
Last updated:

11/3/2022

Problem M13.1: Sequential Consistency

Problem M13.1.A

Can X hold value of 4 after all three threads have completed? Please explain briefly.

Yes / No

C1-C4, B1-B3, A1-A4, B4- B6

Problem M13.1.B

Can X hold value of 5 after all three threads have completed?

Yes / No

All results must be even!

Problem M13.1.C

Can X hold value of 6 after all three threads have completed?

Yes / No

All of C, All of A, All of B

Problem M13.1.D

For this particular program, can a processor that reorders instructions but follows local

dependencies produce an answer that cannot be produced under the SC model?

Yes / No

All stores/loads must be done in order because they’re to the same address, so no new results are

possible.

Last updated:

11/3/2022

Problem M13.2: Relaxed Memory Models [? Hours]

We will study the interaction between two processes on different processors on such a system:

P1 P2

P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)

P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8)

P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

Problem M13.2.A

Memory contents

M[R8] 7

M[R9] 6

Yes No

P1.1 P2.1 P1.2 P1.3 P2.2 P2.3

Problem M13.2.B

memory Contents

M[R8] 6

M[R9] 7

Yes No

The result would require that the memory contents don’t change. Since each thread reads a data

value and writes it to another address, this simply impossible here.

Problem M13.2.C

Is it possible for M[R8] to hold 0?

Yes No

The only way that M[R8] could end up with 0 is if P2.3 is completed before P2.1 and P2.2. This

violates Weak Ordering, so it is not possible.

Now consider the same program, but with two MEMBAR instructions.

Last updated:

11/3/2022

P1 P2

P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)

P1.2: SW R2, 0(R9) MEMBARRW

 MEMBARWR P2.2: SW R5, 0(R8)

P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We want to compare execution of the two programs on our system.

Here the intention was to keep the starting conditions the same as in first three questions, and ask

about the final conditions. This wasn’t clear, so we accepted both solutions. The yes/no

answers don’t actually change, but Questions 11 for 12 become simpler.

Problem M13.2.D

If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Following sequence works with and without MEMBAR instructions:

P1.1 -> P1.2 -> P2.1 -> P2.2 -> P1.3 -> P2.3

Problem M13.2.E

If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

If M[R8] and M[R9] are to end up with 7, we have to execute P2.3 before we execute P1.1 Since

P1.3 has to come after P1.1 (Weak Ordering), R3, has to end up with 7 not 6.

Last updated:

11/3/2022

Page 4 of 10

Problem M13.2.F

Is it possible for both M[R8] and M[R9] to hold 8?

Without MEMBAR instructions? Yes No

P2.2 P1.1 P1.2 P2.1 P2.3 P1.3

With MEMBAR instructions? Yes No

The sequence above violates the MEMBAR in P2—P2.2 executes before P2.1. That is the only

way to get 8 into both memory locations, thus the result is impossible with MEMBARs insterted.

Last updated:

11/3/2022

Page 5 of 10

Problem M13.3: Memory Models

Consider a system which uses Sequential Consistency (SC). There are three processes, P1, P2

and P3, on different processors on such a system (the values of RA, RB, RC were all zeros

before the execution):

P1 P2 P3

P1.1: ST (A), 1 P2.1: ST (B), 1 P3.1: ST (C), 1

P1.2: LD RC, (C) P2.2: LD RA, (A) P3.2: LD RB, (B)

Problem M13.3.A

After all processes have executed, it is possible for the system to have multiple machine states. For

example, {RA, RB, RC}= {1,1,1} is possible if the execution sequence of instructions is

P1.1→P2.1→P3.1→P1.2→P2.2→P3.2. Also, {RA, RB, RC}= {1,1,0} is possible

if the sequence is P1.1 → P1.2 → P2.1 → P3.1 → P2.2 → P3.2.

For each state of {RA, RB, RC} below, specify the execution sequence of instructions that

results in the corresponding state. If the state is NOT possible with SC, just put X.

{0,0,0} : X

{0,1,0} : P2.1 P2.2 P1.1P1.2P3.1 P3.2

{1,0,0} : P1.1 P1.2 P3.1 P3.2 P2.1 P2.2

{0,0,1} : P3.1 P3.2 P2.1 P2.2 P1.1 P1.2

Last updated:

11/3/2022

Page 6 of 10

Problem M13.3.B

Now consider a system which uses Weak Ordering(WO), meaning that a read or a write may

complete before a read or a write that is earlier in program order if they are to different addresses

and there are no data dependencies.

Does WO allow the machine state(s) that is not possible with SC? If yes, provide an execution

sequence that will generate the machine states(s).

Yes. {0,0,0} by P1.2→P2.2→P3.2→P1.1→P2.1→P3.1

Problem M13.3.C

The WO system in Problem M13.3.B provides four fine-grained memory barrier instructions.

Below is the description of these instructions.

- MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen

before any read operation initiated after it.

- MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen

before any write operation initiated after it.

- MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be seen

before any read operation initiated after it.

- MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be seen

before any write operation initiated after it.

Using the minimum number of memory barrier instructions, rewrite P1, P2 and P3 so the machine

state(s) that is not possible with SC by the original programs is also not possible with WO by your

programs.

P1 P2 P3

P1.1: ST (A), 1

P2.1: ST (B), 1

P3.1: ST (C), 1

MEMBARWR MEMBARWR MEMBARWR

P1.2: LD RC, (C)

P2.2: LD RA, (A)

P3.2: LD RB, (B)

Last updated:

11/3/2022

Page 7 of 10

Problem M13.4: Memory Consistency (Spring 2020 Quiz 3, Part B)

Consider a shared-memory machine that executes the following two threads on two different cores.

Assume that memory locations a and b contain initial value 0.

Problem M13.4.A

If the machine implements sequential consistency, what execution outcomes (i.e., values of r1,

r2, r3, and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

r1 = 1

r2 = 1

r3, r4 can be any of (0,1) (1,0) or (1,1)

Last updated:

11/3/2022

Page 8 of 10

Problem M13.4.B

If the machine implements the Total Store Order (TSO) consistency model, what execution

outcomes (i.e., values of r1, r2, r3, and r4) can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

r1 = 1

r2 = 1

r3, r4 can be anything

Note that TSO allows the following execution:

T1.2 < T1.3 < T1.1 while requiring T1.2 to return the value stored by T.1.1 due to store-load

forwarding. (“<” means happens-before.)

Problem M13.4.C

If the machine implements a relaxed consistency model, RMO, which allows loads and stores to

be reordered after later loads and stores, what execution outcomes (i.e., values of r1, r2, r3, and r4)

can this code produce?

Note: You can but do not have to express the result as (r1, r2, r3, r4) tuples

Same as TSO.

Store-load forwarding typically exists, so r1 and r2 are still 1s.

(0, 0) for (r3, r4) is valid because this simply requires store-load reordering, which is already

allowed by TSO.

Last updated:

11/3/2022

Page 9 of 10

Problem M13.4.D

The relaxed consistency model (RMO) has the following fine-grained barrier instructions:

• MEMBARRR guarantees that all reads that precede MEMBARRR in program order will be

performed before any read that follows the barrier.

• MEMBARRW guarantees that all reads that precede MEMBARRW in program order will be

performed before any write that follows the barrier.

• MEMBARWR guarantees that all writes that precede MEMBARWR in program order will be

performed before any read that follows the barrier.

• MEMBARWW guarantees that all writes that precede MEMBARWW in program order will be

performed before any write that follows the barrier.

Add barrier instructions to T1 and T2 so that the RMO machine produces the same outputs as the

SC machine for this code. Use the minimum number of memory barrier instructions. List the

locations of each barrier below (e.g., “Add MEMBARRR after T1.1”).

Place a MEMBARWR between T1.1 and either T1.2 or T1.3 for T1. Same for T2.

Note that MEMBARRR is not helpful since it does not prevent reordering T1.3 and T1.1

Last updated:

11/3/2022

Page 10 of 10

Problem M13.4.E

Consider a shared-memory machine that executes the following four threads on four cores.

Assume that memory location a contains initial value 0.

If the machine implements the TSO consistency model, can it produce the following execution

outcome (r1, r2, r3, r4) = (1, 2, 2, 1)

No. Stores from T1 and T2 should appear in the same order for T3 and T4

Problem M13.4.F

Ben Bitdiddle modifies the above TSO machine. The original machine has one thread per core.

Ben implements multi-threading, making each core support 2 thread contexts. The threads

running on the same core share a single committed store buffer.

This machine executes the four threads in Question 5. T1 and T3 run on Core 0, and T2 and T4

run on Core 1. Can this machine produce the following execution outcome (r1, r2, r3, r4) = (1, 2,

2, 1)?

Yes. The shared committed store buffer allows T3 to observe T1’s store first, and allows T4 to

observe T2’s store first

Problem M13.4.G

Does the machine described in Question 6 still maintain TSO
No. Compare the answers in Q5 and Q6.

