
Last updated:

11/3/2022

Problem M13.1: Sequential Consistency

For this problem we will be using the following sequences of instructions. These are small

programs, each executed on a different processor, each with its own cache and register set. In the

following R is a register and X is a memory location. Each instruction has been named (e.g., B3)

to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C

A1: ST X, 1 B1: R := LD X C1: ST X, 6

A2: R := LD X B2: R := ADD R, 1 C2: R := LD X

A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R

A4: ST X, R B4: R:= LD X C4: ST X, R

 B5: R := ADD R, R

 B6: ST X, R

For each of the questions below, please circle the answer and provide a short explanation

assuming the program is executing under the SC model. No points will be given for just

circling an answer!

Problem M13.1.A

Can X hold value of 4 after all three threads have completed? Please explain briefly.

Yes / No

Problem M13.1.B

Can X hold value of 5 after all three threads have completed?

Yes / No

Last updated:

11/3/2022

Problem M13.1.C

Can X hold value of 6 after all three threads have completed?

Yes / No

Problem M13.1.D

For this particular program, can a processor that reorders instructions but follows local

dependencies produce an answer that cannot be produced under the SC model?

Yes / No

Last updated:

11/3/2022

Problem M13.2: Relaxed Memory Models

Consider a system which uses Weak Ordering, meaning that a read or a write may complete

before a read or a write that is earlier in program order if they are to different addresses and there

are no data dependencies.

Our processor has four fine-grained memory barrier instructions:

• MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen

before any read operation initiated after it.

• MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen

before any write operation initiated after it.

• MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be

seen before any read operation initiated after it.

• MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be

seen before any write operation initiated after it.

We will study the interaction between two processes on different processors on such a system:

P1 P2

P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)

P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8)

P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We begin with following values in registers and memory (same for both processes):

register/memory Contents

R2 0

R3 0

R4 0

R5 8

R8 0x01234567

R9 0x89abcdef

M[R8] 6

M[R9] 7

After both processes have executed, is it possible to have the following machine state? Please

circle the correct answer. If you circle Yes, please provide sequence of instructions that lead to

the desired result (one sequence is sufficient if several exist). If you circle No, please explain

which ordering constraint prevents the result.

Last updated:

11/3/2022

Problem M13.2.A

Memory contents

M[R8] 7

M[R9] 6

Yes No

Problem M13.2.B

memory Contents

M[R8] 6

M[R9] 7

Yes No

Problem M13.2.C

Is it possible for M[R8] to hold 0?

Yes No

Last updated:

11/3/2022

Now consider the same program, but with two MEMBAR instructions.

P1 P2

P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)

P1.2: SW R2, 0(R9) MEMBARRW

 MEMBARWR P2.2: SW R5, 0(R8)

P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We want to compare execution of the two programs on our system.

Problem M13.2.D

If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Problem M13.2.E

If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Last updated:

11/3/2022

Page 6 of 12

Problem M13.2.F

Is it possible for both M[R8] and M[R9] to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Last updated:

11/3/2022

Page 7 of 12

Problem M13.3: Memory Models

Consider a system which uses Sequential Consistency (SC). There are three processes, P1, P2

and P3, on different processors on such a system (the values of RA, RB, RC were all zeros

before the execution):

P1 P2 P3

P1.1: ST (A), 1 P2.1: ST (B), 1 P3.1: ST (C), 1

P1.2: LD RC, (C) P2.2: LD RA, (A) P3.2: LD RB, (B)

Problem M13.3.A

After all processes have executed, it is possible for the system to have multiple machine states. For

example, {RA, RB, RC}= {1,1,1} is possible if the execution sequence of instructions is

P1.1→P2.1→P3.1→P1.2→P2.2→P3.2. Also, {RA, RB, RC}= {1,1,0} is

possible if the sequence is P1.1 → P1.2 → P2.1 → P3.1 → P2.2 → P3.2.

For each state of {RA, RB, RC} below, specify the execution sequence of instructions that

results in the corresponding state. If the state is NOT possible with SC, just put X.

{0,0,0} : X

{0,1,0} : P2.1 P2.2 P1.1P1.2P3.1 P3.2

{1,0,0} : P1.1 P1.2 P3.1 P3.2 P2.1 P2.2

{0,0,1} : P3.1 P3.2 P2.1 P2.2 P1.1 P1.2

Last updated:

11/3/2022

Page 8 of 12

Problem M13.3.B

Now consider a system which uses Weak Ordering(WO), meaning that a read or a write may

complete before a read or a write that is earlier in program order if they are to different addresses

and there are no data dependencies.

Does WO allow the machine state(s) that is not possible with SC? If yes, provide an execution

sequence that will generate the machine states(s).

Yes. {0,0,0} by P1.2→P2.2→P3.2→P1.1→P2.1→P3.1

Problem M13.3.C

The WO system in Problem M13.3.B provides four fine-grained memory barrier instructions.

Below is the description of these instructions.

- MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen

before any read operation initiated after it.

- MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen

before any write operation initiated after it.

- MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be seen

before any read operation initiated after it.

- MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be seen

before any write operation initiated after it.

Using the minimum number of memory barrier instructions, rewrite P1, P2 and P3 so the

machine state(s) that is not possible with SC by the original programs is also not possible with

WO by your programs.

P1 P2 P3

P1.1: ST (A), 1

P2.1: ST (B), 1

P3.1: ST (C), 1

MEMBARWR MEMBARWR MEMBARWR

P1.2: LD RC, (C)

P2.2: LD RA, (A)

P3.2: LD RB, (B)

Last updated:

11/3/2022

Page 9 of 12

Problem M13.4: Memory Consistency (Spring 2020 Quiz 3, Part B)

Consider a shared-memory machine that executes the following two threads on two different

cores. Assume that memory locations a and b contain initial value 0.

Problem M13.4.A

If the machine implements sequential consistency, what execution outcomes (i.e., values of r1,

r2, r3, and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

Last updated:

11/3/2022

Page 10 of 12

Problem M13.4.B

If the machine implements the Total Store Order (TSO) consistency model, what execution

outcomes (i.e., values of r1, r2, r3, and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

Problem M13.4.C

If the machine implements a relaxed consistency model, RMO, which allows loads and stores

to be reordered after later loads and stores, what execution outcomes (i.e., values of r1, r2, r3,

and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

Last updated:

11/3/2022

Page 11 of 12

Problem M13.4.D

The relaxed consistency model (RMO) has the following fine-grained barrier instructions:

• MEMBARRR guarantees that all reads that precede MEMBARRR in program order will be

performed before any read that follows the barrier.

• MEMBARRW guarantees that all reads that precede MEMBARRW in program order will be

performed before any write that follows the barrier.

• MEMBARWR guarantees that all writes that precede MEMBARWR in program order will be

performed before any read that follows the barrier.

• MEMBARWW guarantees that all writes that precede MEMBARWW in program order will be

performed before any write that follows the barrier.

Add barrier instructions to T1 and T2 so that the RMO machine produces the same outputs as the

SC machine for this code. Use the minimum number of memory barrier instructions. List the

locations of each barrier below (e.g., “Add MEMBARRR after T1.1”).

Last updated:

11/3/2022

Page 12 of 12

Problem M13.4.E

Consider a shared-memory machine that executes the following four threads on four cores.

Assume that memory location a contains initial value 0.

If the machine implements the TSO consistency model, can it produce the following execution

outcome (r1, r2, r3, r4) = (1, 2, 2, 1)

Problem M13.4.F

Ben Bitdiddle modifies the above TSO machine. The original machine has one thread per core.

Ben implements multi-threading, making each core support 2 thread contexts. The threads

running on the same core share a single committed store buffer.

This machine executes the four threads in Question 5. T1 and T3 run on Core 0, and T2 and T4

run on Core 1. Can this machine produce the following execution outcome (r1, r2, r3, r4) = (1, 2,

2, 1)?

Problem M13.4.G

Does the machine described in Question 6 still maintain TSO

