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Problem M14.1:  Microprogramming and Bus-Based Architectures 

 

In this problem, we explore microprogramming by writing microcode for the bus-based 

implementation of the MIPS machine described in Handout (Bus-Based MIPS Implementation). 

Read the instruction fetch microcode in Table H14-3 which has been reproduced at the end of 

this problem (Worksheet M14.1-1) for the readers’ convenience. Make sure that you understand 

how different types of data and control transfers are achieved by setting the appropriate control 

signals before attempting this problem. 

In order to further simplify this problem, ignore the busy signal and assume that the memory is 

as fast as the register file. 

 

The final solution should be elegant and efficient (e.g. number of new states needed, amount of 

new hardware added). 

 

Problem M14.1.A Implementing Memory-to-Memory Add 

 

For this problem, you are to implement a new memory-memory add operation. The new 

instruction has the following format. 

ADDm rd, rs, rt 

ADDm performs the following operation. 

M[rd]  M[rs] + M[rt]   

Fill in Worksheet M14.1-1 with the microcode for ADDm. Use don’t cares (*) for fields where it 

is safe to use don’t cares. Study the hardware description well, and make sure all your 

microinstructions are legal. 

Please comment your code clearly. If the pseudo-code for a line does not fit in the space 

provided, or if you have additional comments, you may write in the margins as long as you do it 

neatly. Your code should exhibit “clean” behavior and not modify any registers (except rd) in the 

course of executing the instruction. 

Finally, make sure that the instruction fetches the next instruction (by doing a microbranch to 

FETCH0 as discussed above). 
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Problem M14.1.B Implementing DBNEZ Instruction 

 

DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as 

conditional branch instructions on MIPS. 

 

6 5 5 16 

opcode rs  Offset 

 

DBNEZ decrements register rs by 1, writes the result back to rs and branches to (PC+4)+offset, 

if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This 

instruction can be used for efficiently implementing loops. 

 

Your task is to fill out Worksheet M14.1-2 for DBNEZ instruction. You should try to optimize 

your implementation for minimum number of cycles necessary and for maximum number of 

don’t-care signals. You do not have to worry about the busy signal. 

 

(Note that the microcode for the fetch stage has changed slightly from the one in Problem 

M14.1.A, to allow for a more efficient implementation of some instructions.)  

 

 

Problem M14.1.C Implementing RETZ Instruction 

 

In this question we ask you to implement a special return instruction, return on zero (retz), 

which uses the same encoding as a conditional branch instruction on MIPS. 

 
retz Rs, Rt 

6 5 5 16 
Retz Rs Rt Unused 

 

retz instruction provides fast return from a subroutine call using Rt as the stack pointer. The 

instruction first tests the value of register Rs. If it is not zero, simply proceed to the next 

instruction at PC+4. If it is zero, the instruction does the following: (1) it reads the return address 

from memory at the address in register Rt, (2) increments Rt by 4 and (3) jumps to the return 

address. 

 

Fill out Worksheet M14.1-3 for the retz instruction. You should try to optimize your 

implementation for minimum number of cycles necessary and for maximum number of don’t-

care signals. You do not have to worry about the busy signal. You may not need all the lines in 

the table for your solution. 

 

You are allowed to introduce at most one new Br target (Next State) for J (Jump) or Z (branch-

if-Zero) other than FETCH0. 
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Problem M14.1.D Implementing CALL Instruction 

 

In this question you will implement a new complex CALL instruction, which uses the same 

encoding as a conditional branch instruction on MIPS. 

 

6 5 5 16 

opcode ra  Offset 

 

CALL stores the return address, PC+4, to memory at the address in register ra (i.e., in M[ra]), 

decrements ra by 4, saves the new value back to ra and branches to (PC+4)+offset. This 

instruction provides fast subroutine calls, using register ra as the stack pointer. 

 

Your task is to fill out Worksheet M14.1-4 for the CALL instruction. You should optimize your 

implementation to execute in the minimum number of cycles and to have the most signals set to 

don’t care. You do not have to worry about the busy signal from memory. You may not need all 

the lines in the table for your solution. 

 

 

 

 

Problem M14.1.E Instruction Execution Times 

 

How many cycles does it take to execute the following instructions in the microcoded MIPS 

machine? Use the states and control points from the MIPS microcontroller in Lecture 20 and 

assume Memory will not assert its busy signal. 

 

Instruction Cycles 
SUB  R3,R2,R1  
SUBI R2,R1,#4  
SW   R1,0(R2)  
BEQZ R1,label  # (R1 == 0)  
BNEZ R1,label  # (R1 != 0)  
J    label  
JR   R1  
JAL  label  
JALR R1  

 

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to 

execute? 
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Problem M14.1.F Exponentiation 

Ben Bitdiddle needs to compute the power function for small numbers. Realizing there is no 

multiply instruction in the microcoded MIPS machine, he uses the following code to calculate 

the result when an unsigned number m is raised to the nth power, where n is another unsigned 

number. 
 

    if (m == 0) { 

        result = 0; 

    } 

    else { 

        result = 1; 

        i = 0; 

 

        while (i < n) { 

            temp = result; 

            j = 1; 

            while (j < m) { 

                result += temp; 

                j++; 

            } 

            i++; 

        } 

    } 

 

The variables i, j, m, n, temp and result are unsigned 32-bit values. 

 

Write the MIPS assembly that implements Ben’s code. Use only the MIPS instructions that can 

be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR, BEQZ 

and BNEZ). The microcoded MIPS machine does not have branch delay slots. Use R1 for m, R2 

for n and R3 for result. At the end of your code only R3 must have the correct value. The 

values of all other registers do not have to be preserved. 

 

How many MIPS instructions are executed to calculate the power function? How many cycles 

does it take to calculate the power function? Again, use the states and control points from the 

MIPS microcontroller in Lecture 20 and assume Memory will not assert its busy signal. 

  

m, n Instructions Cycles 

0, 1   

1, 0   

2, 2   

3, 4   

M, N   
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Problem M14.1.G Microcontroller Jump Logic 

Now we will fill in a gap in the microcontroller implementation. In the lecture on 

microprogramming, we did not explain the implementation of the jump logic of the 

microcontroller. Your task in this problem is to implement that logic. Use AND gates, OR gates 

and inverters to implement the combinational logic that realizes the control equations for the 

jump logic of the MIPS microcontroller below. The control equations for the jump logic are 

 

   PCSrc = Case JumpTypes 

 

   next   => PC+1 

   spin   => PC.busy + (PC+1).~busy 

   fetch   =>  absolute 

   dispatch  =>  op-group 

   feqz  =>  absolute.zero + (PC+1).~zero 

   fnez   =>  absolute.~zero + (PC+1).zero 

 

The selection bits for each input of the PCSrc mux, as well as the JumpTypes encoding are 

given in the tables below. Your task is to create combinational logic that translates between 

them, according to the control equations. Assume that the busy and zero signals follow positive 

logic (so they are true if the wire is carrying a 1 and false if the wire is carrying a 0). Your design 

will be judged for its correctness, clarity and organization. These factors are more important than 

the efficiency of your design.  

 

 

 

 

 

 

 

 

 

PCSrc Selection bits 

PC+1 00 

PC 01 

absolute 10 

op-group 11 

Table M14.1-1: PCSrc Selection bits 

 

 

JumpTypes Encoding 

next 000 

spin 001 

feqz 110 

fnez 111 

fetch 010 

dispatch 100 

Table M14.1-2: JumpTypes Encoding 
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State PseudoCode ld 

IR 
Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

B
r 

Next State 

FETCH0: MA <- PC; 
A <- PC 

0 PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N * 

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

0 * * 0 * * * 0 * * 0 * 0 J FETCH0 

ADDM0:                 

                 

                 

                 

                 

                 

                 

                 

                 

 

Worksheet M14.1-1 
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State PseudoCode ld 
IR 

Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

B
r 

Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

DBNEZ:                 

                 

                 

                 

                 

                 

 

Worksheet M14.1-2 
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State PseudoCode Ld 
IR 

Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Im
m 

Br Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

retz0                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

 

Worksheet M14.1-3 

 

  



Last updated: 

11/15/2022 

 

 

9 

State PseudoCode ld 
IR 

Reg 
Sel 

Reg 
W 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

Ld 
MA 

Mem 
W 

en 
Mem 

Ex 
Sel 

en 
Imm 

B
r 

Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

CALL:                 

                 

                 

                 

                 

                 

                 

                 

 

 

Worksheet M14.1-4 
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Problem M14.2: VLIW Programming 
 

Ben Bitdiddle and Louis Reasoner have started a new company called Transbeta and are 

designing a new processor named Titanium. The Titanium processor is a single-issue in-order 

VLIW processor with: 

 

• 2 load/store units. There is no cache and a load has a latency of 4 cycles but is fully 

pipelined. 

• 1 integer ALU: single cycle 

• 1 floating-point multiplier: 3 cycles, fully pipelined 

• 1 floating-point adder: 2 cycles, fully pipelined 

• 1 branch unit with no delay slots and 100% branch prediction accuracy 

• 128 GPRs and 128 FPRs 

 

A single Titanium instruction can issue to all the above units simultaneously. By definition, the 

operations in a Titanium instruction are independent. Every operation in a Titanium instruction 

reads the operands and issues simultaneously. Thus, if one operation is waiting for a result of a 

previous Titanium instruction, the entire Titanium instruction is stalled in the decode stage. 

 

Everything is fully bypassed. Each functional unit has a dedicated writeback port, so there is 

never any contention. Writing to the same register multiple times in the same instruction is 

disallowed in the Titanium ISA. WAW hazards will also cause stalls. The Titanium ISA 

resembles MIPS, except that there can be up to 6 instructions on each line separated by 

semicolons. 

 

You have been hired to work on some hand-optimized math libraries. The most important of 

these is the dot-product, given by (XnYn). 

 

Problem M14.2.A  

 
Ben has translated dot-product from MIPS to the Titanium ISA 

 
// R1 – pointer to X 

// R2 – pointer to Y 

// R5 - n 

// R3 - temp 

// F4 - temp 

// F6 – result 

      MOVI2FP F6,R0 

loop: 

      L.S   F3,0(R1); L.S  F4,0(R2); ADDI R5,R5,#-1 

      MUL.S F3,F3,F4; ADDI R1,R1,#4 

      ADD.S F6,F6,F3; ADDI R2,R2,#4; BNEZ R5,loop 
 

Each iteration takes 9 cycles but the program averages 8 cycles per vector element. Alyssa P. 

Hacker says that it can be done in 1 cycle per vector element for long vectors. Show Ben and 

Louis what the code should be. Louis isn’t too bright so make sure your code is well commented. 
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Problem M14.3: Trace Scheduling 

 

Trace scheduling is a compiler technique that increases ILP by removing control dependencies, 

allowing operations following branches to be moved up and speculatively executed in parallel 

with operations before the branch. It was originally developed for statically scheduled VLIW 

machines, but it is a general technique that can be used in different types of machines and in this 

question we apply it to a single-issue MIPS processor. 

 

Consider the following piece of C code (% is modulus) with basic blocks labeled. 

 
A:    if (data % 8 == 0) 

B:      X = V0 / V1; 

      else 

C:      X = V2 / V3; 

D:    if (data % 4 == 0) 

E:      Y = V0 * V1; 

      else 

F:      Y = V2 * V3; 

G: 

 

Assume that data is a uniformly distributed integer random variable that is set sometime before 

executing this code. 

 

     Program’s control flow graph                                       Decision tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The control flow graph and the decision tree both show the possible flows of execution through 

basic blocks. However, the control flow graph captures the static structure of the program, while 

the decision tree captures the dynamic execution (history) of the program. 

 

A 

B C 

D 

E F 

G 

A 

B C 

D D 

E E F F 

G G G G Path 
probabilitie
s for 5.A: 
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Problem M14.3.A  

 

On the decision tree, label each path with the probability of traversing that path. For example, the 

leftmost block will be labeled with the total probability of executing the path ABDEG. (Hint: 

you might want to write out the cases). Circle the path that is most likely to be executed. 

 

 

 

 

Problem M14.3.B  

 

This is the MIPS code (no delay slots): 

 
A: lw r1, data 

 andi r2, r1, 7  ;; r2 <- r1%8 

 bnez r2, C 

B: div r3, r4, r5 ;; X <- V0/V1 

 j D 

C: div r3, r6, r7 ;; X <- V2/V3 

D: andi r2, r1, 3  ;; r2 <- r1%4 

 bnez r2, F 

E: mul r8, r4, r5 ;; Y <- V0*V1 

 j G 

F: mul r8, r6, r7 ;; Y <- V2*V3 

G: 

 

This code is to be executed on a single-issue processor without branch speculation. Assume that 

the memory, divider, and multiplier are all separate, long latency, unpipelined units that can run 

in parallel.  Rewrite the above code using trace scheduling. Optimize only for the most common 

path. Just get the other paths to work. Don’t spend your time performing any other optimizations.  

Ignore the possibility of exceptions. (Hint: Write the most common path first and then add fix-up 

code.) 

 

 

 

Problem M14.3.C  

 

Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles. 

Approximately how many cycles does the original code take? (Ignore small constants.) 

Approximately how many cycles does the new code take in the best case? 
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Problem M14.4: Scalar vs. VLIW Processors 
 

Ben Bitdiddle wants to examine the execution of the following C loop on different machines. 

This code operates on two arrays of length N, containing 32-bit floating point numbers:  

 
for (i = 0; i < N; i++)  

A[i] = A[i] * (B[i] + 1.0);  

 

Ben starts by compiling the loop to run on a scalar machine. The compiler generates the 

following instructions for the body of the loop:  

 
;; Initial values:  
;; f1 := 1.0  
;; r1 := &A[0] and r2 = &B[0]  
;; r3 := &A[N] (first address after vector A)  

I1: loop: ld f0, 0(r2)       ;; Load B[i]  
I2:      ld f2, 0(r1)       ;; Load A[i]  
I3:       fadd f3, f0, f1  
I4:       addi r1, r1, 4  
I5:       fmul f4, f2, f3  
I6:       addi r2, r2, 4  
I7:       st f4, -4(r1)      ;; Store A[i]  
I8:       bne r1, r3, loop 

 

 

 

Problem M14.4.A  

 

The code above runs on an in-order, pipelined, single-issue scalar processor with perfect branch 

prediction and full bypassing. ALU (integer) operations have a 1-cycle latency (so, thanks to 

bypassing, consecutive dependent ALU operations execute without stalling), loads have a 2- 

cycle latency, and floating-point operations have a 3-cycle latency.  

 

(a) How many cycles will the processor stall per loop iteration? Briefly explain your answer.  

 

 

 

 

 

 

(b) How many floating-point arithmetic operations per cycle will the processor perform on 

average in steady state? 
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Problem M14.4.B  

 

If you applied unrolling to the loop, what is the minimum unrolling factor needed to remove all 

stalls in steady-state execution? The unrolling factor is the total number of copies of code you 

end up with for the computation in the loop. Briefly explain your answer. 

 

 

 

 

 

 

 

 

 

 

 

Problem M14.4.C  

 

Ben now considers a VLIW machine, where each instruction has slots for up to three operations:  

• One (integer) ALU or branch operation (which always completes in a single cycle) 

• One memory operation (which takes 2 cycles, as in the in-order processor) 

• One floating point operation (which takes 3 cycles, as in the in-order processor)  

 

The compiler must generate no-ops to stall the machine for data dependencies. Ben observes a 

compiler for this VLIW machine generates the following VLIW code when loop unrolling and 

software pipelining are disabled: 
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(a) Ben is disappointed that this VLIW code takes nine cycles per iteration and has some 

instructions consisting entirely of no-ops. To address this, Ben considers loop unrolling. 

What is the minimum factor by which the loop must be unrolled so every instruction in 

steady state performs at least one memory or floating point operation? Whatever degree of 

unrolling you choose, assume it divides the number of loop iterations exactly. Identify which 

data dependencies are most critical in determining your answer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Assume the VLIW processor has appropriate support for software pipelining (e.g., a rotating 

register file). If you can overlap any number of iterations and apply software pipelining, what 

is the maximum achievable throughput, in floating-point arithmetic operations per cycle? 
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Problem M14.5: VLIW & Vector Coding 

 

Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a 

vector. 

 
for (i = 0; i < N; i++) { 

    if (A[i] < 0) 

        A[i] = -A[i]; 

} 

 

Problem M14.5.A  

 

Ben is working with an in-order VLIW processor, which issues two MIPS-like operations per 

instruction cycle. Assume a five-stage pipeline with two single-cycle ALUs, memory with one 

read and one write port, and a register file with four read ports and two write ports.  Also assume 

that there are no branch delay slots, and loads and stores only take one cycle to complete. Turn 

Ben’s loop into VLIW code.  A[i’s] and N are 32-bit signed integers. Initially, R1 contains N and 

R2 points to A[0]. You do not have to preserve the register values. Optimize your code to 

improve performance but do not use loop unrolling or software pipelining. What is the average 

number of cycles per element for this loop, assuming data elements are equally likely to be 

negative and non-negative? 

 

 

 

Problem M14.5.B  

 

Ben wants to remove the data-dependent branches in the assembly code by using predication. He 

proposes a new set of predicated instructions as follows. 

 

1) Augment the ISA with a set of 32 predicate bits P0-P31. 

2) Every standard non-control instruction now has a predicated counterpart, with the following 

syntax: 

 
(pbit1) OPERATION1 ; (pbit2) OPERATION2 

 

 (Execute the first operation of the VLIW instruction if pbit1 is set and execute the second 

operation of the VLIW instruction if pbit2 is set.) 

 

3) Include a set of compare operations that conditionally set a predicate bit. 

 
 CMPLTZ pbit,reg ; set pbit if reg < 0 

 CMPGEZ pbit,reg ; set pbit if reg >= 0 

 CMPEQZ pbit,reg ; set pbit if reg == 0 

 CMPNEZ pbit,reg ; set pbit if reg != 0 
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Eliminate all forward branches from Question M14.5.A with the new predicated operations. Try 

to optimize your code but do not use software pipelining or loop unrolling. 

 

What is the average number of cycles per element for this new loop? Assume that the predicate-

set compare instructions have a single cycle latency (i.e., they behave similarly to a regular ALU 

instruction including, full bypassing of the predicate bit). 

 

 

 

Problem M14.5.C  

 

Unroll the predicated VLIW code to perform two iterations of the original loop before each 

backward branch.  You should use software pipelining to optimize the code for both performance 

and code density. What is the average number of cycles per element for a large value of N? 

 

 

 

Problem M14.5.D  

 

Now Ben wants to work with a vector processor with two lanes, each of which has a single-cycle 

ALU and a vector load-store unit. Write-back to the vector register file takes a single cycle.  

Assume for this part that each vector register has at least N elements. 

 

Ben can also eliminate branches from his code by using vector masks. He wants to introduce a 

vector mask register as follows. 

 

1) Augment the ISA with a vector mask register, VM. 

2) Every vector instruction now executes each element operation only if the corresponding bit 

in the mask register is set. 

3) Include compare operations that conditionally set the mask register. 

 
S--V 

S--SV 

V1,V2 

F0,V1 

Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If condition is 

true, put a 1 in the corresponding bit vector; otherwise put 0. Put the 

resulting bit vector in a vector-mask register (VM). The instruction S--SV 

performs the same compare but using a scalar value as one operand. 

 

Vectorize Ben’s C loop, and replace all branches using vector masks. What is the average 

number of cycles per element for this loop in steady state for a very large value of N?   

 

 

 

Problem M14.5.E  

Modify the code from Part M14.5.D to handle the case when each vector register has m 

elements, where m may be less than N and is not necessarily a factor of N. 
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Problem M14.6: Predication and VLIW 

 

Problem M14.6.A  

 

Consider the following code. 

 
        l.s   f1, 0(r1)     ; f1 = *r1 

        seq.s r5, f10, f1   ;  

        bneq  f1, f10, else ; if f1==f10 

        add.s f2, f1, f11   ;    f2 = f1 + f11 

        b     if_end        ; else 

else:   add.s f2, f1, f12   ;    f2 = f1 + f12 

if_end: s.s   f2, 0(r2)     ; *r2 = f2 

 

Convert the code above to use predication rather than conditional branches. You should use the 

CMPLTZ, CMPGEZ, CMPEQZ or CMPNEZ instruction from Problem M5.8.B for predication. You 

may use negative predication for instructions, e.g. 

 
  (p1)  add r1, r2, r3    ; if (p1) r1 = r2 + r3 

  (!p1) add r1, r2, r3    ; if (!p1) r1 = r2 + r3 

 

 

 

Problem M14.6.B  

 

Our VLIW processor, called Adamantium, is very similar to the Titanium processor from 

Problem M14.2. Below are the details of our machine. Bold parts are different from Titanium. 

 
• 1 load/store unit: There is no cache and a load has a latency of 2 cycles and is fully pipelined. 

• 1 integer ALU: Single cycle latency 

• no floating-point multiplier unit 

• 1 floating-point adder: 2 cycles, fully pipelined 

• 1 branch unit with no delay slots and 100% branch prediction accuracy 

• 128 GPRs, 128 FPRs and 128 predicate registers 

 

Consider the following simple loop written in predicated MIPS assembler. 

 
loop:      l.s    f1, 0(r1)    ; f1 = *r1 

           cmpnez p1, f1       ; p1 = (f1 != 0) 

      (p1) add.s  f2, f1, f1   ; if (p1) f2 = f1+f1 

      (p1) s.s    f2, 0(r1)    ; if (p1) *r1 = f2 

           addi   r1, r1, #4   ; r1 += 4 

           bneq   r1, r2, loop ; if (r1!=r2) goto loop 

end: 

On the next page, in Table M14.6-1, we have converted the code above into Adamantium code 

and unrolled it twice. Complete a software pipelined version of this loop for Adamantium below 

in Table M14.6-2. You should assume that the number of times the loop needs to execute is 

divisible by the unrolling factor, thus the loop doesn’t need any fix-up code. 
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Label integer op floating point add memory op branch 
loop:   l.s f1,0(r1)  

   l.s f3,4(r1)  

 addi r1, r1, #8 cmpnez p1, f1   

  cmpnez p3, f3   

  (p1) add.s f2, f1, f1   

  (p3) add.s f4, f3, f3   

   (p1) s.s f2, -8(r1)  

   (p3) s.s f4, -4(r1) bneq r1, r2, loop 

Table M14.6-1 

 

label integer op floating point add memory op Branch 
   l.s f1,0(r1)  

   l.s f3,4(r1)  

 addi r1, r1, #8 cmpnez p1, f1   

  cmpnez p3, f3  beq r1, r2, epilog 

loop:     

     

     

    bneq         ,loop 

epilog:  (p1) add.s   

  (p3) add.s   

   (p1) s.s  

   (p3) s.s  
Table M14.6-2



 

Problem M14.7: Vector Machines 
 

In this problem, we analyze the performance of vector machines. We start with a baseline vector 

processor with the following features. 

 

• 32 elements per vector register 

• 8 lanes 

• One ALU per lane: 1 cycle latency 

• One MULT per lane: 2 cycle latency, fully pipelined 

• One LOAD/STORE unit per lane: 4 cycle latency, fully pipelined 

• No dead time 

• No support for chaining 

• Scalar instructions execute on a separate 5-stage fully-bypassed pipeline 

 

To simplify the analysis, we assume a magic memory system with no bank conflicts and no 

cache misses. Also, scalar operands of vector instructions are read in the Decode stage. 

 

The program we will use for this problem is listed below. (In all questions, you should assume 

that arrays A, B and C do not overlap in memory.) 

 

C code 
 

for (i=0; i<328; i++) { 

    A[i] = A[i] * B[i]; 

    C[i] = C[i] + A[i]; 

} 
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Problem M14.7.A  

 

Consider the implementation of the C-code on the vector machine that executes it in the least 

number of cycles. Assuming the following initial values, insert vector instructions to complete 

the implementation. 

 

o R1 points to A[0] 

o R2 points to B[0] 

o R3 points to C[0] 

o R4 contains the value 328 

 
 ANDI R5, R4, 31  # 328 mod 32 

 MTC1 VLR, R5   # set VLR to remainder 

loop: 

 LV V1, R1   # load A 

 LV V2, R2   # load B 

 SLL R7, R5, 2  

 ADD R1, R1, R7  # increment A ptr 

 ADD R2, R2, R7   # increment B ptr 

 ADD R3, R3, R7  # increment C ptr 

 SUB R4, R4, R5  # update loop counter 

 LI R5, 32   # reset VLR to max 

 MTC1 VLR, R5  

 BGTZ R4, loop  
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Problem M14.7.B  

 

Complete the pipeline diagram below with the loop code from Question M14.7.A on the baseline 

vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar 

registers are available immediately, whenever needed. You may not require the entire length of 

the table. 
 

The following supplementary information explains the diagram. 
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W). 

A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 

functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 

instruction finishes writing back ALL of its elements.  A vector instruction is pipelined across all the lanes in 

parallel.  For each element, the operands are read (R) from the vector register file, the operation executes on 

the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector 

register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does 

not block a scalar instruction from executing. 

LV1 and LV2 refer to the first and second LV instructions in the loop. 

 

instr. 
cycle 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

LV1 F D R M1 M2 M3 M4 W                                 
LV1    R M1 M2 M3 M4 W                                
LV1     R M1 M2 M3 M4 W                               
LV1      R M1 M2 M3 M4 W                              
LV2  F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W                             
LV2        R M1 M2 M3 M4 W                            
LV2         R M1 M2 M3 M4 W                           
LV2          R M1 M2 M3 M4 W                          
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Problem M14.7.C  

 

In this question, we analyze the performance benefits of chaining.   

 

Vector chaining is done through the register file. An element can be read (R) on the same cycle 

in which it is written back (W), or it can be read on any later cycle (chaining is flexible).   

 

Complete the pipeline diagram below, with loop code from Question M14.7.A on a chained 

vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar 

registers are available immediately, whenever needed. You may not require the entire length of 

the table. 

 

instr. 
cycle 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

LV1 F D R M1 M2 M3 M4 W                                 
LV1    R M1 M2 M3 M4 W                                
LV1     R M1 M2 M3 M4 W                               
LV1      R M1 M2 M3 M4 W                              
LV2  F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W                             
LV2        R M1 M2 M3 M4 W                            
LV2         R M1 M2 M3 M4 W                           
LV2          R M1 M2 M3 M4 W                          
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Problem M14.7.D  

 

What is the performance (flops/cycle) of the program with chaining? 

 

 

 

 

Problem M14.7.E  

 

Would loop unrolling of the assembly code improve performance without chaining? Explain. 

(You may rearrange the instructions when performing loop unrolling.) 
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Problem M14.8: Vector Machines 
 

In this problem, we analyze the performance of vector machines. We start with a baseline vector 

processor with the following features. 

 

• 32 elements per vector register 

• 8 lanes 

• One ALU per lane: 1 cycle latency 

• One load/store unit per lane: 4 cycle latency, fully pipelined 

• No dead time 

• No support for chaining 

• Scalar instructions execute on a separate 5-stage pipeline 

 

To simplify the analysis, we assume a magic memory system with no bank conflicts and no 

cache misses.   

 

We consider the execution of the following loop. 

 

C code 
 

for (i=0; i<320; i++) { 

    C[i] = A[i] + B[i] – 1; 

} 

assembly code 

 
# initial conditions: 

#   R1 points to A[0]  
#   R2 points to B[0] 

#   R3 points to C[0] 

#   R4 = 1 

#   R5 = 320 

 

loop: 

  LV    V1, R1      # load A 

  LV    V2, R2      # load B 

  ADDV  V3, V1, V2  # add A+B 

  SUBVS V4, V3, R4  # subtract 1 

  SV    R3, V4      # store C 

  ADDI  R1, R1, 128 # incr. A pointer 

  ADDI  R2, R2, 128 # incr. B pointer 

  ADDI  R3, R3, 128 # incr. C pointer 

  SUBI  R5, R5, 32  # decr. count 

  BNEZ  R5, loop    # loop until done 
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Problem M14.8.A  

 

Complete the pipeline diagram of the baseline vector processor running the given code. 

 

The following supplementary information explains the diagram: 
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W). 

A vector instruction is also fetched (F) and decoded (D).  Then, it stalls (—) until its required vector 

functional unit is available.  With no chaining, a dependent vector instruction stalls until the previous 

instruction finishes writing back all of its elements.  A vector instruction is pipelined across all the lanes in 

parallel.  For each element, the operands are read (R) from the vector register file, the operation executes on 

the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file. 

A stalled vector instruction does not block a scalar instruction from executing. 

LV1 and LV2 refer to the first and second LV instructions in the loop. 

 

instr. 
cycle 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

LV1 F D R M1 M2 M3 M4 W                                 
LV1    R M1 M2 M3 M4 W                                
LV1     R M1 M2 M3 M4 W                               
LV1      R M1 M2 M3 M4 W                              
LV2  F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W                             
LV2        R M1 M2 M3 M4 W                            
LV2         R M1 M2 M3 M4 W                           
LV2          R M1 M2 M3 M4 W                          

ADDV   F D ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ R X1 W                       
ADDV                 R X1 W                      
ADDV                  R X1 W                     
ADDV                   R X1 W                    
SUBVS    F D ⎯                                   
SUBVS                                         
SUBVS                                         
SUBVS                                         

SV     F D ⎯                                  
SV                                         
SV                                         
SV                                         

ADDI      F D X M W                               
ADDI       F D X M W                              
ADDI        F D X M W                             
SUBI         F D X M W                            
BNEZ          F D X M W                           
LV1           F D ⎯                            
LV1                                         
LV1                                         
LV1                                         
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Problem M14.8.B  

 

In this question, we analyze the performance benefits of chaining and additional lanes. Vector 

chaining is done through the register file and an element can be read (R) on the same cycle in 

which it is written back (W), or it can be read on any later cycle (chaining is flexible). For this 

question, we always assume 32 elements per vector register, so there are 2 elements per lane with 

16 lanes, and 1 element per lane with 32 lanes. 

 

To analyze performance, we calculate the total number of cycles per vector loop iteration by 

summing the number of cycles between the issuing of successive vector instructions. For 

example, in Question M14.8.A, LV1 begins execution in cycle 3, LV2 in cycle 7 and ADDV in 

cycle 16. Therefore, there are 4 cycles between LV1 and LV2, and 9 cycles between LV2 and 

ADDV. 

 

Complete the following table. The first row corresponds to the baseline 8-lane vector processor 

with no chaining. The second row adds flexible chaining to the baseline processor, and the last 

two rows increase the number of lanes to 16 and 32. 

(Hint: You should consider each pair of vector instructions independently, and you can ignore 

the scalar instructions.) 

 

Vector processor 

configuration 

Number of cycles between 

successive vector instructions 
Total cycles 

per vector 

loop iter. 
LV1, 

LV2 

LV2, 

ADDV 

ADDV, 

SUBVS 

SUBVS, 

SV 

SV, 

LV1 

8 lanes, no chaining 4 9 
    

 

8 lanes, chaining 
 

 

     

16 lanes, chaining 
 

 

     

32 lanes, chaining 
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Even with the baseline 8-lane vector processor with no chaining (used in Question M14.8.A), we 

can improve performance using software loop-unrolling and instruction scheduling. As a first 

step, we unroll two iterations of the loop and rename the vector registers in the second iteration. 
 

loop: 

I1:    LV    V1, R1      # load A 

I2:    LV    V2, R2      # load B 

I3:    ADDV  V3, V1, V2  # add A+B 

I4:    SUBVS V4, V3, R4  # subtract 1 

I5:    SV    R3, V4      # store C 

I6:    ADDI  R1, R1, 128 # incr. A pointer 

I7:    ADDI  R2, R2, 128 # incr. B pointer 

I8:    ADDI  R3, R3, 128 # incr. C pointer 

I9:    SUBI  R5, R5, 32  # decr. count 

I10:   LV    V5, R1      # load A 

I11:   LV    V6, R2      # load B 

I12:   ADDV  V7, V5, V6  # add A+B 

I13:   SUBVS V8, V7, R4  # subtract 1 

I14:   SV    R3, V8      # store C 

I15:   ADDI  R1, R1, 128 # incr. A pointer 

I16:   ADDI  R2, R2, 128 # incr. B pointer 

I17:   ADDI  R3, R3, 128 # incr. C pointer 

I18:   SUBI  R5, R5, 32  # decr. count 

I19:   BNEZ  R5, loop    # loop until done 

 

Reorder the instructions in the unrolled loop to improve performance on the baseline vector 

processor (your solution does not need to be optimal). 

Provide a valid ordering by listing the instructions below (a few have already been filled in for 

you). You may assume that the A, B and C arrays do not overlap. 

 
Instr. Number Instruction 
I1 LV    V1, R1 

I2 LV    V2, R2 

  

  

  

  

  

  

  

  

  

  

  
I15 ADDI  R1, R1, 128 

I16 ADDI  R2, R2, 128 

I17 ADDI  R3, R3, 128 

I9 SUBI  R5, R5, 32 

I18 SUBI  R5, R5, 32 

I19 BNEZ  R5, loop 

 

Problem M14.8.C 
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Problem M14.9:  Vectorizing memcpy and strcpy 
 

Ben Bitdiddle has bought a state-of-the-art vector machine, the Zirconium, which has vector 

registers holding up to 32 elements, and has decided to vectorize his C library functions. As a 

starting point, he vectorizes the C function memcpy. The specification for memcpy is given as 

 
/* copy n words from ct to s, and return s.   */ 

/* The actual C code copies one byte at a time.   */ 

/* Our version copies one word at a time.     */ 

void *memcpy(void *s, void *ct, size_t n)  

 

Ben implements memcpy in the following fashion, assuming s, ct, and n are in registers R1, 

R2, and R3 respectively. Assume that there are no delay slots. 

 
    ADD    R5,R1,R0   ; store destination address in R5 

    ADD    R4,R2,R0   ; store source address in R4 

    ANDI   R6,R3,#31  ; N % 32 

    MTC1   VLR,R6   ; put length in vector length register 

loop: 

    LV     V1,R4 

    SV     R5,V1 

    SUB   R3,R3,R6   ; subtract elements 

    SLLI   R6,R6,#2 

    ADD    R4,R4,R6   ; bump source pointer 

    ADD    R5,R5,R6   ; bump destination pointer 

    ADDI   R6,R0,#32 

    MTC1   VLR,R6   ; reset to full length 

    BNEZ   R3,loop   ; any more to do? 

 

Problem M14.9.A  

 

The Zirconium processor has one load/store unit with a single lane that is fully pipelined with a 

latency of 10 cycles and a dead time of 10 cycles. Instructions do not need to spend an extra 

cycle writing back values. All scalar instructions are executed on a separate 5-stage pipelined 

fully-bypassed datapath. Therefore, the execution of scalar instructions and vector instructions 

maybe overlapped. How many cycles are required to copy each element when a very long 

memory vector is copied, i.e., in steady state? 
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Problem M14.9.B  

 

Ben’s next target is strcpy, defined as follows: 

 
/* copy string ct to string s, including ‘\0’ and return s */ 

/* The actual C code copies one byte at time.              */ 

/* Our version copies one word at a time.        */ 

void *strcpy(void *s, void *ct) 

 

The difference between strcpy and memcpy is that strcpy terminates when it sees the string 

terminating character ‘\0’ while memcpy copies a given length. 

Ben makes several attempts to vectorize the code, but gives up deciding that it is not 

vectorizable. Alyssa, however, informs Ben that this function can be vectorized using some 

additional vector instructions listed below. 

 

CLZM R1,VM Counts the number of leading 0s in the vector-mask register VM and puts 

the result in R1. For example, if the contents of VM are 0001010...000, 

clzm R1,VM puts 3 into R1.  

 

S--V 

S--SV 

V1,V2 

F0,V1 

Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If the 

condition is true, put a 1 in the corresponding bit vector; otherwise put 0. 

Put the resulting bit vector in the vector-mask register (VM). The instruction 

S--SV performs the same compare but using a scalar value as one 

operand. 

 

Given the additional instructions, help Ben write vectorized code for the Zirconium processor. 

Assume s and ct are in register R1 and R2, respectively. The Zirconium processor does not 

have virtual memory and does not trap on memory protection violations on vector memory loads. 

Also, assume that a string must be word-aligned. The terminating character must start at a word 

boundary and the remaining 3 bytes after the terminating character must be 0x0. (Hint: The 

ASCII value of ‘\0’ is 0.) 

 

 

 

Problem M14.9.C  

 

Compare the performance of vectorized memcpy and vectorized strcpy with and without 

vector chaining. Specifically, how many cycles are required to transfer one element in steady 

state? Assume that there is one vector compare unit with one lane and one cycle latency that 

compares whether two values are equal.  
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Problem M14.10: Performance of Vector Machines 
 

The vector processor Germanium has a vector addition and a vector multiply unit with the 

following attributes. 

 

1) Vector registers have 32 elements. The vector register file supports 2 read ports and 1 write 

port for each addition unit and multiplication unit. 

 

2) The vector addition unit has a 2-cycle latency and is fully pipelined. 

 

3) The vector multiplication unit has a 3-cycle latency and is fully pipelined. 

 

You are now given the following code. 
 

I1: ADDV  V3,V2,V1 

I2: ADDV  V4,V2,V1 

I3: MULTV V5,V4,V3 

 

Note: All vectors are 32 elements in length. 
 

 

Problem M14.10.A  

 

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8 

lanes, a 2-cycle dead time, and no vector chaining. Instruction fetch takes one cycle, so does 

instruction decode (unless the instruction is stalled). Reading data from the register file also takes 

one cycle. Use F for fetch, D for Decode, R for Vector register read and W for write back. 

 

How many cycles does the given code take to execute? Count execution time as the number of 

cycles from when the first result is written to when the last result is written (inclusive).  

 

Pipeline diagram for ADDV V3,V2,V1 and vector lengths of 24 elements, is shown below. 

Because we need to do 24 operations using 8 lanes, the vector register file should be read three 

times. X1 is the first stage of the addition unit and X2 is the second. In cycle 6, the results of the 

first 8 operations are written back. This instruction takes 3 cycles to execute. 

 

Time  
 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 

F D R X1 X2 W   

   R X1 X2 W  

    R X1 X2 W 
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Problem M14.10.B  

 

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8 

lanes, no dead time, and vector chaining. Vectoring chaining is done through the register file. A 

vector unit can read an element from the register file in the same cycle it is being written back. 

How many cycles does the given code take to execute? 

 

 

 

Problem M14.10.C  

 

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 16 

lanes, no dead time, and vector chaining. How many cycles does the given code take to execute? 
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Problem M14.11: Let's Talk About Loads (Spring 2014 Quiz 3, Part A) 

 
Consider the following code sequence: 

 
… 

I1: DIV R3, R1, 8 

I2: BNEZ R9, Somewhere 

I3: ST R2, 0(R3) 

I4: LD R1, 8(R4) 

I5: ADD R5, R1, 8 

I6: SUB R10, R6, R7 

I7: MUL R8, R9, R10 

I8: BEQZ R8, Somewhere else 

… 

 

We will explore how this program behaves on different architectural styles. In all cases, assume 

the following execution latencies: 

• ADD, SUB: 2 cycles 

• BNEZ, BEQZ: 2 cycles 

• LD: 2 cycles if cache hit, 8 cycles if miss 

• MUL: 5 cycles 

• DIV: 10 cycles 

 

Additionally, the LD (I4) in this sequence misses in the data cache and therefore has a long 

latency of 8 cycles. 

 

Assume that the branch at I2 is not taken and fetch and decode never stall (e.g., by missing on 

the instruction cache or the BTB). Also assume that there are no structural hazards. 

 

  

Problem M14.11.A  

 

Loads are often a bottleneck in processor performance, and as such compilers will try to move 

the loads as early as possible in the program to “hide” their latency. However, in the preceding 

code sequence, an optimizing compiler cannot move the load earlier in the program. Explain 

why in one or two sentences. 
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Problem M14.11.B  

 

Show how this program would work on a single-issue in-order pipeline that tracks dependencies 

with a simple scoreboard. Instructions are issued (i.e., dispatched for execution) in order, but can 

complete out of order. Assume infinite functional units and full bypassing. Fill in the remainder 

of the table below. 

 

Instruction Issue Cycle Completion Cycle 
I1: DIV R3, R1, 8 1 11 
I2: BNEZ R9 2 4 
I3: ST R2, 0(R3) 11 n/a 
I4: LD R1, 8(R4) 12 20 
I5: ADD R5, R1, 8 20  
I6: SUB R10, R6, R7   
I7: MUL R8, R9, R10   
I8: BEQZ R8   
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Problem M14.11.C  

 

Assuming a single-issue out-of-order processor, show at which cycles instructions are issued 

(i.e., dispatched for execution) and complete. Assume that instructions are dispatched in program 

order if multiple are ready in the same cycle, and do not speculate on data dependencies. Again 

assume infinite functional units and full bypassing. 

 

Instruction Issue Cycle Completion Cycle 
I1: DIV R3, R1, 8 1 11 
I2: BNEZ R9   
I3: ST R2, 0(R3)   
I4: LD R1, 8(R4)   
I5: ADD R5, R1, 8   
I6: SUB R10, R6, R7   
I7: MUL R8, R9, R10   
I8: BEQZ R8   

 

 

 

In one or two sentences, what is the advantage of an out-of-order architecture vs. the in-order 

pipeline for this code sequence? 

 

 

 

 

 

 

 

Problem M14.11.D  

 

Suppose the out-of-order processor chose to execute the load first, before all other instructions in 

the code sequence. What events could cause the load to be aborted, and what mechanisms are 

required to detect mis-speculation and roll back? Ignore exceptions in your answer.  
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Problem M14.11.E  

 

Write VLIW code for this instruction sequence, assuming that the VLIW format is: 

 

Memory operation ALU operation ALU operation / Branch 

 

Try to make your VLIW code as efficient as possible, including re-ordering any instructions that 

do not have dependencies. For this VLIW code just use standard MIPS instructions to fill slots 

without predication or new, VLIW-specific instructions. (That is, simply schedule the 

instructions already provided.) Assume that the VLIW architecture has a scoreboard that stalls 

when a result is used before it is ready (e.g., on a cache miss). 

 

   

   

   

   

   

   

   

   

 

 

 

In one or two sentences, what is the advantage/disadvantage of a VLIW architecture for this code 

sequence vs. the out-of-order pipeline? 

 

 

 

 

 

 

 

Josh Fisher points out that if it has a scoreboard, it’s not a true VLIW. How would the code 

sequence change if we didn’t have a scoreboard? 
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Problem M14.11.F  

 

VLIW architectures rely heavily on the compiler to expose instruction-level parallelism in the 

program, so hiding load latency is a major challenge. VLIW compilers developed a technique 

called trace scheduling that merges multiple basic blocks into a single code sequence with 

software checks to ensure correctness. We profile our program and find that the first branch (I2) 

is almost never taken, so merging both basic blocks is a good idea.  

 

If we use trace scheduling to move the load (I4) to be the first instruction, what conditions must 

software check to ensure correctness of the load for this code sequence? Ignore exceptions in 

your answer.  
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Problem M14.11.G  

 

To mitigate load latency, you decide to implement a prefetch instruction. 

PREFETCH Imm(rs) takes a single argument, an address, and hints to the processor that the 

given address may be used soon. Crucially, PREFETCH is side-effect free—the processor can 

choose to ignore PREFETCH’s without affecting program behavior. 

 

Now consider the following simplified code sequence: 

 
DIV R3, R1, 8 

ST R2, 0(R3) 

LD R1, 8(R4) 

ADD R5, R1, 8 

 

The diagram below shows how this code executes on an in-order issue processor with 

scoreboarding. Show how performance can be improved using PREFETCH. 

  

 

Cycle In-order In-order w/ Prefetch 

1 DIV  

2   

3   

4   

5   

6   

7   

8   

9   

10   

11 ST  

12 LD  

13   

14   

15   

16   

17   

18   

19   

20 ADD  

21   

22 Complete  
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Problem M14.11.H  

 

In lecture we discussed an alternative instruction, “load-speculate”: 
LD.S rt, Imm(rs) 

Load-speculate will fetch the value from memory but if the access faults it instead returns zero 

and does not cause an exception. Unlike prefetch, it gives not just the address but the source 

address and the destination register, which receives a value from memory. A load-speculate is 

followed in the program by a “load-check”: 
CHK.S rt, cleanup 

Load-check checks if the register was written by a LD.S that should have caused an exception 

(e.g., due to a page fault). If it was, then CHK.S branches to somewhere else to service the 

exception and handle any necessary cleanup. CHK.S executes in 1 cycle. 

 

Show how to use LD.S/CHK.S to speed up the code even further than was possible with 

PREFETCH. Assume scoreboarding and infinite functional units. Assume that in this case the 

compiler knows that the load (I4) can be scheduled before the store (I3) safely. Do not show 

cleanup code. 

 

 

Cycle In-order In-order+LD.S+CHK.S 

1 DIV  

2   

3   

4   

5   

6   

7   

8   

9   

10   

11 ST  

12 LD  

13   

14   

15   

16   

17   

18   

19   

20 ADD  

21   

22 Complete  
 


