Last updated:
11/3/2022

Problem M13.1: Sequential Consistency

Problem M13.1.A

/No

C1-C4, B1-B3, A1-A4, B4- B6

Problem M13.1.B

Yes /

All results must be even!

Problem M13.1.C

/No

All of C, All of A, All of B

Problem M13.1.D

Yes /

All stores/loads must be done in order because they’re to the same address, so no new results are
possible.

Last updated:
11/3/2022

Problem M13.2: Relaxed Memory Models [? Hours]

We will study the interaction between two processes on different processors on such a system:

Pl P2
P1.1: LW R2, O(R8) P2.1: LW R4, O(R9)
P1.2: SW R2, O0(R9) P2.2: SW R5, O(R8)
P1.3: LW R3, O(R8) P2.3: SW R4, O(R8)

Problem M13.2.A

Memory contents
M[RS8] 7
M[R9] 6

No

P1.1P2.1P1.2P1.3P2.2P2.3

Problem M13.2.B

memory Contents
M[R8] 6
M[R9] 7

Yes

The result would require that the memory contents don’t change. Since each thread reads a data
value and writes it to another address, this simply impossible here.

Problem M13.2.C

The only way that M[R8] could end up with 0 is if P2.3 is completed before P2.1 and P2.2. This
violates Weak Ordering, so it is not possible.

Now consider the same program, but with two MEMBAR instructions.

Last updated:

11/3/2022
P1 P2
P1.1: LW R2, O(R8) P2.1: LW R4, O(R9)
P1.2: SW R2, O(R9) MEMBARzx
MEMBARyz: P2.2: SW R5, 0(R8)
P1.3: LW R3, O(R8) P2.3: SW R4, O(R8)

We want to compare execution of the two programs on our system.
Here the intention was to keep the starting conditions the same as in first three questions, and ask

about the final conditions. This wasn’t clear, so we accepted both solutions. The yes/no
answers don’t actually change, but Questions 11 for 12 become simpler.

Problem M13.2.D

With MEMBAR instructions? No

Without MEMBAR instructions? No

Following sequence works with and without MEMBAR instructions:
P1.1->P1.2->P2.1->P2.2->P1.3->P2.3

Problem M13.2.E

Without MEMBAR instructions? Yes
With MEMBAR instructions? Yes

If M[R8] and M[R9] are to end up with 7, we have to execute P2.3 before we execute P1.1 Since
P1.3 has to come after P1.1 (Weak Ordering), R3, has to end up with 7 not 6.

Last updated:
11/3/2022

Problem M13.2.F

Without MEMBAR instructions? No

P2.2P1.1P1.2P2.1P2.3P1.3

With MEMBAR instructions? Yes

The sequence above violates the MEMBAR in P2—P2.2 executes before P2.1. That is the only
way to get 8 into both memory locations, thus the result is impossible with MEMBARs insterted.

Page 4 of 10

Last updated:
11/3/2022

Problem M13.3: Memory Models

Consider a system which uses Sequential Consistency (SC). There are three processes, P1, P2
and P3, on different processors on such a system (the values of R, Rs, Rc were all zeros
before the execution):

Pl P2 P3
P1.1: ST (A), 1 P2.1: ST (B), 1 P3.1: ST (C), 1
P1.2: LD Re, (C) P2.2: LD Ra, (A) P3.2: LD Rg, (B)

Problem M13.3.A

After all processes have executed, it is possible for the system to have multiple machine states. For
example, {Ra, Rs, Rc}= {1,1,1} ispossible ifthe execution sequence of instructions is
P1.1—>P2.1—>P3.1—P1.2—P2.2—P3.2. Also,{Ra, Rs, Rc}= {1,1,0} ispossible
if the sequenceisP1.1 —P1.2 —»P2.1 —»P3.1 —»P2.2 —P3.2.

For each state of {Ra, Rs, Rc} below, specify the execution sequence of instructions that
results in the corresponding state. If the state is NOT possible with SC, just put X.

{0,0,0} : X
{0,1,0} : P2.1 P2.2 P1.1P1.2P3.1 P3.2
{1,0,0} : P1.1 P1.2 P3.1 P3.2 P2.1 P2.2

{0,0,1} : P3.1 P3.2P2.1 P2.2 P11 P1.2

Page 5 of 10

Last updated:
11/3/2022

Problem M13.3.B

Now consider a system which uses Weak Ordering(WO), meaning that a read or a write may
complete before a read or a write that is earlier in program order if they are to different addresses
and there are no data dependencies.

Does WO allow the machine state(s) that is not possible with SC? If yes, provide an execution
sequence that will generate the machine states(s).

Yes. {0,0,0} by P1.2—P2.2—P3.2—P1.1—P2.1—>P3.1

Problem M13.3.C

The WO system in Problem M13.3.B provides four fine-grained memory barrier instructions.
Below is the description of these instructions.

- MEMBARRgr guarantees that all read operations initiated before the MEMBARzrz Will be seen
before any read operation initiated after it.
- MEMBARRgy guarantees that all read operations initiated before the MEMBARzy Will be seen
before any write operation initiated after it.
- MEMBARyr guarantees that all write operations initiated before the MEMBARw= Will be seen
before any read operation initiated after it.
- MEMBARyw guarantees that all write operations initiated before the MEMBARyw will be seen
before any write operation initiated after it.

Using the minimum number of memory barrier instructions, rewrite P1, P2 and P3 so the machine
state(s) that is not possible with SC by the original programs is also not possible with WO by your
programs.

Pl P2 P3
P1.1: ST (Bp), 1 P2.1: ST (B), 1 P3.1: ST (C), 1
MEMBARuz MEMBARuz MEMBARuz
P1.2: LD Re, (C) P2.2: LD Ra, (A) P3.2: LD Rg, (B)

Page 6 of 10

Last updated:
11/3/2022

Problem M13.4: Memory Consistency (Spring 2020 Quiz 3, Part B)

Consider a shared-memory machine that executes the following two threads on two different cores.
Assume that memory locations a and b contain initial value ©.

T1 T2

Tl1.1: Store (a) € 1 |T2.1: Store (b) € 1
T1.2: Load rl €& (a) |[T2.2: Load r2 €« (b)
T1.3: Load r3 € (b) [T2.3: Load rd € (a)

Problem M13.4.A

If the machine implements sequential consistency, what execution outcomes (i.e., values of r1,
r2, r3, and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

rn=1
r2=1
r3, r4 can be any of (0,1) (1,0) or (1,1)

Page 7 of 10

Last updated:
11/3/2022

Problem M13.4.B

If the machine implements the Total Store Order (TSO) consistency model, what execution
outcomes (i.e., values of r1, r2, r3, and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples
rn=1

r2=1

r3, r4 can be anything

Note that TSO allows the following execution:

T1.2 < T1.3 < T1.1 while requiring T1.2 to return the value stored by T.1.1 due to store-load
forwarding. (“<” means happens-before.)

Problem M13.4.C

If the machine implements a relaxed consistency model, RMO, which allows loads and stores to
be reordered after later loads and stores, what execution outcomes (i.e., values of r1, r2, r3, and r4)
can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

Same as TSO.
Store-load forwarding typically exists, so rl and r2 are still 1s.

(0, 0) for (r3, r4) is valid because this simply requires store-load reordering, which is already
allowed by TSO.

Page 8 of 10

Last updated:
11/3/2022

Problem M13.4.D

The relaxed consistency model (RMO) has the following fine-grained barrier instructions:

MEMBARgr guarantees that all reads that precede MEMBARRg in program order will be
performed before any read that follows the barrier.

MEMBARRw guarantees that all reads that precede MEMBARRy in program order will be
performed before any write that follows the barrier.

MEMBARyr guarantees that all writes that precede MEMBARyr in program order will be
performed before any read that follows the barrier.

MEMBARuy guarantees that all writes that precede MEMBARw in program order will be
performed before any write that follows the barrier.

Add barrier instructions to T1 and T2 so that the RMO machine produces the same outputs as the
SC machine for this code. Use the minimum number of memory barrier instructions. List the
locations of each barrier below (e.g., “Add MEMBARgr after T1.1”).

T1 T2

T1.1: Store (a) € 1 |T2.1: Store (b) € 1
T1.2: Load rl € (a) |T2.2: Load r2 € (b)
T1.3: Load r3 €& (b) |T2.3: Load rd € (a)

Place a MEMBARyr between T1.1 and either T1.2 or T1.3 for T1. Same for T2.

Note that MEMBARRr is not helpful since it does not prevent reordering T1.3 and T1.1

Page 9 of 10

Last updated:
11/3/2022

Problem M13.4.E

Consider a shared-memory machine that executes the following four threads on four cores.
Assume that memory location a contains initial value 0.

T1 T2 T3 T4

Store (a) € 1 |Store (a) € 2 |Load rl €« (a) |Load r3 « (a)
Load r2 € (a) |Load r4 & (a)

If the machine implements the TSO consistency model, can it produce the following execution
outcome (r1,r2,r3,rd) = (1, 2, 2,1)

No. Stores from T1 and T2 should appear in the same order for T3 and T4

Problem M13.4.F

Ben Bitdiddle modifies the above TSO machine. The original machine has one thread per core.
Ben implements multi-threading, making each core support 2 thread contexts. The threads
running on the same core share a single committed store buffer.

This machine executes the four threads in Question 5. T1 and T3 run on Core 0, and T2 and T4
run on Core 1. Can this machine produce the following execution outcome (r1, r2, r3, r4) = (1, 2,
2,1)?

Yes. The shared committed store buffer allows T3 to observe T1’s store first, and allows T4 to
observe T2’s store first

Problem M13.4.G

Does the machine described in Question 6 still maintain TSO
No. Compare the answers in Q5 and Q6.

Page 10 of 10

