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Problem M15.1: Exploiting Parallelism (Spring 2014 Quiz 3, Part B) 
 

Consider the following C code sequence: 

 
const int size = 64 * 1024; 

int a[SIZE], b[SIZE], c[SIZE]; 

for (int i = 0; i < SIZE; i++) { 

 if (a[i] > b[i]) { 

  c[i] = a[i] + b[i]; 

} 

} 

 

This is a repetitive computation with a simple dependency graph. If we look at the MIPS assembly 

code, we see that a large percentage of the instructions are doing bookkeeping. We’d like to reduce 

this overhead. 

 
  // R1 points to a, R2 points to b, R3 points to c 

// R6 is i 

  ADD R6, R0, SIZE 

Loop: LD R4, 0(R1) 

  LD R5, 0(R2) 

  SUB R8, R4, R5 

  BGEZ R8, Skip 

  ADD R4, R5, R4 

  ST R4, 0(R3) 

Skip: ADD R1, R1, 4 

  ADD R2, R2, 4 

  ADD R3, R3, 4 

  SUB R6, R6, 1 

  BNEZ R6, Loop 

 

Problem M15.1.A  

 

Circle the MIPS instructions in the assembly above that perform “useful work” rather than 

bookkeeping. 

 

Shown in red above. 
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Problem M15.1.B  

 

If the loads in the preceding code take four cycles, then this code sequence will stall and 

performance will suffer. Explain how an in-order, fine-grain multithreaded processor with two 

threads could mitigate this effect? 

 

Fine-grain multithreaded processors use round robin to schedule threads. So with two threads, each 

thread executes one instruction (or tries to, at least) every two cycles. This effectively halves the 

load latency, and therefore leads to fewer stalls. 

 

 

 

 

 

 

 

How would the program need to change for multhreading? (You do not need to write the code.) 

 

You need to split the iterations evenly between the threads. This can be done in many ways; one 

simple way is to have the first do even iterations and the second to do odd iterations. 
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Problem M15.1.C  

 

An alternative approach is to hide the load latency within a single thread by using loop unrolling. 

Loads take four cycles and adds take one cycle. Write a loop unrolled VLIW version of the 

preceding code using the same VLIW instruction format as in Part A: 

 
Memory operation ALU operation ALU operation / Branch 

 

Unroll the fewest number of loop iterations necessary to cover the load’s latency. Whatever degree 

of unrolling you choose, assume it divides the array size. Also assume that predication is allowed: 

 

(p1) instruction executes the instruction if predicate register p1 is set. 

cmp.gt p1, r1, r2 sets predicate register p1 if r1 is greater than r2. 

 

Finally, R1 points to a, R2 points to b, R3 points to c, and R6 is i. 

 
LD R4, 0(R1)   

LD R5, 0(R2)   

LD R4, 4(R1)   

LD R5, 4(R2)   

LD R4, 8(R1)   

LD R5, 8(R2) ADD R6, R4, R5 CMP.GT P1, R4, R5 

 ADD R1, R1, 12 ADD R2, R2, 12 

(P1) ST R6, 0(R3) ADD R6, R4, R5 CMP.GT P1, R4, R5 

 ADD R3, R3, 12 SUB R6, R6, 3 

(P1) ST R6, 4(R3) ADD R6, R4, R5 CMP.GT P1, R4, R5 

   

(P1) ST R6, -4(R3) BNEZ R6, Loop  
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Problem M15.1.D  

 

Write a vector version using vector instructions and the vector mask register. Assume that the 

vector machine can do up to 64 operations per instruction, and note that SIZE is a multiple of 64. 

 

VLR register stores the vector length. 

LV v1, r1, Imm  loads vector register v1 with memory starting at address r1 and stride Imm.  

SV v1, r1, Imm  behaves similarly for stores. 

ADDV v1, v2, v3 adds v2 and v3 and puts the result in v1. 

SGTVV v1, v2 sets the vector mask register for each vector element in v1 greater than the 

corresponding element in v2 (mask set means the operation is enabled). 

CVM resets the vector mask register (turns on all elements). 

 
  // R1 points to a, R2 points to b, R3 points to c 

// R6 is i 

  ADD R6, R0, SIZE 

  LI VLR, 64 

Loop:  

 

 

 

 

 

CVM 

  LV V1, R1, 4 

  LV V2, R2, 4 

  SGTVV V1, V2 

  ADDV V1, V1, V2 

  SV V1, R3, 4 

 

 

 

 

 

 

 

 

Skip: ADD R1, R1, 64*4 

  ADD R2, R2, 64*4 

  ADD R3, R3, 64*4 

  SUB R6, R6, 64 

  BNEZ R6, Loop 
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Problem M15.1.E  

 

Is this program easy to map to GPUs? What inefficiencies may arise? Explain your answer in one 

or two sentences. 

 

This program is easy to write for GPUs because each iteration is completely independent. It may 

be inefficient, however, due to branch divergence, depending on the distribution of A[i] > B[i] 

within the array. 
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Problem M15.2: VLIW, Vector Machines, and GPUs (Spring 2015 Quiz 4, Part 

C) 
 

Consider the following C code fragment:  
 

for(int i = 0; i < 301; i++) 
{ 
    if(A[i] != B[i]) 
        C[i] = A[i] + 1; 
    else 
        C[i] = A[i] - 1; 
}  

 

A, B and C are arrays of 301 integers each. (Note: sizeof(int) = 4 bytes). Assume that A, B and C 

are stored in non-overlapping regions of memory.  

 

The MIPS assembly for this code is shown below. 

# R1 points to A[0] 

# R2 points to B[0] 

# R3 points to C[0] 

# R4 contains a value of 301 

 

loop:   LW      R5, 0(R1) 

        LW      R6, 0(R2) 

        BEQ     R5, R6, else 

        ADDI    R5, R5, #1  

        J       next 

else:   ADDI    R5, R5, #-1 

next:   SW      R5, 0(R3) 

        ADDI    R1, R1, #4 

        ADDI    R2, R2, #4 

        ADDI    R3, R3, #4 

        ADDI    R4, R4, #-1 

        BNEZ    R4, loop  

In the rest of the problem, assume that load instructions that hit in the cache take 4 cycles (i.e., if 

load instruction I1 starts execution at cycle N, then instructions that depend on the result of I1 can 

only start execution at or after cycle N+4) while all other instructions take 1 cycle. Assume the 

data cache has two read ports, two write ports, and is pipelined (i.e., it can accept a new request 

every cycle). Also assume perfect branch prediction and 100% hit rate in the instruction and data 

caches.  
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Problem M15.2.A  

 

Consider a VLIW processor. Each instruction can contain up to two integer ALU operations 

(including branches) and two memory operations. In addition, in this machine, any operation can 

be predicated with any general-purpose register. For example:  

 

[R3] SW R1, 0(R2) executes the store instruction only if R3 is not zero; similarly, [!R3] 

SW R1, 0(R2) executes the store only if R3 is zero.  

 

Fill in the following table by unrolling enough loop iterations to eliminate the stall cycles in the 

main loop. Do not use software pipelining.  

 

Label Mem Mem ALU/Branch ALU/Branch 

 LW R5, 0(R1) LW R6, 0(R2)   

     

   ADDI R1, R1, #4 ADDI R2, R2, #4 

   ADDI R3, R3, #4 ADDI R4, R4, -1 

   SUB R7, R5, R6  

   [R7] ADDI R5, R5, #1  

   [!R7] ADDI R5, R5, #-1  

 SW R5, -4(R3)    

loop: LW R5, 0(R1) LW R6, 0(R2)   

 LW R8, 4(R1) LW R9, 4(R2)   

   ADDI R4, R4, #-2 ADDI R3, R3, #8 

   ADDI R1, R1, #8 ADDI R2, R2, #8 

   SUB R7, R5, R6  

   [R7] ADDI R5, R5, #1 SUB R10, R8, R9 

   [!R7] ADDI R5, R5, #-1 [R10] ADDI R8, R8, #1 

 SW R5, -8(R3)   [!R10] ADDI R8, R8, #-1 

 SW R8, -4(R3)  BNEZ R4, loop  
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Problem M15.2.B  

 

Now consider a vector machine. In addition to scalar registers, the machine has 32 vector registers, 

each 32-elements long. Vector instructions are described in the following table.  

 
Instruction Meaning 

MTC1  VLR, Ri Set VLR (vector length register) to the value of register Ri. 

CVM  Set all elements in vector-mask (VM) register to 1. 

LV Vi, Rj Load vector register Vi from memory starting at address Rj (under mask 

vector). 

SV Vi, Rj Store Vi to memory starting at address Rj (under mask vector). 

ADDVV Vi, Vj, Vk Add elements of Vj and Vk and then put each result in Vi  

(under mask vector).  

ADDVS Vi, Vj, Rk Add Rk to each element of Vj and then put each result in Vi  

(under mask vector). 

SUBVV Vi, Vj, Vk Subtract elements of Vk from Vj and then put each result in Vi  

(under mask vector). 

SUBVS Vi, Vj, Rk Subtract Rk from elements of Vj and then put each result in Vi  

(under mask vector). 

S--VV Vi, Rj Compare the elements (EQ, NE, GT, LT, GE, LE) in Vi and Vj. If the 

condition is true, put a 1 in the mask vector (VM), otherwise put 0. 

 

 

Rewrite the code fragment for this vector machine by filling in the table on the next page. For your 

convenience, part of the assembly code is already written for you. You may not need all the rows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
# R1 points to A[0] 

# R2 points to B[0] 

# R3 points to C[0] 

# R4 contains a value of 301 

          

Label Instruction Comment (Optional) 
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 ADDI     R7, R0, #1 Set R7 to 1 

 ANDI     R5, R4, #31 Set R5 to R4%32 

 MTC1    VLR, R5 Set VLR to R5 

 SLL        R6, R5, #2 Set R6 to R5*4 

loop: CVM Set all elements in mask to 1 

 LV          V1, R1  

 LV          V2, R2  

 SNEVV  V1, V2  

 ADDVS  V3, V1, R7  

 SEQVV  V1, V2  

 SUBVS   V3, V1, R7  

 CVM  

 SV           V3, R3  

   

   

   

   

   

 ADD   R1, R1, R6  

 ADD   R2, R2, R6  

 ADD   R3, R3, R6  

 SUB    R4, R4, R5  

 ADDI  R5, R0, #32 Set R5 to 32 

 MTC1 VLR, R5 Set VLR to R5 

 SLL     R6, R5, #2 Set R6 to R5*4 

 BGTZ R4, loop  
 

 
Problem M15.2.C  

 

Suppose this vector machine has four lanes. Each lane has one ALU for adds, one ALU for 

comparisons, and a load-store unit with one read port and one write port. Both ALUs take a single 

cycle, and memory takes 4 cycles. Assume we use vector chaining to reduce stalls due to data 

dependences. The machine can chain a load to an ALU instruction, or an add ALU instruction to a 
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compare ALU instruction. Also assume that the mask register is updated at the end of the cycle when 

an entire S—VV instruction is finished.  
 

In this question, assume each vector register has at least N elements. If we run the same program but 

with N iterations (instead of 301) on this vector machine, what is the average number of cycles per 

element for this loop in steady state for a very large value of N?  

 

The answer to this question is based on the answer of Question2-1. We give you full grades if your 

calculation is correct based on the program you wrote.  

 

Since the program has N iterations and each vector register has N elements, there is only one iteration. 

 

(1) If we assume that the machine cannot chain a compare ALU instruction to an add ALU  

      instruction:  

 

LV          V1, R1                ->     N/4  

LV          V2, R2                ->  + N/4 

SNEVV  V1, V2                ->  + 4  (chaining: start after first 4 elements in V2 finish loading) 

ADDVS  V3, V1, R7         ->  + N/4 (no chaining: start after SNEVV is done) 

SEQVV  V1, V2                ->  +1 (start a cycle after ADDVS to avoid overwriting mask) 

SUBVS   V3, V1, R7         ->  + N/4 (no chaining: start after SEQVV is done) 

CVM                                  ->  +1 

SV           V3, R3                -> + N/4 

 

Since N is very large, the average number of cycles per element is (N*5/4)/N = 5/4 

 
(2) If we assume that the machine can chain a compare ALU instruction to an add ALU  

      instruction:  

 
LV          V1, R1                ->     N/4  

LV          V2, R2                ->  + N/4 

SNEVV  V1, V2                ->  + 4  (chaining: start after first 4 elements in V2 finish loading) 

ADDVS  V3, V1, R7         ->  + 1  (chaining with SNEVV) 

SEQVV  V1, V2                ->  + (N/4 -1) (start after SNEVV is done) 

SUBVS   V3, V1, R7         ->  + 1  (chaining with SEQVV) 

CVM                                  ->  + 1 

SV           V3, R3                -> + N/4   

 
Since N is very large, the average number of cycles per element is (N*4/4)/N = 1 

 
Problem M15.2.D  

 

Suppose we code this program to run on a GPU with N warps. Each warp has 32 threads sharing 

the same PC and thus executing the same instruction. Assume each operation takes 16 cycles to 

execute. At most one instruction can be issued per cycle. In this GPU, each lane has one ALU and 

one load-store unit.  
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(1) If the machine has 32 lanes, what is the minimum value of N to achieve the highest pipeline 

utilization?   

 

With 32 lanes, issuing 32 threads in a warp takes 1 cycle (1=32/32). To achieve the highest 

pipeline utilization, we need at least 16 warps (16 warps = 16 cycle / 1 cycle per warp). 

 

 

 

 

 

 

 

 

 

 

 

 

(2) If the machine has 16 lanes, what is the minimum value of N to achieve the highest pipeline 

utilization?   

 

With 16 lanes, issuing 32 threads in a warp takes 2 cycles (2=32/16). To achieve the highest 

pipeline utilization, we need at least 8 warps (8 warps = 16 cycle / 2 cycle per warp). 
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Problem M15.3: Vector Processors and GPUs (Spring 2020 Quiz 4, Part B) 
 

Ben’s vector processor has these features: 

• Single-issue, in-order execution. 

• Scalar instructions execute on a 5-stage, fully-bypassed pipeline. 

• 32 vector registers named V0 through V31. Each vector register holds 32 floating-point 

elements. The register files have enough ports to keep all lanes busy. 

• Four vector lanes, each with one floating-point ALU and one load-store unit. Vector 

loads and arithmetic take four cycles to produce results and one cycle for writeback. 

• No support for vector chaining.  

This schematic shows a simplified view of the processor:  

 
The processor can issue a single (scalar or vector) instruction per cycle. Once it issues, a vector 

instruction uses either all lanes’ ALUs or all lanes’ load-store units for as many cycles as needed 

to produce all of its results. Vector units are pipelined, so independent operations can be issued in 

sequence such that each stage in each vector unit operates on different values every cycle. A vector 

load or store can execute in parallel with independent operations that use the vector ALUs, and 

vector operations can execute in parallel with scalar operations. If a vector instruction depends on 

the result of a prior instruction, it stalls until the prior instruction finishes writing back all of its 

results. The processor implements MIPS plus the following vector instructions: 

 

Instruction Meaning 

setvlr rs Set vector length register (VLR) to the value in rs 

lv Vt, rs Load vector register Vt starting at address in rs 

sv Vt, rs Store vector register Vt starting at address in rs 

fadd.vv Vd, Vs, Vt Add elements in Vs, Vt, and store result in Vd 

fmul.vv Vd, Vs, Vt Multiply elements in Vs, Vt, and store result in Vd 

fadd.vs Vd, Vs, ft Add floating-point scalar ft to each element in Vs, store result in Vd 

fmul.vs Vd, Vs, ft Multiply each element in Vs by scalar ft, and store result in Vd 
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Problem M15.3.A  

 
 

(a)  
loop:  lv v0, r2  
       lv v1, r1  
       fadd.vs v2, v0, f1  
       fmul.vv v3, v1, v2  
       sv v3, r1  
       addi r1, r1, 128  
       addi r2, r2, 128  
       bne r1, r3 loop  
 

 

 

(If you assume that the sv instruction allows an immediate offset/displacement, then the two 

addi instructions could also be placed earlier. In this case, they can be placed almost 

anywhere without affecting performance, since they will be issued while vector operations 

are being executed in parallel on the vector lanes.) 
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(b)    47 cycles 

 

 

Each vector instruction takes 8 cycles (32 elements / 4 lanes) to get all its operands into the 

lanes. There’s a 13-cycle latency between dependent vector instructions (8 cycles to get all 

elements into lanes + 4 cycles for FU latency + 1 cycle for writeback). The following table 

shows how the latencies add up to 47 cycles per iteration. The scalar instructions can be 

issued while the vector lanes are busy and are not shown. 
 
Instruction Iteration i Iteration (i+1) 

lv 0 47 (must wait for sv to finish using load/store units) 
lv 8  
fadd.vs 13 (depends on first lv)  
fmul.vv 26 (depends on fadd.vs)  
sv 39 (depends on fmul.vv)  
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem M15.3.B  

 

 

 

(a) Put the fadd.vs between the two lv instructions (because the fadd.vs can use the vector 

ALUs in parallel with the use of the vector load/store units by the loads). 
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(b)  

 

Dependent vector instruction issue 4 cycles after the previous one, and now the vector load/store 

units are maximally utilized, with a vector load or store issuing every 8 cycles. 

 

 So, each iteration of the vectorized loop takes 24 cycles and performs 64 floating-point operations, 

so the throughput is 64/24 = 8/3 = 2.67 FLOPs/cycle  

 

This table shows how the latencies add up for one loop iteration: 

 

 

Instruction Iteration i Iteration (i+1) 

lv 0 24 (waits for sv to finish) 

fadd.vs 4 (dependant on 1st lv)  

lv 8 (waits for 1st lv to finish)  

fmul.vv 12 (dependant on 2nd lv)  

sv 16 (dependant on fmul.vv)  
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Problem M15.3.C  

 
A GPU executes many threads concurrently, overlapping many long-latency memory accesses 

from independent threads (by switching warps). 
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Problem M15.3.D  

 
 

a) The code can be vectorized with additional support for vector masking. 

 

 

 

 

 

 

 

 

 

b) Yes, the code can be vectorized (without any additional hardware support).  

 

 

(Depending on the implementation, you could make a copy of some parts of array A, and 

that is easily done without requiring new hardware features.) 

 

 

 

 

 

 

 

 

 

c) No, the code cannot be vectorized. Each iteration depends on the value A[i-1] computed 

in the previous iteration, forcing serialized execution. 
 

 

 

 

 

 

 

 

 

 

d) The code can be vectorized with additional support for vector gather. 


