Last updated:
11/28/2022

Problem M15.1: Exploiting Parallelism (Spring 2014 Quiz 3, Part B)

Consider the following C code sequence:

const int size = 64 * 1024;

int a[SIZE], bI[SIZE], c[SIZE];

for (int 1 = 0; i < SIZE; i++) {

if (a[i] > b[i]) {

cl[i] = ali] + bli];
}

}

This is a repetitive computation with a simple dependency graph. If we look at the MIPS assembly
code, we see that a large percentage of the instructions are doing bookkeeping. We’d like to reduce
this overhead.

// Rl points to a, R2 points to b, R3 points to c

// R6 is i

ADD R6, RO, SIZE
Loop: LD R4, 0O (R1)

LD R5, 0(R2)

SUB R8, R4, R5

BGEZ R8, Skip

ADD R4, R5, R4

ST R4, 0(R3)
Skip: ADD R1, R1, 4

ADD R2, R2, 4

ADD R3, R3, 4

SUB R6, R6, 1

BNEZ R6, Loop

Problem M15.1.A

Circle the MIPS instructions in the assembly above that perform “useful work™ rather than
bookkeeping.

Last updated:
11/28/2022

Problem M15.1.B

If the loads in the preceding code take four cycles, then this code sequence will stall and
performance will suffer. Explain how an in-order, fine-grain multithreaded processor with two
threads could mitigate this effect?

How would the program need to change for multhreading? (You do not need to write the code.)

Last updated:
11/28/2022

Problem M15.1.C

An alternative approach is to hide the load latency within a single thread by using loop unrolling.
Loads take four cycles and adds take one cycle. Write a loop unrolled VLIW version of the
preceding code using the same VLIW instruction format as in Part A:

Memory operation ALU operation ALU operation / Branch

Unroll the fewest number of loop iterations necessary to cover the load’s latency. Whatever degree
of unrolling you choose, assume it divides the array size. Also assume that predication is allowed:

(pl) instruction executes the instruction if predicate register p1 is set.
cmp.gt pl, rl, r2 setspredicate register pl if r1 is greater than r2.

Finally, R1 points to a, R2 points to b, R3 points to ¢, and R6 is i.

NOTE: The back of this page has additional space.

Additional space:

Last updated:
11/28/2022

Problem M15.1.D

Write a vector version using vector instructions and the vector mask register. Assume that the
vector machine can do up to 64 operations per instruction, and note that STZE is a multiple of 64.

VLR register stores the vector length.

LV v1, rl, Imm loads vector register v1 with memory starting at address r1 and stride ITmm.
SV vl, rl, Imm behaves similarly for stores.

ADDV v1, v2, wv3addsv2 andv3 and putsthe resultin v1.

SGTVV v1, wv2 setsthe vector mask register for each vector element in v1 greater than the
corresponding element in v2 (mask set means the operation is enabled).

CVM resets the vector mask register (turns on all elements).

Last updated:
11/28/2022

// R1 points to a, R2 points to b, R3 points to c

// R6 is 1
ADD R6, RO, SIZE
LI VLR, 64

Loop:

Skip: ADD R1, R1, 64*4

ADD R2, R2, 64*4
ADD R3, R3, 64*4
SUB R6, R6, 64
BNEZ R6, Loop

Last updated:
11/28/2022

Problem M15.1.E

Is this program easy to map to GPUs? What inefficiencies may arise? Explain your answer in one
or two sentences.

Last updated:
11/28/2022

Problem M15.2: VLIW, Vector Machines, and GPUs (Spring 2015 Quiz 4, Part
C)

Consider the following C code fragment:

for(int i = 0; i < ;oit4)
{
if(A[1i] '= B[i])
C[i] = A[i] + 1;
else
C[i] = A[i] - 1;
}

A, B and C are arrays of 301 integers each. (Note: sizeof(int) = 4 bytes). Assume that A, B and C
are stored in non-overlapping regions of memory.

The MIPS assembly for this code is shown below.

R1 points to A[0]

R2 points to B[O0]

R3 points to C[O0]

R4 contains a value of 301

loop: LW R5, O (R1)
LW R6, 0(R2)
BEQ R5, R6, else
ADDI R5, R5, #1
J next

else: ADDI R5, R5, #-1

next: SW R5, 0 (R3)
ADDI R1, R1, #4
ADDI R2, R2, #4
ADDT R3, R3, #4
ADDI R4, R4, #-1
BNEZ R4, loop

In the rest of the problem, assume that load instructions that hit in the cache take 4 cycles (i.e., if
load instruction I1 starts execution at cycle N, then instructions that depend on the result of 11 can
only start execution at or after cycle N+4) while all other instructions take 1 cycle. Assume the
data cache has two read ports, two write ports, and is pipelined (i.e., it can accept a new request
every cycle). Also assume perfect branch prediction and 100% hit rate in the instruction and data
caches.

Problem M15.2.A

Last updated:
11/28/2022

Consider a VLIW processor. Each instruction can contain up to two integer ALU operations
(including branches) and two memory operations. In addition, in this machine, any operation can
be predicated with any general-purpose register. For example:

[R3] SW R1, O0(R2) executes the store instruction only if R3 is not zero; similarly, [! R3]
SW R1, 0 (R2) executes the store only if R3 is zero.

Fill in the following table by unrolling enough loop iterations to eliminate the stall cycles in the

main loop. Do not use software pipelining.

Label

Mem Mem

ALU/Branch

ALU/Branch

Last updated:
11/28/2022

Problem M15.2.B

Now consider a vector machine. In addition to scalar registers, the machine has 32 vector registers,
each 32-elements long. Vector instructions are described in the following table.

Instruction Meaning
MTC1 VLR, Ri Set VLR (vector length register) to the value of register Ri.
CVvM Set all elements in vector-mask (VM) register to 1.
LV Vi, Rj Load vector register Vi from memory starting at address Rj (under mask
vector).
SV Vi, Rj Store Vi to memory starting at address Rj (under mask vector).

ADDVV Vi, Vj, Vk Add elements of Vj and Vk and then put each result in Vi

(under mask vector).

ADDVS Vi, Vj, Rk Add Rk to each element of Vj and then put each result in Vi

(under mask vector).

SUBVV Vi, Vj, Vk Subtract elements of VK from Vj and then put each result in Vi

(under mask vector).

SUBVS Vi, Vj, Rk Subtract Rk from elements of Vj and then put each result in Vi

(under mask vector).

S--vV Vi, Vj Compare the elements (EQ, NE, GT, LT, GE, LE) in Vi and Vj. If the
condition is true, put a 1 in the mask vector (VM), otherwise put 0.

Rewrite the code fragment for this vector machine by filling in the table on the next page. For your
convenience, part of the assembly code is already written for you. You may not need all the rows.

R1 points to A[O]
R2 points to B[O0]
R3 points to C[O0]
R4 contains a value of 301

H= o3 e

Label Instruction Comment (Optional)

Last updated:
11/28/2022

loop: CVM

Set all elements in mask to 1

LV V1 R1

ADD R1,R1, R6

ADD R2,R2, R6

ADD R3, R3, R6

SUB R4,R4,R5

ADDI R5, RO, #32 Set R5 to 32
MTC1 VLR, R5 Set VLR to R5
SLL R6,R5, #2 Set R6 to R5*4
BGTZ R4, loop

Problem M15.2.C

Suppose this vector machine has four lanes. Each lane has one ALU for adds, one ALU for
comparisons, and a load-store unit with one read port and one write port. Both ALUs take a single
cycle, and memory takes 4 cycles. Assume we use vector chaining to reduce stalls due to data
dependences. The machine can chain a load to an ALU instruction, or an add ALU instruction to a

Last updated:
11/28/2022

compare ALU instruction. Also assume that the mask register is updated at the end of the cycle when
an entire S—VV instruction is finished.

In this question, assume each vector register has at least N elements. If we run the same program but

with N iterations (instead of 301) on this vector machine, what is the average number of cycles per
element for this loop in steady state for a very large value of N?

Problem M15.2.D

Suppose we code this program to run on a GPU with N warps. Each warp has 32 threads sharing
the same PC and thus executing the same instruction. Assume each operation takes 16 cycles to
execute. At most one instruction can be issued per cycle. In this GPU, each lane has one ALU and
one load-store unit.

Last updated:
11/28/2022

(1) If the machine has 32 lanes, what is the minimum value of N to achieve the highest pipeline
utilization?

(2) If the machine has 16 lanes, what is the minimum value of N to achieve the highest pipeline
utilization?

Last updated:
11/28/2022

Problem M15.3: Vector Processors and GPUs (Spring 2020 Quiz 4, Part B)

Ben’s vector processor has these features:
e Single-issue, in-order execution.

e Scalar instructions execute on a 5-stage, fully-bypassed pipeline.

e 32 vector registers named VO through V31. Each vector register holds 32 floating-point
elements. The register files have enough ports to keep all lanes busy.

e Four vector lanes, each with one floating-point ALU and one load-store unit. Vector
loads and arithmetic take four cycles to produce results and one cycle for writeback.

e No support for vector chaining.
This schematic shows a simplified view of the processor:

addr
inst

Inst

Memory]

A 4

Register
File

Vector
Register
File

Scalar ALU

M1

v

o

L

X1

Scalar
Load Store
> Unit
M2 M3 M4
A A
Vector Load-Store Unit
——— —— | Vector ALU __
| A
I
0 x3 @ xq

The processor can issue a single (scalar or vector) instruction per cycle. Once it issues, a vector
instruction uses either all lanes’ ALUs or all lanes’ load-store units for as many cycles as needed
to produce all of its results. Vector units are pipelined, so independent operations can be issued in
sequence such that each stage in each vector unit operates on different values every cycle. A vector
load or store can execute in parallel with independent operations that use the vector ALUs, and
vector operations can execute in parallel with scalar operations. If a vector instruction depends on
the result of a prior instruction, it stalls until the prior instruction finishes writing back all of its
results. The processor implements MIPS plus the following vector instructions:

Instruction Meaning

setvlr rs Set vector length register (VLR) to the value in rs

lv Vt, rs Load vector register Vt starting at address in rs

sv Vt, rs Store vector register Vt starting at address in rs

fadd.vv vd, Vs, Vt | Addelementsin Vs, Vt, and store result in VVd

fmul.vv vd, Vs, Vt | Multiply elements in Vs, Vt, and store result in Vd

fadd.vs vd, Vs, ft | Add floating-point scalar ft to each element in Vs, store result in VVd
fmul.vs vd, Vs, ft | Multiply each elementin Vs by scalar ft, and store result in VVd

Last updated:
11/28/2022

Problem M15.3.A

Ben wants to analyze the performance of this vector processor the following loop:

for (i = @; i < N; i++)
A[i] = A[i] * (B[i] + 1.9);

For this part, assume that N is a multiple of 32. For your convenience, we’ve reproduced the
original scalar assembly code for this loop:

;5 Initial values:

;5 f1 := 1.0

55 rl := &A[O] and r2 = &B[9]

55 r3 := &A[N] (first address after vector A)

I1: 1loop: 1ld fe@, 0(r2) ;5 Load B[1i]

I2: 1d f2, o(rl) 55 Load A[i]

I3: fadd 3, fo, f1

I4: addi r1, ri, 4

I5: fmul f4, f2, f3

I6: addi r2, r2, 4

I7: st f4, -4(rl) ;5 Store A[i]
I8: bne rl, r3, loop

(a) Provide equivalent vector code. For full credit, your code should execute as quickly as
possible while using no more than two vector ALU instructions.

addi r20, ro, 32 ;; set r20 to 32
setvlr r20 ;; use all 32 vector elements
loop:

Last updated:
11/28/2022

(b) How many cycles are required in steady state for each vectorized loop iteration (which
corresponds to 32 iterations of the original loop)?

Problem M15.3.B

Suppose we add chaining support to the processor. With chaining, a vector instruction that depends
on a previous instruction can start execution if the first set of elements it processes is either already
written to the vector register file or is available in the writeback stage (we add the required bypass
paths).

(a) How would you reorder the vector instructions in your vectorized loop from the previous
question to improve performance with chaining?

(b) What is the resulting throughput in floating-point arithmetic operations per cycle in steady
state?

Last updated:
11/28/2022

Problem M15.3.C

So far, we have assumed that loads can execute within a few cycles, which is reasonable if the data
can be served by an L1 cache. Now consider if we are accessing arrays whose size far exceeds the
capacity of any of our caches. Explain how a GPU would enable us to obtain high performance in
this case.

Last updated:
11/28/2022

Problem M15.3.D

State whether each of the loops below can be vectorized on our vector processor. If the code would
require the vector processor to have additional features to be vectorizable, specify those features.
If the code cannot be vectorized regardless of what additional features the processor were to
implement, state your reasoning. The loops operate on floating-point arrays A[N], B[N], and
C[N]. These arrays do not overlap.

a) for (int i = @; i < N; i++)
if (A[i] < 9)
A[i] = C[i] + B[i];

b) for (int i = 0; i < N; i++)
A[i] = A[i+1] * B[i] - 1.0;

c) for (int i = @; i < N; i++)
A[i] = 1.0 + A[i-1] * B[i];

d) for (int i = @; i < N; i++)
A[i] = A[i] + B[C[1]];

