Last updated:
11/15/2022

Problem M14.1: Microprogramming and Bus-Based Architectures

Problem M14.1.A Memory-to-Memory Add

Worksheet M14.1-1 shows one way to implement ADDm in microcode.

Note that to maintain “clean” behavior of your microcode, no registers in the register file should change their value
during execution (unless they are written to). This does not refer to the registers in the datapath (IR, A, B, MA).
Thus, using asterisks for the load signals (IdIR, IdA, IdB, and IdMA) is acceptable as long as the correctness of your
microcode is not affected.

Problem M14.1.B Implementing DBNEZ Instruction

The question asked to jump to PC+4+offset. This ignores that the immediate value needs to be shifted left by 2
before it can be added to PC+4, to make sure we don’t run into alignment problems. We did this because the data
path given doesn’t really have facilities for shifting.

Worksheet M14.1-2 shows one way to implement DBNEZ in microcode.

Problem M14.1.C Implementing RETZ Instruction

Worksheet M14.1-3 shows one way to implement RETZ in microcode.

Problem M14.1.D Implementing CALL Instruction

Worksheet M14.1-4 shows one way to implement CALL in microcode.

Problem M14.1.E Instruction Execution Times
Instruction Cycles
SUB R3,R2,R1 3+3=6
SUBI R2,R1, #4 3+3=6
SW R1,0(R2) 3+5=8
BNEZ R1,label # (R1 == 0) 3+2=5
BNEZ R1,label # (R1 != 0) 3+5=8
BEQZ R1,label # (R1 == 0) 3+5=8
BEQZ R1,label # (R1 != 0) 3+2=5
J label 3+3=6
JR R1 3+2=5
JAL label 3+4=7
JALR R1 3+4=7

As discussed in Lecture 21, instruction execution includes the number of cycles needed to fetch the instruction. The
lecture notes used 4 cycles for the fetch phase, while Worksheet 1 shows that this phase can actually be
implemented in 3 cycles —either answer is fine. The above table uses 3 cycles for the fetch phase. Overall, SW,
BNEZ (for a taken branch), and BEQZ (for a taken branch) take the most cycles to execute (8), while BNEZ (for a
not-taken branch), BEQZ (for a not-taken branch) and JR take the fewest cycles (5).

Last updated:
11/15/2022

State PseudoCode Ld [Reg | Reg | en Id | Id ALUOp en Id Mem en Ex en uBr Next State
IR Sel W Reg | A B ALU | MA W Mem | Sel [Imm

FETCHO: | MA<- PC; A<-PC 0 PC 0 1 1 * * 0 1 * 0 * 0 N *
IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *
PC <- A+4; [O PC 1 1 * * INC_A 4 1 * * 0 * 0 D *
dispatch

NOPO: | microbranch 0 * * 0 * * * 0 * * 0 * 0 J FETCHO

Back to FETCHO

ADDmMO: | MA <- R[rs] 0 rs 0 1 * * * 0 1 * 0 * 0 N *
A <- Mem 0 * * 0 1 * * 0 * 0 1 * 0 N *
MA <- R[rt] 0 rt 0 1 0 * * 0 1 * 0 * 0 N *
B <- Mem 0 * * 0 0 1 * 0 * 0 1 * 0 N *
MA <- R[rd] * rd 0 1 0 0 * 0 1 * 0 * 0 N *
Mem <- A+B; fetch * * * 0 * * ADD 1 * 1 1 * 0 J FETCHO

Worksheet M14.1-1: Implementation of the ADDm instruction

Last updated:

11/15/2022
State PseudoCode Id Reg | Reg en Id Id ALUOp en Ld Mem en Ex en uBr Next State
IR Sel W Reg | A B ALU | MA W Mem Sel Imm
FETCHO: | MA <- PC; * PC 0 1 1 * * 0 1 * 0 * 0 N *
A<-PC
IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *
PC <- A+4; 0 PC 1 1 * 1 INC_A 4 1 * * 0 * 0 D *
B <- A+4
NOPO: | microbranch * * * 0 * * * 0 * * 0 * 0 J FETCHO
back to FETCHO
DBNEZ: | A<-rs 0 rs 0 1 1|0 * 0 * * 0 * 0 N *
rs<-A-1 0 rs 1 1 *1 0 |DEC_A 1 1 * * 0 * 0 Z FETCHO
uB to FETCHO if
Zero
A <- sExt16(IR) * * * 0 110 * 0 * * 0 SExt16 1 N *
PC <- A+B *PC| 1 |1 |*]*+ ADD 1 | x| * 0 * 0 J | FETCHO
jump to
FETCHO

Worksheet M14.1-2: Implementation of the DBNEZ Instruction

Last updated:

11/15/2022
State PseudoCode Ld | Reg | Reg en Id Id ALUOp en Ld | Mem en Ex en uBr Next State
IR Sel w Reg | A B ALU | MA W Mem Sel Im
m
FETCHO: | MA <- PC; * PC 0 1 1 * * 0 1 * 0 * 0 N *
A<-PC
IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *
PC <- A+4; 0 PC 1 1 * 1 INC_A 4 1 * * 0 * *
B <- A+4
NOPO: | microbranch * * * 0 * * * 0 * * 0 * 0 J FETCHO
back to FETCHO
retz0 | A <- Reg[Rs] 0 Rs 0 1 1 * * 0 * * 0 * 0 N *
retzl | A <- Reg[Rt] o|Rt [o[1]a]*|copry AlO 1] * 0 * 0 retz3
MA <- Reg[Rt]
uBr to retz3 if
Zero
retz2 * * * 0 * * * 0 * * 0 * 0 J FETCHO
retz3 | PC <- MEM 0 PC 1 1 0 * * * 0 1 * N *
retz4 | Reg[Rt] < A+4 * Rt 1 1 * * INC_ A 4 1 * * 0 * 0 FETCHO

Worksheet M14.1-3: Implementation of the RETZ Instruction

Last updated:

11/15/2022
State PseudoCode Id | Reg | Reg [en d | Id ALUOp en Ld [Mem | en Ex en [uBr | Next State
IR Sel w Reg | A | B ALU | MA W Me Sel Imm
m
FETCHO: | MA <- PC; *|PC| O 1 |11~ * 0 1 * 0 * 0 N *
A<-PC
IR <- Mem 1 * * O |0 * * 0 * 0 1 * 0 N *
PC <- A+4, O |PC| 1 1 | *| 1| INCA_4 1 * * 0 * 0 D *
B<-A+4
NOPO: | microbranch * * * o[>~ * 0 * * 0 * 0 J | FETCHO
back to FETCHO
CALL: | MA <-R[ra]; olral 0| 1]1]0 * o[1] = 0 * 0[N *
A <- R[ra]
Mem <- B 0 * * 0O [0 0| COPY_B 1 * 1 1 * 0 N *
Rlra] <-A -4 0 | ra 1 1 |*|0|DECA 4| 1 * * 0 * 0 N *
A <- sExt16(IR) * * * 0O [1(0O0 * 0 * * 0 |sExtle | 1 N *
PC <- A+B; *lpCc| 1 | 1 |*]* ADD 1 [x| *]o * 0 | J | FETCHO
jump to FETCHO

Worksheet M14.1-4: Implementation of the CALL Instruction

Last updated:
11/15/2022

Problem M14.1.F Exponentiation

In the given code, ‘m’ and ‘n’ are always nonnegative integers. Therefore, we don’t have to worry about the cases
where ‘1’ is larger than ‘n’ or ‘j’ is larger than ‘m’. Also, for this problem, O raised to any power is just 0, while any
nonzero value raised to the 0™ power is 1. Note that the pseudo code that is given returns a value of 0 when 0 is
raised to the O™ power. However, the actual pow () function in the standard C library returns a value of 1 for this
case. We present the solution that implements the pseudo code given in the problem rather than C’s pow ()
function.

#
R5: temp, R6: j
#
ADD R3, RO, RO ; put 0 in result
BEQZ R1, END I ; if m is 0, end
ADDI R3, RO, #1 ; put 1 in result
BEQZ R2, END I ; if n is 0, the loop is over; we set
; 1 equal to n and count down to O—since
; R2 does not have to be preserved, we
; use it for i
SUBI R5, R1, #1 ; temp = m - 1
BEQZ R5, END I ; 1if m is 1, the result will be 1,
; so end the program
_START I:
ADD R5, RO, R3 ; temp = result
SUBI R6, R1, #1 ; J = m - 1 (the number of times to
; execute the second loop)
_START J:
ADD R3, R3, R5 ; result += temp
SUBI R6, Ro6, #1 P Rt
BNEZ R6, START J ; Re-execute loop until j reaches 0
_END J:
SUBI R2, R2, #1 ;oi--
BNEZ R2, START I ; Re-execute loop until i reaches 0
END TI:

To compute the number of instructions and cycles to execute this code, let us consider subsets of the code.

Code # of instructions # of cycles
ADD R3, RO, RO 2 6x1+8x1 =14 (m=0)
BEQZ RI1, END I 6x1 +5x1=11(m>0)
ADDI R3, RO, #1 2 (ifm>0) 6x1+8x1=14(n=0)
BEQZ R2, _END I 6x1 +5x1 =11 (n > 0)
SUBI R5, R1, #1 2 (ifm>0andn>0) 6x1 +8x1 =14 (m=1)
BEQZ R5, _END I 6x1+5x1=11(m>1)
_START I:
ADD R5, RO, R3 2n (ifm>1andn>0) (6x2)xn=12n
SUBI R6, R1, #1
_START J:
ADD R3, R3, R5 3n(m-1) (6x2 + 5x1)xn + (6x2 + 8x1) x(m-
SUBI R6, R6, #1 (ifm>1andn>0) 2)xn = 17n + 20n(m-2)
BNEZ R6, START J
_END J:
SUBI R2, R2, #1 2n (ifm>1andn>0) (6 +8)xn—3=14n-3
BNEZ R2, START I

From the above table, we can complete the table given in the problem.

m,n Instructions Cycles

0,1 2 14

1,0 4 25

2,2 20 116

3,4 46 282

M, N (M =0) 2 14

M, N (M>0,N=0) 4 25

M,N(M=1, N>0) 6 36

M,N(M>1 N>0) 3N(M-1)+4N+6 | 20N(M-2)+43N+30

Problem M14.1.G

Last updated:
11/15/2022

Microcontroller Jump Logic

One way to start designing the microcontroller jJump logic is to write out a table of the input signals and the output
bits. For clarity, the bits that encode the pJumpTypes are labeled A, B and C, from left to right. The output bits are
labeled H and L, also from left to right. So the table we need to implement is the following (where asterisks are for
the input bits that we don’t care about).

Input bits

Output bits

A

N
1)
=
o
c
7
S

[k| *| ¥ | ¥ | [O| %0

PRk ko |lolo|lo|m

NN ==l =1 =1 =Y =1l

ol |olr|rlololo|T
ololo|o|r|olr|lolo|r

S == =]=]
(OO #| | *| *| *

Writing out boolean equations for the H and L output bits (by directly recognizing only the lines which have logical
ones as output) we find

H = ABC + ABC + ABC - zero + ABC - zero
L=ABC -busy + ABC

Also, we do not care about the output when the pJump type is 011 or 101, since those are invalid encodings. Thus
we can simplify the equations to

H = AB + AB + AC - zero + AC - zero
L = BC -busy + AB

Drawing this out as gates we get

A

ZEro

busy

O

O

B
</

N

-
B

O

./

Page 8 of 38

Last updated:
11/15/2022

Last updated:
11/15/2022

Problem M14.2: VLIW Programming

Problem M14.2.A

To get 1 cycle per vector element performance, we need to use loop unrolling and software
pipelining. The original loop is unrolled four times and software pipelined. Two registers (F3
and F'7) are used for saving partial sums, which are summed at the end.

At the start of the program n may be any value. By making successive checks and providing fix-
up code, n can be guaranteed to be positive and a multiple of 4 by the prolog.

// Rl - points to X
// R2 - points to Y
// R5 - n

// F71 — result

// clear partial sum registers
MOVIZ2FP F3,R0
MOVIZ2FP F7,R0

// clear temporary registers used for multiply results
MOVIZ2FP F2,R0
MOVIZ2FP F6,R0
MOVIZ2FP F10,RO0
MOVIZ2FP F14,R0

// n must be greater than 0
SGT R3,R5,R0
BEQZ R3, end // if ! (n>0) goto end

// n must be greater than 0
ANDI R3,R5,#3
BEQZ R3,prolog

// (n>0) && ((n%4)!=0)
SUB R5,R5,R3

Ll:
L.S F3,0(R1); L.S F4,0(R2); SUBI R3,R3,#1
MUL.S F3,F3,F4; ADDI R1,R1, #4;
ADD.S F7,F7,F3; ADDI R2,R2,#4; BNEZ R3,L1
BEQZ R5,end
// (n>=4) && ((n%4)==0)

prolog:

L.S FO, O(Rl); L.S F1, O(R2); SUBI R5,R5,#4

L.S F4, 4(Rl); L.S F5, 4(R2); ADDI R1,R1,#16

L.S F8,-8(Rl); L.S F9, 8(R2); ADDI R2,R2,#16

L.S F12,-4(R1); L.S F13,-4(R2); BEQZ R5,epilog

L.S FO, O(Rl); L.S F1l, O(R2); MUL.S F2, FO, Fl; SUBI R5,R5,#4
L.S F4, 4(R1); L.S F5, 4(R2); MUL.S F6, F4, F5; ADDI R1,R1,#16
L.S F8,-8(Rl); L.S F9, 8(R2); MUL.S F10, F8, F9; ADDI R2,R2,#16
L.S F12,-4(R1); L.S F13,-4(R2); MUL.S F14,F12,F13; BEQZ R5,epilog

Page 9 of 38

end:

ADD.
ADD.
ADD.
ADD.

ADD.

0N n nwn

0N n nwn

el

D
Do O
R
[y S gy t
| e e

F6, F4, F5;
F10, F8, F9;
Fl14,F12,F13;

F3,F3, F2
F7,F7, F6
F3,F3,F10
F7,F7,F14

F7,F7,F3

ADD
ADD
ADD
ADD

.S F3,F3, F2
.S F7,F7, F6
.S F3,F3,F10
.S F7,F7,F14

Page 10 of 38

(R2); MUL.S F2, FO, F1;
(R2); MUL.S F6, F4, F5;
(R2); MUL.S F10, F8, F9;
(R2); MUL.S F14,F12,F13;

ADD.
ADD.
ADD.
ADD.

0N n n n

F3,F3, F2;
F7,F7, F6;
F3,F3,F10;
F7,F7,F14;

Last updated:

SUBI
ADDI
ADDI
BNEZ

11/15/2022

R5,R5, #4
R1,R1, #16
R2,R2, #16
R5, loop

Last updated:
11/15/2022

Problem M14.3: Trace Scheduling

Problem M14.3.A

Program’s control flow graph Decision tree
A
B C
D D
E F E F
G G G G
1/8 0 1/8 6/8

Problem M14.3.B

ACF: 1d rl, data
div r3, r6, r7 ;; X <- V2/V3
mul r8, re6, r7 ;; Y <- V2*V3

D: andi r2, rl, 3 ;; r2 <- rl1%4
bnez r2, G

A andi r2, rl, 7 ;; r2 <- rl%8
bnez r2, E

B: div r3, rd4, r5 ;; X <- V0O/VI

E: mul r8, r4d, r5 ;; Y <- V0O*V1

G:

Problem M14.3.C

Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles.
Approximately how many cycles does the original code take? (ignore small constants)
x+max(y,z)

Approximately how many cycles does the new code take in the best case? max(x,y,z)

Page 11 of 38

Last updated:
11/15/2022

Problem M14.4: Scalar vs. VLIW Processors

Problem M14.4. A

(@) No stalls for the 11->13 or 12->15 load-use dependencies, as the compiler has scheduled
these instructions far enough apart.
I3->15 and 15->17 each require one stall to wait for a floating-point operation.
Total: 2 stalls

(b) 8 instructions + 2 stalls = 10 cycles per iteration, so with 2 floating point operations this
gives: 2/10 = 1/5 = 0.2 FLOPs/cycle

Problem M14.4.B

Unrolling by 2 is sufficient. We could simply interleave instructions from two iterations, which
works since the original loop never required two stalls for a single instruction. Although not
required, for this particular loop, we can also reduce the bookkeeping instructions and an
unrolling factor of 2 is still sufficient. The following code with only two additions (which is the
minimum possible) still has zero stalls:

I1: loop: 1ld fo, o(r2) ;5 Load B[1i]
I2: 1d £5, 4(r2) ;53 Load B[i+1]
I3: 1d f2, o(rl) ;5 Load A[1i]
I4: 1d f6, 4(rl) ;53 Load A[i+1]
I5: fadd 3, fo, f1

I6: fadd f7, f5, f1

I17: addi rl1, ri, 8

18: fmul f4, f2, f3

I9: fmul 8, f6, f7

I10: addi r2, r2, 8

I11: st f4, -8(rl) ;; Store A[i]
I12: st 8, -4(rl) ;3 Store A[i+1]
I13: bne rl, r3, loop

Problem M14.4.C

(a) Unrolling by 3 is sufficient. The most critical dependencies are fadd->fmul->st, due to the
long-latency floating-point ops which take 3 cycles. Unrolling by a factor of 2 does not give
enough ops to fill the cycles (since we aren’t satisfied to fill a cycle with just an integer ALU
op). Once you unroll by 3, matching the longest latency, you can interleave ops from three

Page 12 of 38

Last updated:
11/15/2022

fadd->fmul->st chains to put at least one op in each cycle. For example, you could have
extended and filled in the table on the previous page to get this schedule for unrolling by 3:

Inst. | ALU/Branch Unit Memory Unit Floating Point Unit

1 1d fo, 0(r2)

2 1d 5, 4(r2)

3 1d 9, 8(r2) fadd f3, fo, fl
4 addi r2, r2, 12 1d f2, 0(rl) fadd f7, f5, f1
5 1d 6, 4(rl) fadd f11, f9, f1
6 1d f1e, 8(ril) fmul f4, f2, 3
7 addi rl1, rl1, 12 fmul 8, f6, f7
8 fmul f12, fi1e, f11
9 st f4, -12(rl)

10 st 8, -8(rl)

11 bne rl, r3, loop st f12, -4(rl)

(b) The loop performs 3 memory operations for every 2 floating point operations. We can issue
at most 1 memory op per cycle, so the peak throughput is 2/3 = 0.67 FLOPs/cycle.
(Addendum: Software pipelining and its associated hardware support is not actually needed
to achieve this ideal throughput: simply unrolling by a larger factor can result in enough
memory ops to keep the memory unit fully utilized.)

Page 13 of 38

Last updated:
11/15/2022

Problem M14.5: VLIW & Vector Coding
Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a
vector.
for (i = 0; 1 < N; i++) {
if (A[i] < 0)

Ali] = -A[1];

Problem M14.5.A

; Initial Conditions:
; R1 = N
; R2 = &A[0]

SGT R3, R1, RO

SW R4, -4 (R2)
next: BNEZ R1l, loop
end:

; store updated value of A[i]

BEQZ R3, end ; R3 = (N > 0) | special case N £ 0
loop: LW R4, 0(R2) | SUBI R1, R1, #1 ; R4 = A[1] | N--
SLT R5, R4, RO | ADDI R2, R2, #4 ; R5 = (A[1] < 0) | R2 = &A[i+1]
BEQZ R5, next | ; skip if (A[1]20)
SUB R4, RO, R4 | ; A[i] = -A[1]
|
|

; continue if N > 0

Average Number of Cycles: %2 x (6 +4) =5

; SOLUTION #2

SGT R3, R1, RO

BNEZ R3, end ; R3 = (N > 0) | special case N <0
loop: LW R4, 0(R2) SUBI R1, R1, #1 ; R4 = A[i] | N--
SLT R5, R4, RO ADDI R2, R2, #4 ; R5 = (A[i] < 0) | R2 = &A[i+1]

SW R4, -4 (R2)
next: BNEZ R1l, loop
end:

|
|
BNEZ R5, next | SUB R4, RO, R4 ; skip if (A[i1]120) | A[i] = -A[i]
| ; store updated value of A[i]
|

; continue if N > O

Average Number of Cycles: %2 x (5 +4) =4.5

NOTE: Although this solution minimizes code size and average number of cycles per element for
this loop, it causes extra work because it subtracts regardless of whether it has to or not.

Page 14 of 38

Last updated:

11/15/2022

Problem M14.5.B

SGT R3, R1, RO

BNEZ R3, end ; R3=(N>0) | if N<O
loop: LW R4, O0(R2) | SUBI R1, R1, #1 ; R4 = A[i] | N--

CMPLTZ PO, R4 | ADDI R2, R2, #4 ; PO = (A[i]<0) | R2 = &A[i+1]

(PO) SUB R4, RO, R4 | ; A[i] = -A[i]

(PO) SW R4, -4(R2) | BNEZ R1, loop ; store updated value of A[i]
end: ; continue if N > 0

Average Number of Cycles: %2 x (4 + 4) = 4 Cycles

Problem M14.5.C

R3
R4 =

R5 =
R6

loop:

Initial Conditions:
Rl = N
R2 = &A[1]

N >0
Ali]

N odd
A[i+1]

SGT R3,
BEQZ R3, end
BEQZ R5, loop
CMPLTZ PO, R4
ADDI R2, R2, #4
(PO) SW R4,

R1, RO

LW R4, 0(R2)
CMPLTZ PO, R4
(PO) SUB R4,
(PO) SW R4,

ADDI R2, R2, #8

end:

RO,
0 (R2)

-4 (R2)

R4

ANDI R5, RI1,
LW R4, 0(R2)
SUBI R1, RI1,
(P0) SUB R4,
BEZ R1, end

SUBI R1, R1,
LW R6, 4 (R2)

CMPLTZ P1l, R6

#1

#1
RO, R4

#2

(P1) SUB R6 RO, R6
(P1) SW R6 4(R2)
BNEZ R1, loop

Average Number of Cycles: 6 for 2 elements = 3 cycles per element

Page 15 of 38

Problem M14.5.D

Last updated:
11/15/2022

; Initial Conditions:

; Rl = N

; R2 = &A[1]
L.D FO, #0
MTC1 VLR R1
CVM
LV V1, R2

SLTVS.D V1, FO
SUBSV.D V1, FO, V1
SV R2, V1

+ o e

operate on all N elements

load A

setup the mask vector
negate appropriate elements
store back changes

Average Number of Cycles: = (N/2 + N/2) / N =~ 1 cycle per element (assuming chaining)

Note: Because there is only one ALU per lane, only the load and the SLT (Set-Less-Than) can be
chained together, while the subtract and the store can be chained together. Execution time (per
element) of the other instructions is negligible when N is large.

Problem M14.5.E

; assume m

= known vector length

; Initial Conditions:

; R1
; R2

= N

&A[1]

L.D FO, #0

ANDI R3, R1, (m-1)
MTC1l VLR R3
Lv vl1, R2
SLTVS.D V1, FO
SUBsSv.D V1, FO, V1
SV R2, V1
SUB R1, R1, R3
SLLI R3, R3, #2
ADDI R2, R2, R3
BEQZ R1, end
ADDI R3, RO, m
MTC1 VLR R3

loop:
CVM
LV V1, R2
SLTVS.D V1, FO
SUBSv.D V1, FO, V1
SV R2, V1
ADDI R2, R2, (m*4)
SUBI R1, R1, m
BNEZ R1, loop

= e T E E

P

get N%m - assume m is a power of 2

operate on first N%m elements

load A

setup the mask vector

negate appropriate elements

store back changes

decrease 1 by N%m (i is divisible by m now)
(we’re counting i down)

advance A pointer

i == 0 -> done

operate on all elements

load A

setup the mask vector
negate appropriate elements
store back changes

advance A pointer

decrease 1 by m

done?

Page 16 of 38

Last updated:
11/15/2022

end:
CVM

Page 17 of 38

Last updated:

11/15/2022
Problem M14.6: Predication and VLIW
Problem M14.6.A
1l.s O0(rl) ; f1 = *rl
seqg.s rb5, f10, f1 ; r5 = (£f10==£f1)
cmpnez pl, r5 ; pl = (r5!'=0)
(pl) add.s f2, f1, fl1l ; if (pl) f2 = f1+f11
(!'pl) add.s f2, f1, f12 ; if(!pl) £f2 = f1+£f12
S.s 0(r2) ; *r2 £f2

Problem M14.6.B

See the next page (Table M14.6-2).

Page 18 of 38

Last updated:

11/15/2022
Label integer op floating point add memory op branch
loop: l.s £1,0(rl)
l.s £3,4(rl)
addi rl, rl, #8 |cmpnez pl, fl
cmpnez p3, f£3
(pl) add.s £2, £f1, f1
(p3) add.s £4, £3, f£3
(pl) s.s £2, -8(rl)
(p3) s.s £f4, -4(rl) |bneq rl, r2, loop
Table M14.6-1
label integer op floating point add memory op branch
l.s £f1,0(rl)
1.s £3,4(rl)
addi rl, rl, #8 |cmpnez pl, fl
cmpnez p3, f£3 beq rl, r2, epilog
loop: (pl) add.s £2, £f1, f1 l.s £f1,0(rl)
(p3) add.s f4, £3, £3 |1l.s £3,4(rl)
addi rl, rl, #8 cmpnez pl, f1 (pl) s.s £2, -8(rl)
cmpnez p3, £3 (p3) s.s f4, -12(rl) bneq rl, r2,loo0p
epilog: (pl) add.s £f2, f1, f1
(p3) add.s £f4, £3, £3
(pl) s.s £2, -8(rl)
(p3) s.s £2, -4(rl)
Table M14.6-2

Page 19 of 38

Last updated:
11/15/2022

Problem M14.7: Vector Machines

Problem M14.7.A

Consider the implementation of the C-code on the vector machine that executes in a minimum
number of cycles. Assuming the following initial values, insert vector instructions to complete
the implementation.

0O O O O

ANDT
MTC1
loop:

LV
LV
LV
MULV
ADDV
sv
sSv
SLL
ADD
ADD
ADD
SUB
LI
MTC1
BGTZ

R1 points to A[0]
R2 points to B[0]
R3 points to C[0]
R4 contains the value 328

R5, R4,
VLR, R5

vVl, R1
V2, R2
V3, R3
v4, V2,
V5, V3,
V4, R1
V5, R3
R7, RS,
R1, R1,
R2, R2,
R3, R3,
R4, R4,
R5, 32
VLR, R5
R4, loop

31

V1
V4

R7
R7
R7
R5

3= = 3 H

S o S S o

328 mod 32
set VLR to remainder

load A
load B
load C
A * B
C+ A
store A
store C

increment A ptr
increment B ptr
increment C ptr
update loop counter
reset VLR to max

Page 20 of 38

Last updated:
11/15/2022

Problem M14.7.B

The following supplementary information explains the diagram.
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back ALL of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector
register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does
not block a scalar instruction from executing.
LV, and LV, refer to the first and second LV instructions in the loop.

cycle

instr. [172 3 4 5 6 7 8 9 10111213 14 1516 17 18 19/20 21 22 23 24 25 26/27 /2829 30 31 32 33 34 35 36 37 38 39 40

LV, |F[D|RMimM2M3IM4W

LV, R |[M1M2M3M4| W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, F |D|—|— —| R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV3 FD——"———— R MLIM2M3M4 W

LV3 R M1M2M3M4 W

LV3 R M1M2M3M4 W

LVs R M1M2M3M4 W

MULV FD——————————RYLY2W

MULV R Y1Y2W

MULV R|Y1Y2W

MULV R Y1Y2 W

ADDV F|D —|—|—|—|—|—|——|—|—|—|——|——|—|R X1 W

ADDV R X1W

ADDV R X1W

ADDV R X1

£z

SV FD——M/—«—————|——— —|——— R M1M2M3M4

SV R M1M2M3M4 W

SV R M1M2M3M4 W

SV R M1M2M3M4 W

SV, FD——f—-~r|——— - — | — | —|—|— R M1IM2M3M4 W

SV, R M1IM2M3M4 w

SV» R M1M2M3M4 W

SV, R M1IM2M3M4 W

Page 21 of 38

Last updated:
11/15/2022

Problem M14.7.C

cycle

INStr.[1727374 5 6 7 8 910111213 1415 16 17,18 19 20 21 22 23/ 24 25 262728129 30 31 32|33 34 35 36 37 38 39 40

LV; |F[D|RM1IM2M3M4 W

LV, R (M1M2M3M4 W

LV, R [M1M2M3M4| W

LV, R M1M2M3M4 W

LV, F | D|——|— R M1M2M3M4 W

LV, R M1M2M3M4/ W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV FD—————— RMLM2M3M4 W

LV3 R M1M2M3M4 W

LV; R M1M2M3M4 W

LV3 R M1IM2M3M4 W

MULV FD——————RIYLY2W

MULV RIY1Y2W

MULV RIYLY2 W

MULV RIYLY2 W

ADDV F D |—— === —— R X{W

ADDV R X1'W

ADDV R X1'W

ADDV R X1'W

SV; FD——mM——m ———— R M1M2M3M4 W

SVi R M1M2M3M4 w

SV, R M1IM2M3Mm4 W

SV R M1IM2M3M4 W

SV; FD————— —— R M1IM2M3M4 W

SV, R M1M2M3M4 W

SV, R M1IM2M3Mm4 W

SV, R M1IM2M3M4 W

123 45 6 7 8 9 10/11/12 13 14 15 16 17 18 19

Page 22 of 38

Last updated:
11/15/2022

Problem M14.7.D

What is the performance (flops/cycle) of the program with chaining?

2*32/19

Problem M14.7.E

Would loop unrolling of the assembly code improve performance without chaining? Explain.
(You may rearrange the instructions when performing loop unrolling.)

Yes. We can overlap some of the vector memory instructions from different loops.

Page 23 of 38

Last updated:
11/15/2022

Problem M14.8: Vector Machines

Problem M14.8.A

The following supplementary information explains the diagram:
Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back all of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file.
A stalled vector instruction does not block a scalar instruction from executing.
LV, and LV, refer to the first and second LV instructions in the loop.

) cycle
INStr. [1727374[5]6]7]8]09 10[11][12/13]14]15/16/17]18]19[20]21[22]23]24]25]26]27128]29]30(31]32]33]34]35/36]37]38]39/40

LV: |F[D[RMIM2M3M4 W

LV; R M1M2M3M4 W

LV; R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, F | D |—|—|—| R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

ADDV F|D|—|—|—|—|—|—|—|—|—|——| R [x1|W

ADDV R [X1|W

ADDV R [X1|W

ADDV R [X1|W

SUBVS Flp|—|——HFH - |rRixiw

SUBVS R X1W

SUBVS R X1W

SUBVS R X1W

SV FD——m————— — — —— R MIM2M3M4

SV R M1M2M3M4

SV R M1M2M3M4

SV R M1M2M3M4

ADDI F|D

ADDI F

m|O | X

ADDI

moXxX|Z

SUBI

mo|x|Z|s

BNEZ

mio (x| Z|S
U|X|Z s
S

LV, ——_————————— — — — — — — — R MIM2M3M4W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

LV, R M1M2M3M4 W

Page 24 of 38

Last updated:

11/15/2022
Problem M14.8.B
Number of cycles between Total cvel
Vector processor successive vector instructions %fvngois
configuration LV. | LV2 | ADDV,| SUBVS.| SV, '?O o e
LV. | ADDV| SUBVS| SV LV: pITer.
8 lanes, no chaining 4 9 6 6 4 29
8 lanes, chaining 4 5 4 2 4 19
16 lanes, chaining 2 5 2 2 2 13
32 lanes, chaining 1 5 2 2 1 11

Note, with 8 lanes and chaining, the SUBVS can not issue 2 cycles after the ADDV because there
is only one ALU per lane. Also, since chaining is done through the register file, 2 cycles are
required between the ADDV and SUBVS and between the SUBVS and SV even with 32 lanes (if
bypassing was provided, only 1 cycle would be necessary).

Page 25 of 38

Last updated:
11/15/2022

Problem M14.8.C

Instr. Number Instruction
Il LV V1l, R1

I2 v V2, R2

I6 ADDI R1, R1, 128
I7 ADDI R2, R2, 128
I10 v V5, R1

I11 LV V6, R2

I3 ADDV V3, V1, V2
I4 SUBVS V4, V3, R4
I5 sv R3, V4

I12 ADDV V7, V5, V6
113 SUBVS V8, V7, R4
18 ADDI R3, R3, 128
I14 sv R3, V8

I15 ADDI R1, R1, 128
116 ADDI R2, R2, 128
117 ADDI R3, R3, 128
I9 SUBI R5, R5, 32
118 SUBI R5, R5, 32
I19 BNEZ R5, loop

This is only one possible solution. Scheduling the second iteration’s LV’s (I10 and I11) before
the first iteration’s SV (I5) allows the LV’s to execute while the load/store unit would otherwise
be idle. Interleaving instructions from the two iterations (for example, if 112 were placed
between 13 and 14) could hide the functional unit latency seen with no chaining. However, doing
so would delay the first SV (15), and hence, increase the overall latency. This tension makes the
optimal solution very tricky to find. Note that to preserve the instruction dependencies, 16 and 17
must execute before 110 and 111, and 18 must execute after 15 and before 114.

Page 26 of 38

Last updated:
11/15/2022

Problem M14.9: Vectorizing memcpy and strcpy

Problem M14.9.A

Because there is only one load/store unit, SV instruction should wait at least till the last element
of the LV instruction is issued. Since there is only one lane, each Sv and LV instruction takes 32
cycles to issue. In steady state, it takes 32 (1.v) + 10 (dead time) + 32 (SV) + 10 (dead time)
cycles per 32 elements, and 2.62 cycles per element. All scalar instructions can be overlapped
with Sv.

Problem M14.9.B

We can vectorize strcpy using SEQSV and CLzM. The algorithm is as follows. First, we load
32 elements. Second, we use SEQSV to check whether each element has *\ 0’ or not. Third, we
use CLZM to count the number of the elements before the first *\ 0’ in the vector and set the
vector length to that number. Then, we do a vector store. If no element has *\0’ (i.e. the
number is 32), we go back to the first step and load the next 32 elements. If a vector has *\0’,
strcpy ends. As discussed in the function definition, our strcpy copies one word at a time,
and assumes that the string is word-aligned with the terminating character of 32-bit *\ 0.

ADD R5,R1,R0 ; store destination address in R5
ADD R4,R2,R0 ; store source address in R4
ADDI R6,RO, #32
MTC1 VLR, R6 ; set vector length to 32
CVM
MOVI2FP FO,RO
loop:
LV V1, R4
ADDI R4,R4, #128 ; bump source pointer
SEQSV FO,V1 ; setup the mask register
CLZM R6,VM ; number elements before “\0’
MTC1 VLR, R6
SV R5,V1
ADDI R5,R5,#128 ; bump destination pointer
SUBI R7,R6, #32 ;
BEQZ R7, loop ; 1f no element has ‘\0’ goto loop
SLLT R6,R6, #2 ; move destination pointer to
SUBI R5,R5, #128 ; the end of the string
ADD R5,R5,R6 ; copy ‘\O’

Page 27 of 38

Last updated:
11/15/2022

Problem M14.9.C

Without vector chaining, st rcpy takes more cycles per element than memcpy since it has one
additional vector instruction, SEQSV. It takes 32+10 (L.V) + 32 (SEQSV) + 1 (CLzM) + 1 (MTC1)
+ 32 (sv) + 10 (dead time) = 118 cycles per 32 elements or 3.69 cycles per element.

With vector chaining, the first element of V1 can be bypassed to SEQSV instruction after 10
cycles. Store can be executed only after we get the value of VLR, that is, after SEQSV, CLZM,
and MTCL. Therefore, it takes 10 (LV) + 32 (SEQSV) + 1 (CLzZM) + 1 (MTC1) + 32 (SV) + 10
(dead time) = 86 cycles per 32 elements or 2.69 cycles per element.

In memcpy, both vector instructions (Sv and LV) use the same functional unit. Therefore, the
execution of two instructions cannot be overlapped even with vector chaining. Copying each
element takes 2.62 cycles as in M14.9.A. With vector chaining, the performance of strcpy is
comparable to that of memcpy.

Page 28 of 38

Last updated:
11/15/2022

Problem M14.10: Performance of Vector Machines

Problem M14.10.A

With 8 lanes, a 2-cycle dead time and no vector chaining, we get the following pipeline diagram.

Cycle
112|134 (5|6 |7 8 9|11 |11)1)1)1f1f1f1|1|12|2]|2]|2
0|l1)2]|3]|4]|5|6[7([8f[9]0|1]2]3

I | FIDIR| X| X|W
1 112
| R|X| X|[WwW
1 1 (2
| R| X | X2 W
1 1
| R | X1 X2 W
1
| F{D|D|D|D R| X | X|W
2 112
| RIX| X|W
2 112
| R X| X|W
2 112
| RI X[X|W
2 112
| F(D|D|D| D D DID(D|D|D|D|D|R|X|X|X|W
3 11213
| RIX|X]| X|W
3 11213
| R X| X| X|W
3 112(3
| RIX|[X|X|W
3 11213

Since each vector has 32 elements, and there are 8 lanes, the vector register file needs to be read
4 times for each instruction. Although 12 does not need the results of 11, both instructions use the
vector add unit, so 12 must wait until after 11 completes its last read, plus an additional 2 cycles
for dead time before beginning its first read. And because there is no chaining, 13, which is
dependent on 12, needs to wait until 12 has finished its last write back before beginning its first
read.

The execution time is 18 cycles (from cycle 6 to cycle 23, inclusive).

Page 29 of 38

Last updated:
11/15/2022

Problem M14.10.B

With 8 lanes, no dead time and flexible chaining, we get the following pipeline diagram.

Cycle
1{2|3|4 |5 |6 |7 8 9|1 |1 |11]1]1]1]1
0123 [4]5]|6 7

Il |FID|R|X | X|W
1 1]2
| R|X|X|W
1 112
| R | X | X2 w
1 1
| R | X1 X2 W
1
| FIDID|[D|D X | W
2 2
| R X | X|W
2 12
| RIX[X|W
2 112
| RIX|[X]|W
2 112
| FID|D|D|D D DIR[X[X]|X]|W
3 11213
| RIX[X|X]|W
3 11213
| RIX|X|X]|W
3 11213
| R|X|X|X|W
3 11213

With no dead time, 12 can issue its first read after the last read of 11. And with flexible chaining,
I3 can begin its first read in the same cycle as the first write of 12.

The execution time is 12 cycles (from cycle 6 to cycle 17, inclusive).

Page 30 of 38

Last updated:
11/15/2022

Problem M14.10.C

With 16 lanes, no dead time and flexible chaining, we get the following pipeline diagram.

Cycle
11234 |5 (6 |7 8 9 (1 |1 (1 |1
0 [1]2 |3

Il |FIDIR| X [X |W
1 1 |2
| R[X [X |W
1 1 (2
| |FID|D|R [X
2 1
| R [X1 X2 W
2
| FID|D|D|D R X | X | X |W
3 1 12 |3
| R|X [X [X|W
3 1 12 |3

Since each vector has 32 elements, and there are 16 lanes, the vector register file needs to be read
2 times for each instruction.

The execution time is 8 cycles (from cycle 6 to cycle 13, inclusive).

Page 31 of 38

Last updated:
11/15/2022

Problem M14.11: Let's Talk About Loads (Spring 2014 Quiz 3, Part A)

Consider the following code sequence:

I1: DIV R3, R1, 8

I2: BNEZ R9, Somewhere

I3: ST R2, 0(R3)

I4: 1D R1, 8(R4)

I5: ADD R5, R1, 8

I6: SUB R10, R6, R7

I7: MUL R8, R9, R10

I8: BEQZ R8, Somewhere else

We will explore how this program behaves on different architectural styles. In all cases, assume
the following execution latencies:

e ADD, SUB:2cycles

e BNEZ, BEQZ:2cycles

e LD: 2 cycles if cache hit, 8 cycles if miss

e MUL: 5cycles

e DIV:10cycles

Additionally, the LD (14) in this sequence misses in the data cache and therefore has a long
latency of 8 cycles.

Assume that the branch at 12 is not taken and fetch and decode never stall (e.g., by missing on
the instruction cache or the BTB). Also assume that there are no structural hazards.

Problem M14.11.A

Loads are often a bottleneck in processor performance, and as such compilers will try to move
the loads as early as possible in the program to “hide” their latency. However, in the preceding
code sequence, an optimizing compiler cannot move the load earlier in the program. Explain
why in one or two sentences.

We need to explain why the LD can’t be moved before the ST. (Otherwise, it could be moved
earlier, even if not to the very beginning.) The reason is that there could be a RAW hazard
through memory—maybe 0(R3)==8(R4).

Answers that there is a control hazard at 12 or a WAW hazard with 11 do not explain the
difficulty of moving the LD earlier.

Page 32 of 38

Last updated:
11/15/2022

Problem M14.11.B

Show how this program would work on a single-issue in-order pipeline that tracks dependencies
with a simple scoreboard. Instructions are issued (i.e., dispatched for execution) in order, but can
complete out of order. Assume infinite functional units and full bypassing. Fill in the remainder
of the table below.

Instruction Issue Cycle Completion Cycle
I1: DIV R3, R1, 8 1 11
I2: BNEZ RO 2 4
I3: ST R2, O0(R3) 11 n/a
I4: LD R1, 8(R4) 12 20
I5: ADD R5, R1, 8 20 22
I6: SUB R10, R6, R7 21 23
I7: MUL R8, R9, RI10 23 28
I8: BEQZ RS8 28 30

There 1s no hazard preventing issue of 16, so it can issue at 21. It can’t issue earlier because the
processor is in-order. Following 16 is a string of RAW dependencies, so the latency of 16, 17, and
I8 determine the code sequence’s completion time.

Page 33 of 38

Last updated:
11/15/2022

Problem M14.11.C

Assuming a single-issue out-of-order processor, show at which cycles instructions are issued
(i.e., dispatched for execution) and complete. Assume that instructions are dispatched in program
order if multiple are ready in the same cycle, and do not speculate on data dependencies. Again
assume infinite functional units and full bypassing.

Instruction Issue Cycle Completion Cycle
I1: DIV R3, R1, 8 1 11
I2: BNEZ RO 2 4
I3: ST R2, 0(R3) 11 n/a
I4: LD R1, 8(R4) 12 20
I5: ADD R5, R1, 8 20 22
I6: SUB R10, R6, R7 3 5
I7: MUL R8, R9, RI10 5 10
I8: BEQZ RS 10 12

Because we are not speculating on data dependencies, we cannot issue the LD before we know
the ST address. So the earliest that the LD can issue is when 11 completes. Since the ST appears
earlier in program order, it is issued first, and the LD is delayed until cycle 12. We can, however,
begin issuing 16 at cycle 3 while waiting for 11 to complete.

In one or two sentences, what is the advantage of an out-of-order architecture vs. the in-order
pipeline for this code sequence?

We are able to execute 16, 17, and 18 while the processor is waiting on memory, shortening the
completion time.

Problem M14.11.D

Suppose the out-of-order processor chose to execute the load first, before all other instructions in
the code sequence. What events could cause the load to be aborted, and what mechanisms are
required to detect mis-speculation and roll back? Ignore exceptions in your answer.

Two events are relevant: the ST writes the address read by the LD, or the branch at 12 is
mispredicted.

The former requires a speculative load buffer to detect RAW memory hazards. The latter

requires detection of mis-speculation and redirecting fetch to the right address. Both require
flushing the ROB for mis-speculated instructions.

Page 34 of 38

Last updated:
11/15/2022

Problem M14.11.E

Write VLIW code for this instruction sequence, assuming that the VLIW format is:

Memory operation ALU operation ALU operation / Branch

Try to make your VLIW code as efficient as possible, including re-ordering any instructions that
do not have dependencies. For this VLIW code just use standard MIPS instructions to fill slots
without predication or new, VLIW-specific instructions. (That is, simply schedule the
instructions already provided.) Assume that the VLIW architecture has a scoreboard that stalls
when a result is used before it is ready (e.g., on a cache miss).

DIV R3, R1, 8 BNEZ RO

ST R2, 0 (R3) SUB R10, R6, R7

LD R1, 8 (R4)

MUL R8, R9, RI10

ADD R5, R1, 8 BEQZ RS

This code schedule is effectively what the OOO processor does, with some independent
operations scheduled in parallel. 16 is moved earlier in the program, and 17 & I8 execute while
the LD is waiting. The one subtlety of this code is that the MUL is delayed one instruction so
that the LD is not delayed. This is important because the critical path of this computation is
DIV->ST->LD->ADD (issued).

In one or two sentences, what is the advantage/disadvantage of a VLIW architecture for this code
sequence vs. the out-of-order pipeline?

For this code sequence, the VLIW code can achieve similar performance to an OOO processor
with much simpler hardware logic. This is possible because it pushes the scheduling complexity
into the compiler.

The disadvantage is similar—for VLIW to work well, the compiler must be able to schedule
instructions effectively. Often this is not possible in practice.

Josh Fisher points out that if it has a scoreboard, it’s not a true VLIW. How would the code
sequence change if we didn’t have a scoreboard?

We would need to schedule NOPs explicitly to handle the latency of each operation. This
becomes complicated with variable latency operations, like LDs with a cache.

Page 35 of 38

Last updated:
11/15/2022

Problem M14.11.F

VLIW architectures rely heavily on the compiler to expose instruction-level parallelism in the
program, so hiding load latency is a major challenge. VLIW compilers developed a technique
called trace scheduling that merges multiple basic blocks into a single code sequence with
software checks to ensure correctness. We profile our program and find that the first branch (12)
is almost never taken, so merging both basic blocks is a good idea.

If we use trace scheduling to move the load (14) to be the first instruction, what conditions must
software check to ensure correctness of the load for this code sequence? Ignore exceptions in
your answer.

The answer is: “Same as OOO, except in software.” We must check that there was no RAW
hazard between ST=>LD. We also must check R9 to make sure that the 12 branch was not taken.

Page 36 of 38

Last updated:
11/15/2022

Problem M14.11.G

To mitigate load latency, you decide to implement a prefetch instruction.
PREFETCH Imm(rs) takes a single argument, an address, and hints to the processor that the
given address may be used soon. Crucially, PREFETCH is side-effect free—the processor can
choose to ignore PREFETCH’s without affecting program behavior.

Now consider the following simplified code sequence:

DIV R3, R1l, 8
ST R2, 0 (R3)
LD R1, 8 (R4)
ADD R5, R1, 8

The diagram below shows how this code executes on an in-order issue processor with
scoreboarding. Show how performance can be improved using PREFETCH.

1 DIV DIV
2 1 PREFETCH
3

4

5

6

7

8

9

10 ’

11 ST ST
12 LD LD
13

14 ADD
15

16 Complete
17

18

19 "V

20 ADD

21 J

22 Complete

Scheduling the PREFETCH before the DIV is correct but wastes a cycle unnecessarily.

Page 37 of 38

Last updated:
11/15/2022

Problem M14.11.H

In lecture we discussed an alternative instruction, “load-speculate”:

LD.S rt, Imm(rs)
Load-speculate will fetch the value from memory but if the access faults it instead returns zero
and does not cause an exception. Unlike prefetch, it gives not just the address but the source
address and the destination register, which receives a value from memory. A load-speculate is

followed in the program by a “load-check”:
CHK.S rt, cleanup

Load-check checks if the register was written by a LD . S that should have caused an exception
(e.g., due to a page fault). If it was, then CHK.S branches to somewhere else to service the
exception and handle any necessary cleanup. CHK . S executes in 1 cycle.

Show how to use LD.S/CHK.S to speed up the code even further than was possible with
PREFETCH. Assume scoreboarding and infinite functional units. Assume that in this case the
compiler knows that the load (14) can be scheduled before the store (13) safely. Do not show
cleanup code.

Cycle In-order In-order+LD.S+CHK. S
1 DIV DIV
2 1 LD.S
3

4

5

6

7

8

9

10 v ADD
11 ST ST
12 LD CHK.S
13 Complete
14

15

16

17

18

19 1 2

20 ADD

21 J

22 Complete

The benefit of LD.S is that it allows for speculative computation on data before the check
occurs. This can lead to significant performance gains.

Page 38 of 38

