Last updated:
11/28/2022

Problem M15.1: Exploiting Parallelism (Spring 2014 Quiz 3, Part B)

Consider the following C code sequence:

const int size = 64 * 1024;
int a[SIZE], bI[SIZE], c[SIZE];
for (int 1 = 0; i < SIZE; i++) {
if (a[i] > b[i]) {
cl[i] = ali] + bli];
}
}

This is a repetitive computation with a simple dependency graph. If we look at the MIPS assembly
code, we see that a large percentage of the instructions are doing bookkeeping. We’d like to reduce
this overhead.

// Rl points to a, R2 points to b, R3 points to c

// R6 is i

ADD R6, RO, SIZE
Loop: LD R4, O(R1)

LD R5, O0(R2)

SUB R8, R4, R5

BGEZ R8, Skip

ADD R4, R5, R4

ST R4, 0(R3)
Skip: ADD R1, R1, 4

ADD R2, R2, 4

ADD R3, R3, 4

SUB R6, R6, 1

BNEZ R6, Loop

Problem M15.1.A

Circle the MIPS instructions in the assembly above that perform “useful work” rather than
bookkeeping.

Shown in red above.

Last updated:
11/28/2022

Problem M15.1.B

If the loads in the preceding code take four cycles, then this code sequence will stall and
performance will suffer. Explain how an in-order, fine-grain multithreaded processor with two
threads could mitigate this effect?

Fine-grain multithreaded processors use round robin to schedule threads. So with two threads, each

thread executes one instruction (or tries to, at least) every two cycles. This effectively halves the
load latency, and therefore leads to fewer stalls.

How would the program need to change for multhreading? (You do not need to write the code.)

You need to split the iterations evenly between the threads. This can be done in many ways; one
simple way is to have the first do even iterations and the second to do odd iterations.

Last updated:
11/28/2022

Problem M15.1.C

An alternative approach is to hide the load latency within a single thread by using loop unrolling.
Loads take four cycles and adds take one cycle. Write a loop unrolled VLIW version of the
preceding code using the same VLIW instruction format as in Part A:

Memory operation ALU operation ALU operation / Branch

Unroll the fewest number of loop iterations necessary to cover the load’s latency. Whatever degree
of unrolling you choose, assume it divides the array size. Also assume that predication is allowed:

(pl) instruction executes the instruction if predicate register p1 is set.
cmp.gt pl, rl, r2 setspredicate register pl if r1 is greater than r2.

Finally, R1 points to a, R2 points to b, R3 points to ¢, and R6 is i.

1D R4, O (R1)

1D R5, 0(R2)

LD R4, 4(R1)

1D R5, 4 (R2)

1D R4, 8(R1)

LD R5, 8(R2) ADD R6, R4, R5 CMP.GT P1, R4, R5
ADD R1, R1, 12 ADD R2, R2, 12

(P1) ST R6, O(R3) ADD R6, R4, R5 CMP.GT P1, R4, R5
ADD R3, R3, 12 SUB R6, R6, 3

(P1) ST R6, 4 (R3) ADD R6, R4, R5 CMP.GT P1, R4, R5

(P1) ST R6, -4 (R3) BNEZ R6, Loop

Last updated:
11/28/2022

Problem M15.1.D

Write a vector version using vector instructions and the vector mask register. Assume that the
vector machine can do up to 64 operations per instruction, and note that STzE is a multiple of 64.

VLR register stores the vector length.

LV vl, rl, Imm loads vector register v1 with memory starting at address r1 and stride Imm.
SV v1, rl, Imm behaves similarly for stores.

ADDV vl1, v2, v3addsv2andv3 and putsthe resultinvi.

SGTVV v1, wv2 setsthe vector mask register for each vector element in v1 greater than the
corresponding element in v2 (mask set means the operation is enabled).

CVM resets the vector mask register (turns on all elements).

// Rl points to a, R2 points to b, R3 points to c
// R6 is i
ADD R6, RO, SIZE
LI VLR, 64
Loop:

CVM

LV V1, R1, 4

LV V2, R2, 4
SGTVV V1, V2
ADDV V1, V1, V2
SV V1, R3, 4

Skip: ADD R1, R1, 64*4
ADD R2, R2, 64*4
ADD R3, R3, 64*4
SUB R6, R6, 64
BNEZ R6, Loop

Last updated:
11/28/2022

Problem M15.1.E

Is this program easy to map to GPUs? What inefficiencies may arise? Explain your answer in one
or two sentences.

This program is easy to write for GPUs because each iteration is completely independent. It may
be inefficient, however, due to branch divergence, depending on the distribution of A[i] > BJ[i]

within the array.

Last updated:
11/28/2022

Problem M15.2: VLIW, Vector Machines, and GPUs (Spring 2015 Quiz 4, Part
C)

Consider the following C code fragment:

for(int 1 = 0; i < ;oit+)
{
if(A[i] '= B[i])
C[i] = A[i] + 1;
else
C[i] = A[i] - 1;
}

A, B and C are arrays of 301 integers each. (Note: sizeof(int) = 4 bytes). Assume that A, B and C
are stored in non-overlapping regions of memory.

The MIPS assembly for this code is shown below.

R1 points to A[0]

R2 points to B[O0]

R3 points to C[O0]

R4 contains a value of 301

loop: LW R5, O (R1)
LW R6, 0(R2)
BEQ R5, R6, else
ADDI R5, R5, #1
J next

else: ADDI R5, R5, #-1

next: SW R5, 0 (R3)
ADDI R1, R1, #4
ADDI R2, R2, #4
ADDT R3, R3, #4
ADDI R4, R4, #-1
BNEZ R4, loop

In the rest of the problem, assume that load instructions that hit in the cache take 4 cycles (i.e., if
load instruction I1 starts execution at cycle N, then instructions that depend on the result of 11 can
only start execution at or after cycle N+4) while all other instructions take 1 cycle. Assume the
data cache has two read ports, two write ports, and is pipelined (i.e., it can accept a new request
every cycle). Also assume perfect branch prediction and 100% hit rate in the instruction and data
caches.

Problem M15.2.A

Last updated:
11/28/2022

Consider a VLIW processor. Each instruction can contain up to two integer ALU operations
(including branches) and two memory operations. In addition, in this machine, any operation can
be predicated with any general-purpose register. For example:

[R3] SW R1,
SW R1,

0 (R2) executes the store instruction only if R3 is not zero; similarly, [! R3]
0 (R2) executes the store only if R3 is zero.

Fill in the following table by unrolling enough loop iterations to eliminate the stall cycles in the

main loop. Do not use software pipelining.

Label Mem Mem ALU/Branch ALU/Branch
LW R5,0(R1) | LW R6, 0(R2)
ADDI R1, R1, #4 ADDI R2, R2, #4
ADDI R3, R3, #4 ADDI R4, R4, -1
SUB R7, R5, R6
[R7] ADDI R5, R5, #1
['R7] ADDI R5, R5, #-1
SW RS5, -4(R3)
loop: | LWR5,0(R1) | LW R6, 0(R2)
LW R8, 4(R1) | LW RS9, 4(R2)
ADDI R4, R4, #-2 ADDI R3, R3, #8
ADDI R1, R1, #8 ADDI R2, R2, #8
SUB R7, R5, R6
[R7] ADDI R5, R5, #1 SUB R10, R8, R9
[!R7] ADDI R5, R5, #-1 [R10] ADDI R8, RS, #1
SW RS, -8(R3) [IR10] ADDI R8, RS, #-1

SW RS, -4(R3)

BNEZ R4, loop

Last updated:
11/28/2022

Problem M15.2.B

Now consider a vector machine. In addition to scalar registers, the machine has 32 vector registers,
each 32-elements long. Vector instructions are described in the following table.

Instruction Meaning
MTC1 VLR, Ri Set VLR (vector length register) to the value of register Ri.
CVvM Set all elements in vector-mask (VM) register to 1.
LV Vi, Rj Load vector register Vi from memory starting at address Rj (under mask
vector).
SV Vi, Rj Store Vi to memory starting at address Rj (under mask vector).

ADDVV Vi, Vj, Vk Add elements of Vj and Vk and then put each result in Vi

(under mask vector).

ADDVS Vi, Vj, Rk Add Rk to each element of Vj and then put each result in Vi

(under mask vector).

SUBVV Vi, Vj, Vk Subtract elements of Vk from Vj and then put each result in Vi

(under mask vector).

SUBVS Vi, Vj, Rk Subtract Rk from elements of Vj and then put each result in Vi

(under mask vector).

S--vV Vi, Rj Compare the elements (EQ, NE, GT, LT, GE, LE) in Vi and Vj. If the
condition is true, put a 1 in the mask vector (VM), otherwise put 0.

Rewrite the code fragment for this vector machine by filling in the table on the next page. For your
convenience, part of the assembly code is already written for you. You may not need all the rows.

R1 points to A[O]
R2 points to B[O0]
R3 points to C[O0]
R4 contains a wvalue of 301

H o3 e

Label Instruction Comment (Optional)

Last updated:

11/28/2022
ADDI R7,R0, #1 SetR7t01
ANDI R5, R4, #31 Set R5 to R4%32
MTC1 VLR, R5 Set VLR to R5
SLL R6, R5, #2 Set R6 to R5*4
loop: CVM Set all elements in mask to 1
LV V1, R1
LV V2, R2
SNEVV V1, V2
ADDVS V3, V1, R7
SEQVV V1, V2
SUBVS V3,V1, R7
CVM
SV V3, R3

ADD R1,R1, R6
ADD R2,R2, R6
ADD R3, R3, R6
SUB R4,R4,R5

ADDI R5, RO, #32 Set R5 to 32
MTC1 VLR, R5 Set VLR to R5
SLL R6,R5, #2 Set R6 to R5*4
BGTZ R4, loop

Problem M15.2.C

Suppose this vector machine has four lanes. Each lane has one ALU for adds, one ALU for
comparisons, and a load-store unit with one read port and one write port. Both ALUs take a single
cycle, and memory takes 4 cycles. Assume we use vector chaining to reduce stalls due to data
dependences. The machine can chain a load to an ALU instruction, or an add ALU instruction to a

Last updated:
11/28/2022

compare ALU instruction. Also assume that the mask register is updated at the end of the cycle when
an entire S—VV instruction is finished.

In this question, assume each vector register has at least N elements. If we run the same program but
with N iterations (instead of 301) on this vector machine, what is the average number of cycles per
element for this loop in steady state for a very large value of N?

The answer to this question is based on the answer of Question2-1. We give you full grades if your
calculation is correct based on the program you wrote.

Since the program has N iterations and each vector register has N elements, there is only one iteration.

(1) If we assume that the machine cannot chain a compare ALU instruction to an add ALU

instruction:

LV V1, R1

LV V2, R2
SNEVV V1, V2
ADDVS V3, V1, R7
SEQVV V1, V2
SUBVS V3, V1, R7
CVM

SV V3, R3

> N/4

> +N/4

-> + 4 (chaining: start after first 4 elements in V2 finish loading)
-> + N/4 (no chaining: start after SNEVV is done)

-> +1 (start a cycle after ADDVS to avoid overwriting mask)

-> + N/4 (no chaining: start after SEQVV is done)

> +]1

->+ N/4

Since N is very large, the average number of cycles per element is (N*5/4)/N = 5/4

(2) If we assume that the machine can chain a compare ALU instruction to an add ALU

instruction:

LV V1, R1

LV V2, R2
SNEVV V1, V2
ADDVS V3, V1, R7
SEQVV V1, V2
SUBVS V3, V1,R7
CVM

sV V3, R3

> N/4

-> + N/4

-> + 4 (chaining: start after first 4 elements in V2 finish loading)
-> + 1 (chaining with SNEVV)

-> + (N/4 -1) (start after SNEVV is done)

-> + 1 (chaining with SEQVV)

> +1

->+ N/4

Since N is very large, the average number of cycles per element is (N*4/4)/N = 1

Problem M15.2.D

Suppose we code this program to run on a GPU with N warps. Each warp has 32 threads sharing
the same PC and thus executing the same instruction. Assume each operation takes 16 cycles to
execute. At most one instruction can be issued per cycle. In this GPU, each lane has one ALU and

one load-store unit.

Last updated:
11/28/2022

(1) If the machine has 32 lanes, what is the minimum value of N to achieve the highest pipeline
utilization?

With 32 lanes, issuing 32 threads in a warp takes 1 cycle (1=32/32). To achieve the highest
pipeline utilization, we need at least 16 warps (16 warps = 16 cycle / 1 cycle per warp).

(2) If the machine has 16 lanes, what is the minimum value of N to achieve the highest pipeline
utilization?

With 16 lanes, issuing 32 threads in a warp takes 2 cycles (2=32/16). To achieve the highest
pipeline utilization, we need at least 8 warps (8 warps = 16 cycle / 2 cycle per warp).

Last updated:
11/28/2022

Problem M15.3: Vector Processors and GPUs (Spring 2020 Quiz 4, Part B)

Ben’s vector processor has these features:
e Single-issue, in-order execution.
e Scalar instructions execute on a 5-stage, fully-bypassed pipeline.
e 32 vector registers named VO through V31. Each vector register holds 32 floating-point
elements. The register files have enough ports to keep all lanes busy.
e Four vector lanes, each with one floating-point ALU and one load-store unit. Vector
loads and arithmetic take four cycles to produce results and one cycle for writeback.
e No support for vector chaining.
This schematic shows a simplified view of the processor:

addr
inst

Inst

Memory]

A 4 Scalar ALU
Rngl||ster Sca|ar
e Load Store
> Unit
ML M2 _ M3 __ M4
Vector LA N
Register L . ! Viector Load-Store Unit
File || g T —Vectorau
A A E— LA
X1 X2 QA x3 & oy

The processor can issue a single (scalar or vector) instruction per cycle. Once it issues, a vector
instruction uses either all lanes’ ALUs or all lanes’ load-store units for as many cycles as needed
to produce all of its results. Vector units are pipelined, so independent operations can be issued in
sequence such that each stage in each vector unit operates on different values every cycle. A vector
load or store can execute in parallel with independent operations that use the vector ALUs, and
vector operations can execute in parallel with scalar operations. If a vector instruction depends on
the result of a prior instruction, it stalls until the prior instruction finishes writing back all of its
results. The processor implements MIPS plus the following vector instructions:

Instruction Meaning

setvlr rs Set vector length register (VLR) to the value in rs
lv Vt, rs Load vector register Vt starting at address in rs
sv Vt, rs Store vector register Vt starting at address in rs

fadd.vv vd, Vs, Vt | Addelementsin Vs, Vt, and store result in VVd

fmul.vv vd, Vs, Vt | Multiply elements in Vs, Vt, and store result in Vd

fadd.vs vd, Vs, ft | Add floating-point scalar ft to each element in Vs, store result in VVd
fmul.vs vd, Vs, ft | Multiply each elementin Vs by scalar ft, and store result in VVd

Last updated:
11/28/2022

Problem M15.3.A

(a)

loop: 1v vO, r2
v vi, ri1
fadd.vs v2, vo, f1
fmul.vv v3, vl, v2
sv v3, rl
addi rl1, ri1, 128
addi r2, r2, 128
bne rl, r3 loop

(If you assume that the sv instruction allows an immediate offset/displacement, then the two
addi instructions could also be placed earlier. In this case, they can be placed almost
anywhere without affecting performance, since they will be issued while vector operations
are being executed in parallel on the vector lanes.)

Last updated:
11/28/2022

(b) 47 cycles

Each vector instruction takes 8 cycles (32 elements / 4 lanes) to get all its operands into the
lanes. There’s a 13-cycle latency between dependent vector instructions (8 cycles to get all
elements into lanes + 4 cycles for FU latency + 1 cycle for writeback). The following table
shows how the latencies add up to 47 cycles per iteration. The scalar instructions can be
issued while the vector lanes are busy and are not shown.

Instruction | Iteration i Iteration (i+1)
lv 0 47 (must wait for sv to finish using load/store units)
lv 8

fadd.vs | 13 (depends on first Iv)
fmul.vv | 26 (depends on fadd.vs)
sV 39 (depends on fmul.vv)

Problem M15.3.B

(a) Put the fadd.vs between the two 1v instructions (because the fadd. vs can use the vector
ALUs in parallel with the use of the vector load/store units by the loads).

Last updated:
11/28/2022

(b)

Dependent vector instruction issue 4 cycles after the previous one, and now the vector load/store
units are maximally utilized, with a vector load or store issuing every 8 cycles.

So, each iteration of the vectorized loop takes 24 cycles and performs 64 floating-point operations,
so the throughput is 64/24 = 8/3 = 2.67 FLOPs/cycle

This table shows how the latencies add up for one loop iteration:

Instruction Iteration i Iteration (i+1)

lv 0 24 (waits for sv to finish)
fadd.vs 4 (dependant on 1st 1v)

lv 8 (waits for 1st 1v to finish)

fmul.vv 12 (dependant on 2nd 1v)

sV 16 (dependant on fmul.vv)

Last updated:
11/28/2022

Problem M15.3.C

A GPU executes many threads concurrently, overlapping many long-latency memory accesses
from independent threads (by switching warps).

Last updated:
11/28/2022

Problem M15.3.D

a) The code can be vectorized with additional support for vector masking.

b) Yes, the code can be vectorized (without any additional hardware support).

(Depending on the implementation, you could make a copy of some parts of array A, and
that is easily done without requiring new hardware features.)

¢) No, the code cannot be vectorized. Each iteration depends on the value A[i-1] computed
in the previous iteration, forcing serialized execution.

d) The code can be vectorized with additional support for vector gather.

