Last updated:
11/3/2022

Problem M13.1: Sequential Consistency

For this problem we will be using the following sequences of instructions. These are small
programs, each executed on a different processor, each with its own cache and register set. In the
following R is a register and X is a memory location. Each instruction has been named (e.g., B3)
to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C
Al:ST X, 1 Bl:R:=LD X Cl:ST X, 6
A2:R:=LD X B2: R:=ADDR, 1 C2:R:=LDX
A3:R:=ADDR,R |B3:STX,R C3:R:=ADDR,R
A4:ST X, R B4:R:=LD X C4:STX,R
B5:R:=ADDR,R
B6: ST X, R

For each of the questions below, please circle the answer and provide a short explanation
assuming the program is executing under the SC model. No points will be given for just
circling an answer!

Problem M13.1.A

Can X hold value of 4 after all three threads have completed? Please explain briefly.

Yes / No

Problem M13.1.B

Can X hold value of 5 after all three threads have completed?

Yes [/ No

Last updated:
11/3/2022

Problem M13.1.C

Can X hold value of 6 after all three threads have completed?

Yes |/ No

Problem M13.1.D

For this particular program, can a processor that reorders instructions but follows local
dependencies produce an answer that cannot be produced under the SC model?

Yes |/ No

Last updated:
11/3/2022

Problem M13.2: Relaxed Memory Models

Consider a system which uses Weak Ordering, meaning that a read or a write may complete
before a read or a write that is earlier in program order if they are to different addresses and there
are no data dependencies.

Our processor has four fine-grained memory barrier instructions:

. MEMBARgg guarantees that all read operations initiated before the MEMBARzz Will be seen
before any read operation initiated after it.

. MEMBARgy guarantees that all read operations initiated before the MEMBARgy Will be seen
before any write operation initiated after it.

. MEMBARyr guarantees that all write operations initiated before the MEMBARyr will be
seen before any read operation initiated after it.

. MEMBARyyw guarantees that all write operations initiated before the MEMBARyy will be
seen before any write operation initiated after it.

We will study the interaction between two processes on different processors on such a system:

Pl P2
P1.1: LW R2, O(R8) P2.1: LW R4, O(R9)
P1.2: SW R2, 0(R9) P2.2: SW R5, 0 (R8)
P1.3: LW R3, O(R8) P2.3: SW R4, 0 (R8)

We begin with following values in registers and memory (same for both processes):

register/memory | Contents
R2 0
R3 0
R4 0
R5 8
R8 0x01234567
R9 0x89abcdef
M[R8] 6
M[R9] 7

After both processes have executed, is it possible to have the following machine state? Please
circle the correct answer. If you circle Yes, please provide sequence of instructions that lead to
the desired result (one sequence is sufficient if several exist). If you circle No, please explain
which ordering constraint prevents the result.

Problem M13.2.A

Last updated:
11/3/2022

Memory contents
M[R8] 7
M[R9] 6

Yes No

Problem M13.2.B

memory Contents
MI[R8] 6

M[R9] 7

Yes No

Problem M13.2.C

Is it possible for M[R8] to hold 0?

Yes No

Last updated:
11/3/2022

Now consider the same program, but with two MEMBAR instructions.

Pl P2

P1.1: LW R2, O(R8) P2.1: LW R4, O0(R9)
P1.2: SW R2, 0(R9) MEMBARzy

MEMBARuz P2.2: SW R5, 0(R8)

P1.3: LW R3, O(R8) P2.3: SW R4, O(R8)

We want to compare execution of the two programs on our system.

Problem M13.2.D

If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Problem M13.2.E

If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Last updated:
11/3/2022

Problem M13.2.F

Is it possible for both M[R8] and M[R9] to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Page 6 of 12

Last updated:
11/3/2022

Problem M13.3: Memory Models

Consider a system which uses Sequential Consistency (SC). There are three processes, P1, P2
and P3, on different processors on such a system (the values of Ra, Rz, Rc were all zeros
before the execution):

Pl P2 P3
P1.1: ST (A), 1 pP2.1: ST (B), 1 P3.1: ST (C), 1
P1.2: LD Re, (C) P2.2: LD Ra, (A) P3.2: LD Rg, (B)

Problem M13.3.A

After all processes have executed, it is possible for the system to have multiple machine states. For
example, {Ra, Rs, Rc}= {1,1,1} ispossible if the execution sequence of instructions is
P1.1—P2.1—-P3.1—P1.2—P2.2—P3.2. Also, {Ra, Re, Rc}= {1,1,0} is
possible if the sequenceisP1.1 —P1.2 —P2.1 —P3.1 —»P2.2 — P3.2.

For each state of {Ra, Rs, Rc} below, specify the execution sequence of instructions that
results in the corresponding state. If the state is NOT possible with SC, just put X.

{0,0,0}:
{0,1,0}:
{1,0,0}:

{0,0,1}:

Page 7 of 12

Last updated:
11/3/2022

Problem M13.3.B

Now consider a system which uses Weak Ordering(WQO), meaning that a read or a write may
complete before a read or a write that is earlier in program order if they are to different addresses
and there are no data dependencies.

Does WO allow the machine state(s) that is not possible with SC? If yes, provide an execution
sequence that will generate the machine states(s).

Problem M13.3.C

The WO system in Problem M13.3.B provides four fine-grained memory barrier instructions.
Below is the description of these instructions.

- MEMBARRgr guarantees that all read operations initiated before the MEMBARgr Will be seen
before any read operation initiated after it.
- MEMBARgy guarantees that all read operations initiated before the MEMBARzx Will be seen
before any write operation initiated after it.
- MEMBARyr guarantees that all write operations initiated before the MEMBARyr will be seen
before any read operation initiated after it.
- MEMBARyy guarantees that all write operations initiated before the MEMBARyw Will be seen
before any write operation initiated after it.

Using the minimum number of memory barrier instructions, rewrite P1, P2 and P3 so the
machine state(s) that is not possible with SC by the original programs is also not possible with
WO by your programs.

Pl P2 P3
P1.1: ST (a), 1 P2.1: ST (B), 1 P3.1: ST (C), 1
P1.2: LD Re, (C) P2.2: LD Ra, (A) P3.2: LD Rs, (B)

Page 8 of 12

Last updated:
11/3/2022

Problem M13.4: Memory Consistency (Spring 2020 Quiz 3, Part B)

Consider a shared-memory machine that executes the following two threads on two different
cores. Assume that memory locations a and b contain initial value @.

T1 T2

T1.1: Store (a) € 1 |T2.1: Store (b) € 1
T1.2: Load rl €& (a) |T2.2: Load r2 <« (b)
T1.3: Load r3 & (b) |T2.3: Load r4 < (a)

Problem M13.4.A

If the machine implements sequential consistency, what execution outcomes (i.e., values of rl,
r2, r3, and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

Page 9 of 12

Last updated:
11/3/2022

Problem M13.4.B

If the machine implements the Total Store Order (TSO) consistency model, what execution
outcomes (i.e., values of r1, r2, r3, and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

Problem M13.4.C

If the machine implements a relaxed consistency model, RMO, which allows loads and stores
to be reordered after later loads and stores, what execution outcomes (i.e., values of rl1, r2, r3,

and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

Page 10 of 12

Last updated:
11/3/2022

Problem M13.4.D

The relaxed consistency model (RMO) has the following fine-grained barrier instructions:

MEMBARRgr guarantees that all reads that precede MEMBARRg in program order will be
performed before any read that follows the barrier.

MEMBARRw guarantees that all reads that precede MEMBARRy in program order will be
performed before any write that follows the barrier.

MEMBARyr guarantees that all writes that precede MEMBARyr in program order will be
performed before any read that follows the barrier.

MEMBARuy guarantees that all writes that precede MEMBARw in program order will be
performed before any write that follows the barrier.

Add barrier instructions to T1 and T2 so that the RMO machine produces the same outputs as the
SC machine for this code. Use the minimum number of memory barrier instructions. List the
locations of each barrier below (e.g., “Add MEMBARgr after T1.1”).

T1 T2

T1.1: Store (a) € 1 |T2.1: Store (b) € 1
T1.2: Load rl € (a) |T2.2: Load r2 € (b)
T1.3: Load r3 €& (b) |T2.3: Load rd € (a)

Page 11 of 12

Last updated:
11/3/2022

Problem M13.4.E

Consider a shared-memory machine that executes the following four threads on four cores.
Assume that memory location a contains initial value 0.

T1 T2 T3 T4

Store (a) € 1 |Store (a) € 2 |Load rl €« (a) |Load r3 « (a)
Load r2 € (a) |Load r4 & (a)

If the machine implements the TSO consistency model, can it produce the following execution
outcome (r1,r2,r3,rd) = (1, 2, 2,1)

Problem M13.4.F

Ben Bitdiddle modifies the above TSO machine. The original machine has one thread per core.
Ben implements multi-threading, making each core support 2 thread contexts. The threads
running on the same core share a single committed store buffer.

This machine executes the four threads in Question 5. T1 and T3 run on Core 0, and T2 and T4
run on Core 1. Can this machine produce the following execution outcome (r1, r2, r3, r4) = (1, 2,
2,1)?

Problem M13.4.G

Does the machine described in Question 6 still maintain TSO

Page 12 of 12

