm+base] is changed) 

  fail:  MOV  old,  tmp1       # copy tmp1 to old 

  skip:  NOP 

    
 

 

 

 

 

 



Last updated: 

10/26/2022 

 

 
Problem M11.10.B  

 

Suppose the hardware where the shared-memory queue from Handout #15 is executed has a 

weak consistency model that relaxes all the orderings of reads and writes. Give an example of 

memory orderings between the producer and consumer that would result in incorrect behavior. 

Please fully explain your answer to get full credit.  

 

Your memory ordering example should look something like: 
P1, C2, P2, C4, P4, C5, C7, C9, C10 

 

 

If the tail write is visible to the consumer before the message write, then we have a problem. 

Thus any sequence that contains the subsequence: 

 
P4, C7, P2 

 

will read an invalid message. 

 

 

 

 

 



Last updated: 

10/26/2022 

 

 

Problem M11.10.C  

 

Please add the minimum number of memory fences (FENCEWR, FENCERW, FENCEWW, or 

FENCERR) to the producer and consumer codes to ensure correctness with a weak consistency 

model. Please explain your answer fully. 

 

Code for producer to enqueue a message: 

 
P1: LD  R3, 0(R2) # get tail pointer 
 
 

P2: ST  R1, 0(R3) # write message to tail 
 
 

P3: ADD R3, R3, 4 # update tail pointer 

    FENCEWW # don’t update tail before writing message 
 

P4: ST  R3, 0(R2)  
 

 

Code for consumer to dequeue a message: 

 
C1: SpinLock: MOV  R6, R0        # set R6 to 0 
 
 

C2:           CAS  R6, R5, 0(R4) # try to acquire lock 
 
 

C3:       BNEZ R6, SpinLock 

    FENCEWR # don’t read head pointer before getting lock 
 

C4:           LD   R7, 0(R2)    # get head pointer 

 
 

C5: Retry:    LD   R8, 0(R3)    # get tail pointer 

 
 

C6:      BEQ  R7, R8, Retry # is there a message? 

    FENCERR # don’t read message before tail is updated 
 

C7:           LD   R1, 0(R7)    # read message from queue 

 
 

C8:       ADD  R7, R7, 4    # update head pointer 

 
 

C9:       ST   R7, 0(R2)      

    FENCEWW # don’t release lock before updating head 
 

C10:          ST   R0, 0(R4)     # release lock  
 


