Last updated:
11/15/2022

Problem M14.1: Microprogramming and Bus-Based Architectures

In this problem, we explore microprogramming by writing microcode for the bus-based
implementation of the MIPS machine described in Handout (Bus-Based MIPS Implementation).
Read the instruction fetch microcode in Table H14-3 which has been reproduced at the end of
this problem (Worksheet M14.1-1) for the readers’ convenience. Make sure that you understand
how different types of data and control transfers are achieved by setting the appropriate control
signals before attempting this problem.

In order to further simplify this problem, ignore the busy signal and assume that the memory is
as fast as the register file.

The final solution should be elegant and efficient (e.g. number of new states needed, amount of
new hardware added).

Problem M14.1.A Implementing Memory-to-Memory Add

For this problem, you are to implement a new memory-memory add operation. The new
instruction has the following format.

ADDmM rq, rs, rt
ADDmM performs the following operation.
M[rd] <= M[rs] + M[r¢]

Fill in Worksheet M14.1-1 with the microcode for ADDm. Use don 't cares (*) for fields where it
is safe to use don’t cares. Study the hardware description well, and make sure all your
microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as you do it
neatly. Your code should exhibit “clean” behavior and not modify any registers (except rd) in the
course of executing the instruction.

Finally, make sure that the instruction fetches the next instruction (by doing a microbranch to
FETCHO as discussed above).

Last updated:
11/15/2022

Problem M14.1.B Implementing DBNEZ Instruction

DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as
conditional branch instructions on MIPS.

6 5 5 16
opcode rs Offset

DBNEZ decrements register rs by 1, writes the result back to rs and branches to (PC+4)+offset,
if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This
instruction can be used for efficiently implementing loops.

Your task is to fill out Worksheet M14.1-2 for DBNEZ instruction. You should try to optimize

your implementation for minimum number of cycles necessary and for maximum number of
don’t-care signals. You do not have to worry about the busy signal.

(Note that the microcode for the fetch stage has changed slightly from the one in Problem
M14.1.A, to allow for a more efficient implementation of some instructions.)

Problem M14.1.C Implementing RETZ Instruction

In this question we ask you to implement a special return instruction, return on zero (retz),
which uses the same encoding as a conditional branch instruction on MIPS.

retz Rs, Rt
6 5 5 16
Retz Rs Rt Unused

retz instruction provides fast return from a subroutine call using Rt as the stack pointer. The
instruction first tests the value of register Rs. If it is not zero, simply proceed to the next
instruction at PC+4. If it is zero, the instruction does the following: (1) it reads the return address
from memory at the address in register Rt, (2) increments Rt by 4 and (3) jumps to the return
address.

Fill out Worksheet M14.1-3 for the retz instruction. You should try to optimize your
implementation for minimum number of cycles necessary and for maximum number of don’t-
care signals. You do not have to worry about the busy signal. You may not need all the lines in
the table for your solution.

You are allowed to introduce at most one new uBr target (Next State) for J (Jump) or Z (branch-
if-Zero) other than FETCHO.

Last updated:
11/15/2022

Problem M14.1.D Implementing CALL Instruction

In this question you will implement a new complex CALL instruction, which uses the same
encoding as a conditional branch instruction on MIPS.

6 5 5 16
opcode ra Offset

CALL stores the return address, PC+4, to memory at the address in register ra (i.e., in M[ra]),
decrements ra by 4, saves the new value back to ra and branches to (PC+4)+offset. This
instruction provides fast subroutine calls, using register ra as the stack pointer.

Your task is to fill out Worksheet M14.1-4 for the CALL instruction. You should optimize your
implementation to execute in the minimum number of cycles and to have the most signals set to
don’t care. You do not have to worry about the busy signal from memory. You may not need all
the lines in the table for your solution.

Problem M14.1.E Instruction Execution Times

How many cycles does it take to execute the following instructions in the microcoded MIPS
machine? Use the states and control points from the MIPS microcontroller in Lecture 20 and
assume Memory will not assert its busy signal.

Instruction Cycles
SUB R3,R2,R1
SUBI R2,R1, #4
SW R1,0(R2)
BEQZ R1,label # =
BNEZ R1,label # (R1 != 0)
J label

JR Rl

JAL label

JALR R1

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to
execute?

Last updated:
11/15/2022

Problem M14.1.F Exponentiation
Ben Bitdiddle needs to compute the power function for small numbers. Realizing there is no
multiply instruction in the microcoded MIPS machine, he uses the following code to calculate
the result when an unsigned number m is raised to the nth power, where n is another unsigned
number.

if (m == 0) {
result = 0;

}

else {
result = 1;
i=0;

while (1 < n) {
temp = result;
j=1;
while (jJ < m) {
result += temp;
J++;
}

i++;
}
The variables i, j, m, n, temp and result are unsigned 32-bit values.

Write the MIPS assembly that implements Ben’s code. Use only the MIPS instructions that can
be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR, BEQZ
and BNEZ). The microcoded MIPS machine does not have branch delay slots. Use R1 for m, R2
for n and R3 for result. At the end of your code only R3 must have the correct value. The
values of all other registers do not have to be preserved.

How many MIPS instructions are executed to calculate the power function? How many cycles
does it take to calculate the power function? Again, use the states and control points from the
MIPS microcontroller in Lecture 20 and assume Memory will not assert its busy signal.

Instructions Cycles

~INO |5

LN E o3

P

Problem M14.1.G

Last updated:
11/15/2022

Microcontroller Jump Logic

Now we will fill in a gap in the microcontroller implementation. In the lecture on
microprogramming, we did not explain the implementation of the jump logic of the
microcontroller. Your task in this problem is to implement that logic. Use AND gates, OR gates
and inverters to implement the combinational logic that realizes the control equations for the
jump logic of the MIPS microcontroller below. The control equations for the jump logic are

pPCSrc = Case pJumpTypes

next =>
spin =>
fetch =>
dispatch =>
feqz =>
fnez =>

uPC+1

puPC.busy + (UPC+1).~busy
absolute

op-group

absolute.zero + (uPC+1).~zero
absolute.~zero + (WPC+1).zero

The selection bits for each input of the uPCSrc mux, as well as the pJumpTypes encoding are
given in the tables below. Your task is to create combinational logic that translates between
them, according to the control equations. Assume that the busy and zero signals follow positive
logic (so they are true if the wire is carrying a 1 and false if the wire is carrying a 0). Your design
will be judged for its correctness, clarity and organization. These factors are more important than
the efficiency of your design.

uumpTypes Encoding
next 000
spin 001
feqz 110
fnez 111
fetch 010
dispatch 100

Table M14.1-2: uJumpTypes Encoding

uPCSrc Selection bits
uPC+1 00
uPC 01
absolute 10
op-group 11

Table M14.1-1: uPCSrc Selection bits

Last updated:

11/15/2022
State PseudoCode Id | Reg | Reg | en Id Id ALUOp en Id Mem en Ex en uB Next State
IR Sel w Reg | A B ALU | MA W Mem | Sel | Imm r
FETCHO: | MA <- PC; 0| PC 0 1 1] * * 0 1 * 0 * 0 N *
A<-PC
IR <- Mem 1 * * 0 o * * 0 0 0 1 * 0 N *
PC <- A+4 0| PC 1 1 O *| INCAA4 1 * * 0 * 0 D *
NOPO: | microbranch 0 * * 0 o * 0 * * 0 * 0 J FETCHO

back to FETCHO

ADDMO:

Worksheet M14.1-1

Last updated:

11/15/2022
State PseudoCode Id | Reg | Reg | en Id Id ALUOp en Ld | Mem en Ex en uB Next State
IR Sel w Reg | A B ALU | MA W Mem | Sel | Imm r

FETCHO: | MA <- PC; * | PC 0 1 1] ~* * 0 1 * 0 * 0 N *
A<-PC
IR <- Mem 1 * * 0 o * * 0 * 0 1 * 0 N *
PC <- A+4; 0| PC 1 1 * 11| INCAA4 1 * * 0 * 0 *
B <- A+4

NOPQO: | microbranch * * * 0 o * 0 * * 0 * 0 J FETCHO

back to FETCHO

DBNEZ:

Worksheet M14.1-2

Last updated:

11/15/2022
State PseudoCode Ld | Reg | Reg | en d | Id ALUOp en Ld [Mem en Ex en || uBr Next State
IR Sel w Reg | A B ALU | MA W Mem Sel Im
m
FETCHO: | MA <- PC,; * | PC 0 1 1(* * 0 1 * 0 * 0 N *
A<-PC
IR <- Mem 1 * * 0 ol * * 0 * 0 1 * 0 N *
PC <- A+4, 0| PC 1 1 *11 | INCA A4 1 * * 0 * 0 D *
B <-A+4
NOPO: | microbranch * * * 0 * * * 0 * * 0 * 0 J FETCHO
back to FETCHO
retz0

Worksheet M14.1-3

Last updated:

11/15/2022
State PseudoCode Id | Reg | Reg | en Id Id ALUOp en Ld | Mem en Ex en uB Next State
IR Sel wW Reg | A B ALU | MA W Mem | Sel | Imm r
FETCHO: | MA <- PC; * PC 0 1 1 * * 0 1 * 0 * 0 N *
A<-PC
IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *
PC <- A+4; 0 PC 1 1 * 1 INC_A 4 1 * * 0 * 0 *
B <- A+4
NOPO: | microbranch * * * 0 * * * 0 * * 0 * 0 J FETCHO
back to FETCHO
CALL:

Worksheet M14.1-4

Last updated:
11/15/2022

Problem M14.2: VLIW Programming

Ben Bitdiddle and Louis Reasoner have started a new company called Transbeta® and are
designing a new processor named Titanium™. The Titanium processor is a single-issue in-order
VLIW processor with:

e 2 load/store units. There is no cache and a load has a latency of 4 cycles but is fully
pipelined.

e 1integer ALU: single cycle

1 floating-point multiplier: 3 cycles, fully pipelined

1 floating-point adder: 2 cycles, fully pipelined

1 branch unit with no delay slots and 100% branch prediction accuracy

128 GPRs and 128 FPRs

A single Titanium instruction can issue to all the above units simultaneously. By definition, the
operations in a Titanium instruction are independent. Every operation in a Titanium instruction
reads the operands and issues simultaneously. Thus, if one operation is waiting for a result of a
previous Titanium instruction, the entire Titanium instruction is stalled in the decode stage.

Everything is fully bypassed. Each functional unit has a dedicated writeback port, so there is
never any contention. Writing to the same register multiple times in the same instruction is
disallowed in the Titanium ISA. WAW hazards will also cause stalls. The Titanium ISA
resembles MIPS, except that there can be up to 6 instructions on each line separated by
semicolons.

You have been hired to work on some hand-optimized math libraries. The most important of
these is the dot-product, given by Z(XnxYhn).

Problem M14.2. A

Ben has translated dot-product from MIPS to the Titanium ISA

// Rl - pointer to X
// R2 - pointer to Y
// R5 - n
// R3 - temp
// F4 - temp
// F6 - result
MOVIZ2FP F6,R0O
loop:
L.S F3,0(R1); L.S F4,0(R2); ADDI R5,R5,#-1
MUL.S F3,F3,F4; ADDI R1,R1, #4
ADD.S Fo6,F6,F3; ADDI R2,R2,#4; BNEZ R5,loop

Each iteration takes 9 cycles but the program averages 8 cycles per vector element. Alyssa P.
Hacker says that it can be done in 1 cycle per vector element for long vectors. Show Ben and
Louis what the code should be. Louis isn’t too bright so make sure your code is well commented.

Page 10 of 39

Last updated:
11/15/2022

Problem M14.3: Trace Scheduling

Trace scheduling is a compiler technique that increases ILP by removing control dependencies,
allowing operations following branches to be moved up and speculatively executed in parallel
with operations before the branch. It was originally developed for statically scheduled VLIW
machines, but it is a general technique that can be used in different types of machines and in this
question we apply it to a single-issue MIPS processor.

Consider the following piece of C code (% is modulus) with basic blocks labeled.

A: if (data % 8 == 0)

B: X =V0 / V1;
else

C: X =V2 / V3;

D: if (data % 4 == 0)

E: Y = VO * V1;
else

F: Y = V2 * V3;

G:

Assume that data is a uniformly distributed integer random variable that is set sometime before
executing this code.

Program’s control flow graph Decision tree
A A
B C
D D
E F E F

Path G G G G
probabilitie
s for 5.A:

The control flow graph and the decision tree both show the possible flows of execution through
basic blocks. However, the control flow graph captures the static structure of the program, while
the decision tree captures the dynamic execution (history) of the program.

Page 11 of 39

Last updated:
11/15/2022

Problem M14.3.A

On the decision tree, label each path with the probability of traversing that path. For example, the
leftmost block will be labeled with the total probability of executing the path ABDEG. (Hint:
you might want to write out the cases). Circle the path that is most likely to be executed.

Problem M14.3.B

This is the MIPS code (no delay slots):

Ac: 1w rl, data
andi r2, rl, 7 ;; r2 <- rl%8
bnez r2, C

B: div r3, rd4, r5 ;; X <- V0O/VI
J D

C: div r3, r6, r7 ;; X <- V2/V3

D: andi r2, rl, 3 ;; r2 <- rl1%4
bnez r2, F

E: mul r8, r4d, r5 ;; Y <- V0O*V1
] G

F: mul r8, ro6, r7 ;; Y <- V2*V3

G:

This code is to be executed on a single-issue processor without branch speculation. Assume that
the memory, divider, and multiplier are all separate, long latency, unpipelined units that can run
in parallel. Rewrite the above code using trace scheduling. Optimize only for the most common
path. Just get the other paths to work. Don’t spend your time performing any other optimizations.
Ignore the possibility of exceptions. (Hint: Write the most common path first and then add fix-up
code.)

Problem M14.3.C

Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles.
Approximately how many cycles does the original code take? (Ignore small constants.)
Approximately how many cycles does the new code take in the best case?

Page 12 of 39

Last updated:
11/15/2022

Problem M14.4: Scalar vs. VLIW Processors

Ben Bitdiddle wants to examine the execution of the following C loop on different machines.
This code operates on two arrays of length N, containing 32-bit floating point numbers:

for (i = 0; i < N; i++)
A[i] = A[i] * (B[i] + 1.0);

Ben starts by compiling the loop to run on a scalar machine. The compiler generates the
following instructions for the body of the loop:

;3 Initial values:

;; f1 := 1.0

;5 rl := &A[0Q] and r2 = &B[0]

;5 r3 := &A[N] (first address after vector A)
I1: loop: 1d fo, o(r2) ;53 Load B[1i]
I2: 1d f2, o(rl) ;5 Load A[i]
I3: fadd f3, fo, f1
I4: addi ri, ri, 4
I5: fmul f4, f2, 3
I6: addi r2, r2, 4
I7: st f4, -4(rl) ;5 Store A[i]
I8: bne rl, r3, loop

Problem M14.4.A

The code above runs on an in-order, pipelined, single-issue scalar processor with perfect branch
prediction and full bypassing. ALU (integer) operations have a 1-cycle latency (so, thanks to
bypassing, consecutive dependent ALU operations execute without stalling), loads have a 2-
cycle latency, and floating-point operations have a 3-cycle latency.

(a) How many cycles will the processor stall per loop iteration? Briefly explain your answer.

(b) How many floating-point arithmetic operations per cycle will the processor perform on
average in steady state?

Page 13 of 39

Last updated:
11/15/2022

Problem M14.4.B

If you applied unrolling to the loop, what is the minimum unrolling factor needed to remove all
stalls in steady-state execution? The unrolling factor is the total number of copies of code you
end up with for the computation in the loop. Briefly explain your answer.

Problem M14.4.C

Ben now considers a VLIW machine, where each instruction has slots for up to three operations:
e One (integer) ALU or branch operation (which always completes in a single cycle)
e One memory operation (which takes 2 cycles, as in the in-order processor)
e One floating point operation (which takes 3 cycles, as in the in-order processor)

The compiler must generate no-ops to stall the machine for data dependencies. Ben observes a
compiler for this VLIW machine generates the following VLIW code when loop unrolling and
software pipelining are disabled:

Inst. ALU/Branch Unit Memory Unit Floating Point Unit
1 loop: | addi rl1, ri, 4 1d fo, 0(r2)

2 addi r2, r2, 4 1d 2, -4(rl)

3 fadd f3, fo, f1
4

5

6 fmul f4, 2, f3
7

8

9 bne rl, r3, loop st f4, -4(rl)

Page 14 of 39

Last updated:
11/15/2022

(a) Ben is disappointed that this VLIW code takes nine cycles per iteration and has some
instructions consisting entirely of no-ops. To address this, Ben considers loop unrolling.
What is the minimum factor by which the loop must be unrolled so every instruction in
steady state performs at least one memory or floating point operation? Whatever degree of
unrolling you choose, assume it divides the number of loop iterations exactly. Identify which
data dependencies are most critical in determining your answer.

(b) Assume the VLIW processor has appropriate support for software pipelining (e.g., a rotating
register file). If you can overlap any number of iterations and apply software pipelining, what
is the maximum achievable throughput, in floating-point arithmetic operations per cycle?

Page 15 of 39

Last updated:
11/15/2022

Problem M14.5: VLIW & Vector Coding

Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a
vector.

Problem M14.5.A

Ben is working with an in-order VLIW processor, which issues two MIPS-like operations per
instruction cycle. Assume a five-stage pipeline with two single-cycle ALUs, memory with one
read and one write port, and a register file with four read ports and two write ports. Also assume
that there are no branch delay slots, and loads and stores only take one cycle to complete. Turn
Ben’s loop into VLIW code. A[i’s] and N are 32-bit signed integers. Initially, R1 contains N and
R2 points to A[0]. You do not have to preserve the register values. Optimize your code to
improve performance but do not use loop unrolling or software pipelining. What is the average
number of cycles per element for this loop, assuming data elements are equally likely to be
negative and non-negative?

Problem M14.5.B

Ben wants to remove the data-dependent branches in the assembly code by using predication. He
proposes a new set of predicated instructions as follows.

1) Augment the ISA with a set of 32 predicate bits PO-P31.
2) Every standard non-control instruction now has a predicated counterpart, with the following
syntax:

(pbitl) OPERATION1 ; (pbit2) OPERATION2

(Execute the first operation of the VLIW instruction if pbitl is set and execute the second
operation of the VLIW instruction if pbit2 is set.)

3) Include a set of compare operations that conditionally set a predicate bit.

CMPLTZ pbit, reg ; set pbit if reg < O
CMPGEZ pbit, reg ; set pbit if reg >= 0
CMPEQZ pbit, reg ; set pbit if reg == 0
CMPNEZ pbit, reg ; set pbit if reg != 0

Page 16 of 39

Last updated:
11/15/2022

Eliminate all forward branches from Question M14.5.A with the new predicated operations. Try
to optimize your code but do not use software pipelining or loop unrolling.

What is the average number of cycles per element for this new loop? Assume that the predicate-
set compare instructions have a single cycle latency (i.e., they behave similarly to a regular ALU
instruction including, full bypassing of the predicate bit).

Problem M14.5.C

Unroll the predicated VLIW code to perform two iterations of the original loop before each
backward branch. You should use software pipelining to optimize the code for both performance
and code density. What is the average number of cycles per element for a large value of N?

Problem M14.5.D

Now Ben wants to work with a vector processor with two lanes, each of which has a single-cycle
ALU and a vector load-store unit. Write-back to the vector register file takes a single cycle.
Assume for this part that each vector register has at least N elements.

Ben can also eliminate branches from his code by using vector masks. He wants to introduce a
vector mask register as follows.

1) Augment the ISA with a vector mask register, VM.

2) Every vector instruction now executes each element operation only if the corresponding bit
in the mask register is set.

3) Include compare operations that conditionally set the mask register.

S--v. V1,VZ2 Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If condition is

s--sv ro,v1 true, put a 1 in the corresponding bit vector; otherwise put 0. Put the
resulting bit vector in a vector-mask register (vM). The instruction S--SV
performs the same compare but using a scalar value as one operand.

Vectorize Ben’s C loop, and replace all branches using vector masks. What is the average
number of cycles per element for this loop in steady state for a very large value of N?

Problem M14.5.E

Modify the code from Part M14.5.D to handle the case when each vector register has m
elements, where m may be less than N and is not necessarily a factor of N.

Page 17 of 39

Last updated:
11/15/2022

Problem M14.6: Predication and VLIW

Problem M14.6.A

Consider the following code.

l.s £f1, 0(rl) ; £1 = *rl
seq.s r5, f10, f1 ;
bneq f1, £f10, else ; if £f1==f10

add.s f2, f1, f11 ; f2 = £1 + f1l1
b if end ; else
else: add.s £f2, f1, f1l2 ; f2 = £f1 + £f12
if end: s.s £f2, 0(r2) ; *r2 = f£2

Convert the code above to use predication rather than conditional branches. You should use the
CMPLTZ, CMPGEZ, CMPEQZ or CMPNEZ instruction from Problem M5.8.B for predication. You

may use negative predication for instructions, e.g.

(pl) add rl1l, r2, r3 ; if (pl) rl = r2 + r3
('pl) add r1, r2, r3 ; if ('pl) rl = r2 + r3

Problem M14.6.B

Our VLIW processor, called Adamantium, is very similar to the Titanium processor from
Problem M14.2. Below are the details of our machine. Bold parts are different from Titanium.

1 load/store unit: There is no cache and a load has a latency of 2 cycles and is fully pipelined.
1 integer ALU: Single cycle latency

no floating-point multiplier unit

1 floating-point adder: 2 cycles, fully pipelined

1 branch unit with no delay slots and 100% branch prediction accuracy

128 GPRs, 128 FPRs and 128 predicate registers

Consider the following simple loop written in predicated MIPS assembler.

loop: 1l.s f1, 0(rl) ; f1 = *rl
cmpnez pl, fl ; pl = (£1 !'= 0)
(pl) add.s f2, f1, f1 ; 1f (pl) f2 = fl1+f1
(pl) s.s £f2, 0(rl) ; 1if (pl) *rl = f2
addi rl, rl, #4 ; rl += 4
bneqg rl, r2, loop ; 1if (rl!=r2) goto loop

end:
On the next page, in Table M14.6-1, we have converted the code above into Adamantium code
and unrolled it twice. Complete a software pipelined version of this loop for Adamantium below
in Table M14.6-2. You should assume that the number of times the loop needs to execute is
divisible by the unrolling factor, thus the loop doesn’t need any fix-up code.

Page 18 of 39

Last updated:

11/15/2022
Label integer op floating point add memory op branch
loop: l.s £1,0(rl)
l.s £3,4(rl)
addi rl, rl, #8 |cmpnez pl, fl
cmpnez p3, £f3
(pl) add.s £2, f1, f1
(p3) add.s f4, £3, £3
(pl) s.s £2, -8(rl)
(p3) s.s f4, -4(rl) |bneq rl, r2, loop
Table M14.6-1
label integer op floating point add memory op Branch
l.s £1,0(rl)
l.s £3,4(rl)
addi rl, rl, #8 |cmpnez pl, fl
cmpnez p3, f£3 beq rl, r2, epilog
loop:
bneq , loop
epilog: (pl) add.s
(p3) add.s
(pl) s.s
(p3) s.s
Table M14.6-2

Page 19 of 39

Problem M14.7: Vector Machines

In this problem, we analyze the performance of vector machines. We start with a baseline vector
processor with the following features.

32 elements per vector register

8 lanes

One ALU per lane: 1 cycle latency

One MULT per lane: 2 cycle latency, fully pipelined

One LOAD/STORE unit per lane: 4 cycle latency, fully pipelined

No dead time

No support for chaining

Scalar instructions execute on a separate 5-stage fully-bypassed pipeline

To simplify the analysis, we assume a magic memory system with no bank conflicts and no
cache misses. Also, scalar operands of vector instructions are read in the Decode stage.

The program we will use for this problem is listed below. (In all questions, you should assume
that arrays A, B and C do not overlap in memory.)

C code

for (i=0; i<328; i++) {
Ali] A[i] * B[i];
Cl[i] C[i] + A[i];

Problem M14.7.A

Consider the implementation of the C-code on the vector machine that executes it in the least
number of cycles. Assuming the following initial values, insert vector instructions to complete
the implementation.

o R1 points to A[0]
o R2 points to B[0]
o R3points to C[0]
o R4 contains the value 328
ANDI R5, R4, 31 # 328 mod 32
MTC1 VLR, R5 # set VLR to remainder
loop:
LV vVl, R1 # load A
LV V2, R2 # load B
SLL R7, R5, 2
ADD R1, R1l, R7 # increment A ptr
ADD R2, R2, R7 # increment B ptr
ADD R3, R3, R7 # increment C ptr
SUB R4, R4, R5 # update loop counter
LI R5, 32 # reset VLR to max

MTC1 VLR, R5
BGTZ R4, loop

Page 21 of 39

Problem M14.7.B

Complete the pipeline diagram below with the loop code from Question M14.7.A on the baseline
vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar
registers are available immediately, whenever needed. You may not require the entire length of
the table.

The following supplementary information explains the diagram.
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back ALL of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector
register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does
not block a scalar instruction from executing.
LV1 and LV; refer to the first and second LV instructions in the loop.

cycle

instr. 12 3 45 6/ 7 8 910111213 14151617 18 19 2021/22/23 24 25 26 27 28 29 30 31 3233 34/35 36 37 38 39 40

LV; |F D RMIM2M3M4 W

LV, R M1M2M3M4 W

LV, R M1IM2M3M4 W

LV, R M1M2M3M4 W

LV, F D——— R MIM2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W
LV, R M1M2M3M4 W

Page 22 of 39

Problem M14.7.C

In this question, we analyze the performance benefits of chaining.

Vector chaining is done through the register file. An element can be read (R) on the same cycle
in which it is written back (W), or it can be read on any later cycle (chaining is flexible).

Complete the pipeline diagram below, with loop code from Question M14.7.A on a chained
vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar
registers are available immediately, whenever needed. You may not require the entire length of
the table.

. cycle
INStr. 172737456 7|89 10 11 12/13]14/15/16/17/18/19 20121 22]23124]25 2627 28129 30]31 32]33 3435 3637|3839 40

LV:; |F D R MiM2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, FD——— RMIM2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W
LV, R M1M2M3M4 W

Page 23 of 39

Problem M14.7.D

What is the performance (flops/cycle) of the program with chaining?

Problem M14.7.E

Would loop unrolling of the assembly code improve performance without chaining? Explain.
(You may rearrange the instructions when performing loop unrolling.)

Page 24 of 39

Problem M14.8: Vector Machines

In this problem, we analyze the performance of vector machines. We start with a baseline vector
processor with the following features.

32 elements per vector register

8 lanes

One ALU per lane: 1 cycle latency

One load/store unit per lane: 4 cycle latency, fully pipelined
e No dead time

e No support for chaining

e Scalar instructions execute on a separate 5-stage pipeline

To simplify the analysis, we assume a magic memory system with no bank conflicts and no
cache misses.

We consider the execution of the following loop.

C code assembly code

for (i=0; i<320; i++) {
C[i] = A[i] + B[i] - 1;

initial conditions:
R1 points to A[O]
R2 points to B[O0]

#
#
} #
R3 points to C[0]
#
#

R4 =
R5 = 320
loop

Lv Vl, R1 load A
Lv V2, R2 load B
ADDV V3, V1, V2 add A+B
SUBVS V4, V3, R4 subtract 1
sv R3, V4 store C

ADDI R1, R1, 128
ADDI R2, R2, 128
ADDI R3, R3, 128
SUBI R5, R5, 32
BNEZ R5, loop

incr. A pointer
incr. B pointer
incr. C pointer
decr. count

loop until done

HH= 3 3 I

Page 25 of 39

Problem M14.8.A

Complete the pipeline diagram of the baseline vector processor running the given code.

The following supplementary information explains the diagram:
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back all of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file.
A stalled vector instruction does not block a scalar instruction from executing.
LV, and LV, refer to the first and second LV instructions in the loop.

cycle

instr. 12 3 4 5 6 7/8 910111213 141516171819 2021 22 23242526 27 28 29 30 31 32 33 34 35 36 37 38 39 40

LV: |F D RMiIM2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, F D — — — R M1IM2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

ADDV FD——————————— RIX1w

ADDV R X1W

ADDV R X1wW

ADDV R X1W

SUBVS F D—

SUBVS

SUBVS

SUBVS

SV F D —

SV

SV

SV

ADDI F D XMW

ADDI FIDXMW

ADDI FDXMW

SUBI FID XMW

BNEZ F DXMW

LV, F D—

LV,

LV,

LV,

Page 26 of 39

Problem M14.8.B

In this question, we analyze the performance benefits of chaining and additional lanes. Vector
chaining is done through the register file and an element can be read (R) on the same cycle in
which it is written back (W), or it can be read on any later cycle (chaining is flexible). For this
question, we always assume 32 elements per vector register, so there are 2 elements per lane with
16 lanes, and 1 element per lane with 32 lanes.

To analyze performance, we calculate the total number of cycles per vector loop iteration by
summing the number of cycles between the issuing of successive vector instructions. For
example, in Question M14.8.A, LV1 begins execution in cycle 3, LV2 in cycle 7 and ADDV in
cycle 16. Therefore, there are 4 cycles between LV: and LV», and 9 cycles between LV; and
ADDV.

Complete the following table. The first row corresponds to the baseline 8-lane vector processor
with no chaining. The second row adds flexible chaining to the baseline processor, and the last
two rows increase the number of lanes to 16 and 32.

(Hint: You should consider each pair of vector instructions independently, and you can ignore
the scalar instructions.)

Number of cycles between

Vector processor successive vector instructions T%tf‘i/gzgis
configuration LVi, | LV, | ADDV, | SUBVS,| sV, ﬁoop o

LV, | ADDV| SUBVS SV LV1

8 lanes, no chaining 4 9

8 lanes, chaining

16 lanes, chaining

32 lanes, chaining

Page 27 of 39

Problem M14.8.C

Even with the baseline 8-lane vector processor with no chaining (used in Question M14.8.A), we
can improve performance using software loop-unrolling and instruction scheduling. As a first
step, we unroll two iterations of the loop and rename the vector registers in the second iteration.

loop:

I1: LV V1, R1 # load A

12: LV V2, R2 # load B

13: ADDV V3, V1, V2 # add A+B

I4: SUBVS V4, V3, R4 # subtract 1

I5: SV R3, V4 # store C

I6: ADDI R1, R1, 128 # incr. A pointer
I7: ADDI R2, R2, 128 # incr. B pointer
I8: ADDI R3, R3, 128 # incr. C pointer
I9: SUBI R5, R5, 32 # decr. count
I10: LV V5, R1 # load A

I11: LV V6, R2 # load B

I112: ADDV V7, V5, V6 # add A+B

I13: SUBVS V8, V7, R4 # subtract 1

I14: SV R3, V8 # store C

I15: ADDI R1, R1, 128 # incr. A pointer
I16: ADDI R2, R2, 128 # incr. B pointer
I17: ADDI R3, R3, 128 # incr. C pointer
I18: SUBI R5, R5, 32 # decr. count
I19: BNEZ R5, loop # loop until done

Reorder the instructions in the unrolled loop to improve performance on the baseline vector
processor (your solution does not need to be optimal).

Provide a valid ordering by listing the instructions below (a few have already been filled in for
you). You may assume that the A, B and C arrays do not overlap.

Instr. Number Instruction
I1 LV Vv1l, R1

12 iR V2, R2

I15 ADDI R1, R1, 128
I16 ADDI R2, R2, 128
117 ADDI R3, R3, 128
19 SUBI R5, R5, 32
118 SUBI R5, R5, 32
I19 BNEZ R5, loop

Page 28 of 39

Problem M14.9: Vectorizing memcpy and strcpy

Ben Bitdiddle has bought a state-of-the-art vector machine, the Zirconium™, which has vector
registers holding up to 32 elements, and has decided to vectorize his C library functions. As a
starting point, he vectorizes the C function memcpy. The specification for memcpy is given as

/* copy n words from ct to s, and return s. */
/* The actual C code copies one byte at a time. */
/* Our version copies one word at a time. */

void *memcpy (void *s, void *ct, size t n)

Ben implements memcpy in the following fashion, assuming s, ct, and n are in registers R1,
R2, and R3 respectively. Assume that there are no delay slots.

ADD R5,R1,R0 ; store destination address in R5

ADD R4,R2,R0 ; store source address in R4

ANDI R6,R3, #31 ; N % 32

MTC1 VLR, R6 ; put length in vector length register
loop:

LV V1,R4

SV R5,V1

SUB R3,R3,R6 ; subtract elements

SLLI R6,R6, #2

ADD R4,R4,R6 ; bump source pointer

ADD R5,R5,R6 ; bump destination pointer

ADDI R6,RO, #32

MTC1 VLR, R6 ; reset to full length

BNEZ R3, loop ; any more to do?

Problem M14.9.A

The Zirconium processor has one load/store unit with a single lane that is fully pipelined with a
latency of 10 cycles and a dead time of 10 cycles. Instructions do not need to spend an extra
cycle writing back values. All scalar instructions are executed on a separate 5-stage pipelined
fully-bypassed datapath. Therefore, the execution of scalar instructions and vector instructions
maybe overlapped. How many cycles are required to copy each element when a very long
memory vector is copied, i.e., in steady state?

Page 29 of 39

Problem M14.9.B

Ben’s next target is st rcpy, defined as follows:

/* copy string ct to string s, including ‘\0’ and return s */
/* The actual C code copies one byte at time. */
/* Our version copies one word at a time. */
void *strcpy(void *s, void *ct)

The difference between strcpy and memcpy is that st rcpy terminates when it sees the string
terminating character *\ 0’ while memcpy copies a given length.

Ben makes several attempts to vectorize the code, but gives up deciding that it is not
vectorizable. Alyssa, however, informs Ben that this function can be vectorized using some
additional vector instructions listed below.

CLZM R1,VM Counts the number of leading Os in the vector-mask register vM and puts
the result in R1. For example, if the contents of vM are 0001010...000,
clzm R1,VMputs3intoR1.

S--v. V1,VZ2 Compare the elements (EQNE,GT,LT,GE,LE) in V1 and V2. If the

s--sv ro,v1 condition is true, put a 1 in the corresponding bit vector; otherwise put 0.
Put the resulting bit vector in the vector-mask register (V). The instruction
S--sv performs the same compare but using a scalar value as one
operand.

Given the additional instructions, help Ben write vectorized code for the Zirconium processor.
Assume s and ct are in register R1 and R2, respectively. The Zirconium processor does not
have virtual memory and does not trap on memory protection violations on vector memory loads.
Also, assume that a string must be word-aligned. The terminating character must start at a word
boundary and the remaining 3 bytes after the terminating character must be 0x0. (Hint: The
ASCII value of *\0” is0.)

Problem M14.9.C

Compare the performance of vectorized memcpy and vectorized strcpy with and without
vector chaining. Specifically, how many cycles are required to transfer one element in steady
state? Assume that there is one vector compare unit with one lane and one cycle latency that
compares whether two values are equal.

Page 30 of 39

Problem M14.10: Performance of VVector Machines

The vector processor Germanium™ has a vector addition and a vector multiply unit with the
following attributes.

1) Vector registers have 32 elements. The vector register file supports 2 read ports and 1 write
port for each addition unit and multiplication unit.

2) The vector addition unit has a 2-cycle latency and is fully pipelined.
3) The vector multiplication unit has a 3-cycle latency and is fully pipelined.
You are now given the following code.

I1: ADDV V3,V2,V1
I2: ADDV V4,V2,V1
I3: MULTV V5,V4,V3

Note: All vectors are 32 elements in length.

Problem M14.10.A

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8
lanes, a 2-cycle dead time, and no vector chaining. Instruction fetch takes one cycle, so does
instruction decode (unless the instruction is stalled). Reading data from the register file also takes
one cycle. Use F for fetch, D for Decode, R for Vector register read and W for write back.

How many cycles does the given code take to execute? Count execution time as the number of
cycles from when the first result is written to when the last result is written (inclusive).

Pipeline diagram for ADDV Vv3,Vv2,V1 and vector lengths of 24 elements, is shown below.
Because we need to do 24 operations using 8 lanes, the vector register file should be read three
times. X1 is the first stage of the addition unit and X2 is the second. In cycle 6, the results of the
first 8 operations are written back. This instruction takes 3 cycles to execute.

Time >
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
F D R X1 X2 W
R X1 X2 W
R X1 X2 W

Page 31 of 39

Problem M14.10.B

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8
lanes, no dead time, and vector chaining. Vectoring chaining is done through the register file. A
vector unit can read an element from the register file in the same cycle it is being written back.
How many cycles does the given code take to execute?

Problem M14.10.C

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 16
lanes, no dead time, and vector chaining. How many cycles does the given code take to execute?

Page 32 of 39

Problem M14.11: Let's Talk About Loads (Spring 2014 Quiz 3, Part A)

Consider the following code sequence:

I1: DIV R3, R1l, 8

I2: BNEZ R9, Somewhere

I3: ST R2, 0(R3)

I4: 1D R1, 8(R4)

I5: ADD R5, R1, 8

I6: SUB R10, R6, R7

I7: MUL R8, R9, R10

I8: BEQZ R8, Somewhere else

We will explore how this program behaves on different architectural styles. In all cases, assume
the following execution latencies:

e ADD, SUB:2cycles

e BNEZ, BEQZ:2cycles

e LD: 2 cycles if cache hit, 8 cycles if miss

e MUL: 5cycles

e DIV:10cycles

Additionally, the LD (I4) in this sequence misses in the data cache and therefore has a long
latency of 8 cycles.

Assume that the branch at 12 is not taken and fetch and decode never stall (e.g., by missing on
the instruction cache or the BTB). Also assume that there are no structural hazards.

Problem M14.11.A

Loads are often a bottleneck in processor performance, and as such compilers will try to move
the loads as early as possible in the program to “hide” their latency. However, in the preceding
code sequence, an optimizing compiler cannot move the load earlier in the program. Explain
why in one or two sentences.

Page 33 of 39

Problem M14.11.B

Show how this program would work on a single-issue in-order pipeline that tracks dependencies
with a simple scoreboard. Instructions are issued (i.e., dispatched for execution) in order, but can
complete out of order. Assume infinite functional units and full bypassing. Fill in the remainder
of the table below.

Instruction Issue Cycle Completion Cycle
I1: DIV R3, R1, 8 1 11

I2: BNEZ RO 2 4

I3: ST R2, O0(R3) 11 n/a

I4: LD R1, 8(R4) 12 20

I5: ADD R5, R1, 8 20

I6: SUB R10, R6, R7

I7: MUL R8, R9, RI10

I8: BEQZ RS

Page 34 of 39

Problem M14.11.C

Assuming a single-issue out-of-order processor, show at which cycles instructions are issued
(i.e., dispatched for execution) and complete. Assume that instructions are dispatched in program
order if multiple are ready in the same cycle, and do not speculate on data dependencies. Again
assume infinite functional units and full bypassing.

Instruction Issue Cycle Completion Cycle

Il: DIV R3, R1, 8 1 11

I2: BNEZ R9

I3: ST R2, O0(R3)

I4: LD R1, 8(R4)

I5: ADD R5, R1, 8

I6: SUB R10, R6, R7

I7: MUL R8, R9, R10

I8: BEQZ RS8

In one or two sentences, what is the advantage of an out-of-order architecture vs. the in-order
pipeline for this code sequence?

Problem M14.11.D

Suppose the out-of-order processor chose to execute the load first, before all other instructions in
the code sequence. What events could cause the load to be aborted, and what mechanisms are
required to detect mis-speculation and roll back? Ignore exceptions in your answer.

Page 35 of 39

Problem M14.11.E

Write VLIW code for this instruction sequence, assuming that the VLIW format is:

Memory operation ALU operation ALU operation / Branch

Try to make your VLIW code as efficient as possible, including re-ordering any instructions that
do not have dependencies. For this VLIW code just use standard MIPS instructions to fill slots
without predication or new, VLIW-specific instructions. (That is, simply schedule the
instructions already provided.) Assume that the VLIW architecture has a scoreboard that stalls
when a result is used before it is ready (e.g., on a cache miss).

In one or two sentences, what is the advantage/disadvantage of a VLIW architecture for this code
sequence vs. the out-of-order pipeline?

Josh Fisher points out that if it has a scoreboard, it’s not a true VLIW. How would the code
sequence change if we didn’t have a scoreboard?

Page 36 of 39

Problem M14.11.F

VLIW architectures rely heavily on the compiler to expose instruction-level parallelism in the
program, so hiding load latency is a major challenge. VLIW compilers developed a technique
called trace scheduling that merges multiple basic blocks into a single code sequence with
software checks to ensure correctness. We profile our program and find that the first branch (12)
is almost never taken, so merging both basic blocks is a good idea.

If we use trace scheduling to move the load (14) to be the first instruction, what conditions must

software check to ensure correctness of the load for this code sequence? Ignore exceptions in
your answer.

Page 37 of 39

Problem M14.11.G

To mitigate load latency, you decide to implement a prefetch instruction.
PREFETCH Imm (rs) takes a single argument, an address, and hints to the processor that the
given address may be used soon. Crucially, PREFETCH is side-effect free—the processor can
choose to ignore PREFETCH’s without affecting program behavior.

Now consider the following simplified code sequence:

DIV R3, R1l, 8
ST R2, 0 (R3)
LD R1, 8 (R4)
ADD R5, R1, 8

The diagram below shows how this code executes on an in-order issue processor with
scoreboarding. Show how performance can be improved using PREFETCH.

In-order In-order w/ Prefetch

(9]
<

o

)

DIV

OO NGOV ARWN =

[y
o

ST

=
=

LD

[y
N

[y
w

=
H

[y
(%]

[y
(=)]

[y
N

[y
[+]

"V

[y
[(-]

ADD

N
o

O

N
=

N
N

Complete

Page 38 of 39

Problem M14.11.H

In lecture we discussed an alternative instruction, “load-speculate’:
LD.S rt, Imm(rs)

Load-speculate will fetch the value from memory but if the access faults it instead returns zero
and does not cause an exception. Unlike prefetch, it gives not just the address but the source
address and the destination register, which receives a value from memory. A load-speculate is

followed in the program by a “load-check”:
CHK.S rt, cleanup

Load-check checks if the register was written by a LD . S that should have caused an exception
(e.g., due to a page fault). If it was, then CHK.S branches to somewhere else to service the
exception and handle any necessary cleanup. CHK . S executes in 1 cycle.

Show how to use LD.S/CHK.S to speed up the code even further than was possible with
PREFETCH. Assume scoreboarding and infinite functional units. Assume that in this case the
compiler knows that the load (14) can be scheduled before the store (13) safely. Do not show
cleanup code.

In-order In-order+LD.S+CHK. S
DIV

(9]
<

ol

)

O NGOV LAWN =

[y
o

ST

=
=

LD

[y
N

[y
w

=
H

(Y
(%]

[y
()]

[y
N

[y
[+]

[y
[(-]

"V

ADD

N
o

N
=

U

N
N

Complete

Page 39 of 39

