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Problem M12.1: Networks-on-Chip 

 

Problem M12.1.A                                                                                                                      

Consider a flow control method similar to circuit switching but where the request message 

'reserves' each channel for a fixed period of time in the future (for example, for 10 cycles 

since a reservation is made). At each router along the path, a reservation is made if a 

request from a neighbor can be accommodated. If the request cannot be accommodated a 

NACK is sent that cancels all previous recommendations for the connection, and the 

request is retired. If a request reaches the destination, an acknowledgement is sent back to 

the source, confirming all reservations. 

 
Draw a time-space diagram of a situation that demonstrates the advantage of reservation 

circuit switching over conventional circuit switching. 

 
Clearly, this scheme eliminates the overhead of establishing connections for every 

packet. For example, if a source is sending out short packets (two data flits per packet) 

and the reservation window is 10 cycles, the time-space diagram looks like the 

following: 
 

 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

Note that tail flits may be able to get eliminated in this new scheme if they are used 

only to indicate when channels can be deallocated. 
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Problem M12.1.B   

 

(a) Randomized dimension-order: All packets are routed minimally. Half of the packets 

are routed completely in the X dimension before the Y dimension and the other packets 

are routed Y before X. 

 
No, this generates a cycle in CDG. 

 

 

A  B  C 
 
 

D  E  F 
 
 

G  H  I 
 

 

In the CDG corresponding to the mesh network above, for example, 

EF→FC→CB→BE→EF generates a cycle (Flow E-F-C, flow F-C-B, flow C-B-E, and 

flow B-E-F will generate a deadlock). 

 
(b) Less randomized dimension-order: All packets are routed minimally. Packets whose 

minimal direction is increasing in both X and Y, always route X before Y. Packets whose 

minimal direction is decreasing in both X and Y, always route Y before X. All other 

packets randomly choose between X before Y and vice versa. 

 
Yes. This effectively eliminates the following two turns. 

 
 
 
 
 
 
 

 
This corresponds to the third turn model, 'negative-first' model, which is 

deadlock-free. (c) All packets are prohibited to take the two turns in dash: 

 
 
 
 
 

No. In the 3-by-3 mesh network in part (a), EB->BC->CF->FE->ED->DG->GH->GE->EB 

generates a cycle. 



 

 

 

Problem M12.2: Non-mesh Networks 
 
Problem M12.2.A   

 

Fill in the following table of the properties of this network. 

 

Diameter 2 

Average Distance 7/8 

Bisection Bandwidth 6 flit/cycle 
 

Including self-loops, there are 16 unique (source, destination) pairs. Among them, only 

the routing distance of B-to-D and A-to-C is 2 hops (which is the diameter of this 
network), four of them are 0 hops, and all others are 1. Therefore, the average distance is 
(0*4 + 1*10 + 2*2)/16 = 7/8 hops. 

 

A 
 

 
 

B D 
 

 
 

C 
 
 

And the bisection bandwidth is 6 flit/cycle. 
 

 
 

 Problem M12.2.B   

 

Draw the channel dependency graph of this network. 



 

 

 

Problem M12.2.C   

 

Is a minimal routing on this network deadlock-free? Show your reasoning and give a 

deadlock scenario if it is not deadlock -free. 

 
Yes. In minimal routing, all flows except for the ones from B to D and from A to C have 

1-hop distance, which is represented by a single node in CDG; they are not holding 

resources while waiting for another because they need only one resource. The 

dependencies of flow from B to D and from A to C are represented in the CFG as 

following (note that each flow can take two possible minimal routes): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are no cycles in the CDG, thus the routing is deadlock-free. 
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Problem M12.2.D                                                                                                                              

Now, we use a possibly non-minimal routing on this network. Plus, we prohibited the 

following two movements on the non-minimal routing: 1) A to D then D to C and 2) B to 

C then C to D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Is this routing deadlock-free? Show your reasoning and give a deadlock scenario if 

it is not deadlock -free. 

 
No. 

 
Prohibiting those movements, the CDG becomes: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, there are still cycles in this CDG. For example, if flow 1 from B to D is routed 

through B-C-A-D, flow 2 from C to B is routed through C-A-D-B, and flow 3 from A to C 

is routed through A-D-B-C, there can be deadlock by these three flows.
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 Problem M12.2.E   

 

Still having the two paths in M12.2.D prohibited, we added another restriction in routing: the 

link from C to A can be used only by packets generated at C, before the packets are transferred to 

any other nodes (it should be the first link those packets ever take). Also, the link from D to B can 

be used only by packets generated at D with the same condition (however, routes may be non-

minimal). 

 
Is this routing deadlock-free? Show your reasoning and give a deadlock scenario if it is not 

deadlock -free. 
 

Yes. 

 
These conditions effectively eliminate any turns cornered at C and moving out to A, and any 

turns cornered at D and moving out to B. Then the CDG becomes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This CDG is acyclic, thus this routing is deadlock-free. 
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Problem M12.3: Networks (Spring 2020 Quiz 3, Part B) 

 
 

Problem M12.3.A  

 

Consider a fully connected network topology with N nodes, where each node is directly 

connected to all (N-1) other nodes.  

 

 

(a) What is the total number of network links? 

 

N*(N-1)/2  

 

Note that we count each bi-directional link only once. 

 

 

 

 

(b) What is the diameter of the network?  

 

 

 1 

 

 

 

 

 

 

(c) What is the bisection bandwidth this network? You may assume N is even, and only consider 

bisections that divide the number of nodes into equal halves. 

 

 

Consider the N/2 nodes on one side of the partition. Each of those nodes will have N/2 

links connecting to nodes on the other side.  

 

N/2 * N/2 = N2 / 4 Alternative solution method: The bisection yields two fully-connected 

components of size N/2, so using the formula from part (a), the cut must have removed a 

number of links equal to the difference between a single network of size N and two 

networks of size N/2:  

 

N*(N-1)/2 - 2 * (N/2)*(N/2 – 1)/2 = N2 / 4 
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Problem M12.3.B  

 

Consider a star topology, where only a central node is connected 

to all (N-1) other nodes. The diagram to the right shows a star 

topology with N=8 nodes for illustration purposes. When 

answering the questions below, provide answers for N-node star 

networks (not for N=8).  

 

 

 

(a) What is the total number of network links?  

 

 

 N-1 

 

 

 

 

(b) What is the diameter of the network?  

 

 

 

 2 

 

 

 

 

(c) What is the bisection bandwidth this network? You may assume N is even, and only consider 

bisections that divide the number of nodes into equal halves.  

 

 

 N/2 

 

 

 

 

(d) Assume a dedicated buffer to receive flits at each end of each bidirectional link. If 180-

degree turns are prohibited in this topology and messages are routed on minimal-length paths, 

can deadlock occur in this network 

 

 

No. The network has no cycles  
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Problem M12.4: The Truth Will Set You Free (Spring 2014 Quiz 4, Part III) 
 

Problem M12.4.A Peanuts 

 

Snoopy coherence protocols rely on broadcast communication to detect sharing and updates. 

These are conventionally implemented using bus networks that allow for one message to be sent 

at a time to all nodes on the network. 

 

Ben Bitdiddle is implementing a bus-based snoopy coherence protocol. One fifth of instructions 

access memory, and one quarter of these miss in the core’s local cache (either because the line is 

invalid or doesn’t have necessary permissions). Assuming each memory operation consists of a 

request and acknowledgement, the network traffic per core is therefore: 
1

5
×

1

4
× 2 =

1

10

messages

instruction
. Assume all messages fit within a single network flit. 

 

Assuming a fixed IPC of 1, perfect bus arbitration, and infinite buffers, how many cores can the 

bus support? 

 

 
 

A bus has an aggregate throughput of 1 message per cycle. 

 

A memory operation requires 2 messages on 1/20 of instructions, or 1/10 messages per cycle. 

 

The number of cores this system can support is 1 = 𝑁/10 so 𝑁 = 10. 
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Problem M12.4.B ... To rule them all  

 

Ben needs to build a larger system than the bus network will allow, so he changes the system to 

use a unidirectional ring network. In this design, the core issuing the memory operation sends the 

request around the ring, and each node along the way either forwards the request or replaces it 

with its response. Assuming fixed IPC of 1 and a single-cycle per hop in the network, at how 

many cores will this design saturate? 

 

 
 

The ring with 𝑁  cores has an aggregate throughput of 𝑁  messages per cycle. (It is a 

unidirectional ring.) 

 

Each memory operation requires one circuit around the ring, or 𝑁  messages. Each core 

produces one request every 20 instructions, so the messages generated per core is 𝑁/20. 
 

Thus the number of cores is 𝑁 = 𝑁/(𝑁/20) = 20. 
 

Maybe a simpler way to see this is that with the bus, each memory operation required global 

communication twice (for the request and response). In the ring, each memory request requires 

global communication only once—since ~half the nodes see the request and the rest simply 

forward the response. Since we are placing half the demand on the network, we can support 

twice as many cores.  
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Problem M12.4.C Matryoshka  

 

Ben next explores the tradeoffs in cache design between an inclusive cache, where the parent 

always has a copy of every line in the child’s cache, and non-inclusive caches, where this isn’t 

guaranteed. 

 

Give one advantage and one disadvantage of a non-inclusive cache design. 

 

Non-inclusive caches allow the parent cache to get rid of a copy of a line without invalidating the 

child’s copy. This essentially increases the capacity of the parent cache, since it can use the space 

to store new lines instead of copies of the child’s contents. 

 

The downside of this is that the parent no longer knows from looking at its own contents whether 

or not a child has a line. This makes coherence more expensive since the parent must now check 

with the children to see if they have a line, for example to process an invalidate when the line is 

written elsewhere. 

 

One way to try to get the best of both worlds is to separate coherence tracking and data storage 

into separate structures. So rather than having the directory in the cache tags, the directory is a 

separate structure. This directory can be kept inclusive with the cache non-inclusive. 
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Problem M12.5: Network-on-chip (Spring 2015 Quiz 3, Part A) 
 

Problem M12.5.A  

 

Consider the router in Handout 16. Assume this router has one virtual channel per physical 

link. Suppose two packets, A and B, are traversing the router. Both are routed to output unit 2, as 

shown in the following waterfall diagram. 

  

 
 

 

Before cycle 1, packet B’s head flit has finished RC and VA. In the following cycles, packet B’s 

four flits traverse SA and ST without stalls. Packet A’s head flit completes routing computation 

at cycle 1 and tries to allocate an output virtual channel starting at cycle 2. Unfortunately, the 

only output virtual channel compatible with its route is occupied by packet B, so packet A’s head 

flit fails to allocate a VC and is unable to make progress until packet B’s tail flit releases the VC. 

 

Fill in the following table showing the state of packet A’s input virtual channel. 

  

Cycle G R O 

1 R - - 

2 V Output 2 - 

3 V Output 2 - 

4 V Output 2 - 

5 V Output 2 - 

6 A Output 2 VC1 

7 A Output 2 VC1 

8 
A 

 
Output 2 VC1 
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Problem M12.5.B  

 

Suppose the router in Handout 16 is improved with speculative switch allocation. Head flits 

attempt VC and switch allocation in the same cycle. If both succeed, the head flit traverses the 

switch on the next cycle, as shown in the waterfall diagram below. 

 

 
 

 

Consider the same scenario as in question 1, with packets A and B going to the same output unit. 

Assume that non-speculative switch allocation requests are always prioritized over 

speculative ones (i.e., those from flits without a VC). Fill in the following waterfall diagram to 

show how packet A is routed. 

 

Cycle 1 2 3 4 5 6 7 8 

A: Head Flit RC - - - 
VA 

SA 
ST   

A: Body Flit 1      SA ST  

A: Body Flit 2       SA ST 

B: Body Flit 1 SA ST       

B: Body Flit 2 - SA ST      

B: Body Flit 3 - - SA ST     

B: Tail Flit - - - SA ST    
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Problem M12.5.C  

 
Consider the same speculative switch allocation optimization as in question 2. Unfortunately, 

always prioritizing non-speculative switch allocation requests over speculative ones increases the 

critical path too much, so we opt for a simpler switch allocator that is oblivious to whether 

requests are speculative. 

 

We want to analyze the performance of this simpler design under the following scenario: 

• All packets in the router are single-flit packets. 

• The probability that a packet successfully obtains a VC on its first try is 75%. 

• The probability that a flit successfully allocates the switch on its first try is 80%. 

• If a packet fails either virtual channel or switch allocation on its first try, it always 

succeeds on its second try. 

 

 

1) What percentage of allocated timeslots on the switch goes unused? 

 

 

The switch is unused when the packet get the switch but not VC. 

  

 0.25 * 0.8 = 0.2 

 

 

2) What is the average latency to go through this speculative router? 

 

If both VA and SA succeed, the latency is 3 cycle. Otherwise, it is 4 cycles 

 

Average latency  = 3 * 0.75 * 0.8 + 4 * (1 – 0.75 * 0.8) = 3.4 cycles 

 

 

 

 

 

3) Briefly explain the effect of this optimization on network performance at both very low 

loads and very high loads (near saturation). 

 

For very low loads, the speculation almost always succeeds, so the average latency is 

lower. For very high loads, the speculation fails frequently so the switch is not highly 

utilized, and the average latency is higher. 
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Problem M12.5.D  

 
Ben Bitdiddle wants to implement the Valiant routing algorithm, which routes each packet 

through a randomly-chosen intermediate node. He uses routers with two virtual channels per 

physical link. He decides to use X-Y routing between the source node and intermediate node, 

and Y-X routing between the intermediate node and the destination node. However, Alyssa 

points out this routing algorithm will not work without further modification. Explain why this is 

the case and provide a solution for Ben. 

 

Ben’s routing algorithm will cause deadlock 

 

To solve this problem, Ben should allocate one virtual channel for X-Y routing, and another for 

Y-X routing. Note that using X-Y only still causes deadlock since there will be a forbidden turn 

when passing through the intermediate node.   

 

 ( Source -X-Y-intermediate node-X-Y-destination ) 

          ^^^^^^^^^^^^^^^^^^^^^^ 

   This is turn in Y-X routing 

 

Unless the intermediate node has infinite buffer, using X-Y or Y-X only still deadlocks. 
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Problem M12.6: Network-on-chip (Spring 2016 Quiz 3, Part D) 
 

Problem M12.6.A  

 
Determine whether the following routing algorithms are deadlock-free for a 2D-mesh. State your 

reasoning. 

 

a) (3 points) Randomized dimension-order: All packets are routed minimally. Half of the 

packets are routed completely in the X dimension before the Y dimension, and the other 

packets are routed in the Y dimension before the X dimension. 

Not deadlock-free. All turns in the turn model are allowed, and hence not deadlock-free. 

Alternatively, you may argue that the CDG has a cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

b) (3 points) Less randomized dimension-order: All packets are routed minimally. Packets 

whose minimal direction is increasing in both X and Y always route X before Y. Packets 

whose minimal direction is decreasing in both X and Y always route Y before X. All 

other packets choose randomly between X before Y and vice-versa. 

Deadlock-free. In essence, this prevents north-to-east and west-to-south turns in the turn 

model which is sufficient to prevent deadlock.  
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Problem M12.6.B  

 

Consider the following topology: 

 

 

 

 

 

 

 

 

 

 

 
 

 

(a) (2 points) What is the diameter of this topology? 

      3 

 

 

 

 

(b) (2 points) What is the bisection bandwidth (in flits/cycle) of this topology? 

       4 

 

 

 

 

(c) (5 points) Assume that 180-degree turns are prohibited. No other turns are prohibited. Show 

how deadlock could arise in the given topology.  

      AB → BD → DE → EA → AB is a cycle in the CDG 

 

 

 

 

 

 

 

 

 

 

A

E

B

D

F C
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(d) (10 points) We now restrict all routes to be minimal and disallow the following turns on the 

mesh (among the nodes A, B, E, D): north-to-east, north-to-west, south-to-east, south-to-west. Is 

the routing strategy deadlock-free? Draw the CDG to justify your answer. 

 

Deadlock-free as shown by the CDG below. 

BCABBD

FA

AEBACB

AF

EADEEF

CD

DBEDFE

DC


