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Problem M16.1: Transactional Memory (Spring 2015 Quiz 4, Part B) 
 

Ben Bitdiddle wants to implement a transactional memory system with pessimistic conflict 

detection in a two-core processor. This system has the following characteristics:  

• When a transaction starts, it is assigned a unique global timestamp. 

• The memory system tracks the set of addresses read or written by each transaction (i.e., its 

read set and write set). 

• For every transactional load, the memory system checks whether this load reads an address 

in the write set of any other transaction, and declares a conflict if so. 

• For every transactional store, the memory system checks whether this store writes an 

address in the read set or write set of any other transaction, and declares a conflict if so. 

• On a conflict, the transaction with the later timestamp aborts. 

• An aborted transaction restarts execution 10 cycles later. 

 

Ben runs a program with two types of 

transaction: X and Y, shown below.  

 
Cycle relative to 

start 
Transaction X 

Cycle 0 Starts 

Cycle 10 Read B 

Cycle 20 Read A 

Cycle 30 Write A 

Cycle 40 Ends 

 

 

Problem M16.1.A  

 

Suppose the system is executing two transactions: a type X transaction that starts at cycle 0 and 

receives timestamp 0, and a type Y transaction that starts at cycle 5 and receives timestamp 5. Is 

there a conflict between these two transactions? If so, at what cycle does this conflict happen? 

 

  

Cycle relative to 

start 
Transaction Y 

Cycle 0 Starts 

Cycle 10 Read B 

Cycle 20 Read A 

Cycle 30 Read B 

Cycle 40 Ends 
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Problem M16.1.B  

 

Ben implements conflict detection by extending a conventional MSI coherence protocol. 

Furthermore, drawing inspiration from the delay invalidation cache coherence protocol in Quiz 3, 

Ben wants to optimize his transactional memory system as follows: 

 

• When a core receives an abort for its currently running transaction, it delays the abort until 

the next local cache miss. If the transaction finishes without additional misses, it will 

commit successfully. 

 

With this optimization, assume the same scenario as in the previous question: a type X transaction 

that starts at cycle 0 and receives timestamp 0, and a type Y transaction that starts at cycle 5 and 

receives timestamp 5. Are any of these transactions aborted? If so, when do aborts happen? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Does this optimization always provide correct transactional semantics? Explain your answer in 

one or two sentences. 
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Problem M16.1.C  

 

Ben believes this optimization works well and always needs fewer cycles to complete transactions. 

Is he correct? If so, explain why this always improves performance with one or two sentences. 

Otherwise, provide an example where this optimization causes a transaction to finish later.  
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Problem M16.2: Transactional Memory (Spring 2016 Quiz 4, Part D) 
 

You are designing a hardware transactional memory (HTM) system that uses pessimistic 

concurrency control (i.e., on each load/store, the HTM checks for conflicting accesses to the same 

address made by other transactions). Comment on whether the following conflict resolution 

policies suffer from either livelock (i.e., the system may reach a state where no single transaction 

makes forward progress) or starvation (i.e., the system may reach a state where at least one 

transaction does not make forward progress). State your reasoning. 

 

 

1. Requester wins: Upon a conflict, the transaction whose request initiated the conflict 

check is granted access to the data, and any conflicting transactions are aborted. After 

aborting, transactions immediately restart execution.  
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2. Timestamp-based, retain timestamp on abort: Each transaction is assigned a unique 

timestamp when it first begins execution. Timestamps are monotonically increasing. 

Upon a conflict, if the requesting transaction’s timestamp is lower than the timestamps of 

all other conflicting transactions, the requester is granted access to the data, and other 

conflicting transactions are aborted. Otherwise, the requesting transaction is aborted. 

 

After aborting, transactions immediately restart execution. Aborted transactions retain 

their original timestamp when they restart execution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Timestamp-based, discard timestamp on abort: Like the previous policy, except that 

aborted transactions discard their previous timestamp and acquire a new one when they 

restart execution. 
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4. Random-number-based, retain random number on abort: Each transaction is 

assigned a unique random number when it first begins execution. Upon a conflict, if the 

requesting transaction’s random number is lower than the random numbers of all other 

conflicting transactions, the requester is granted access to the data, and other conflicting 

transactions are aborted. Otherwise, the requesting transaction is aborted. 

 

After aborting, transactions immediately restart execution. Aborted transactions retain 

their original random number when they restart execution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Random-number-based, discard random number on abort: Like the previous policy, 

except that aborted transactions discard their previous random number and acquire a new 

one when they restart execution. 
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Problem M16.3: Transactional Memory (Spring 2020 Quiz 4, Part C) 

 

 
Ben Bitdiddle is designing a hardware transactional memory (HTM) system. He is concerned 

about three potential issues arising in his system:  

 

1. Deadlock: Some transactions stay stalled indefinitely on a cyclic waiting pattern, so they 

neither commit nor abort.  

 

2. Livelock: Some transactions can execute, but no transaction ever commits (e.g., due to 

repetitive aborts and re-execution). Thus, the system does not make forward progress.  

 

3. Starvation: Some transactions can commit, but at least one other transaction is prevented 

from committing indefinitely. Thus, one or a subset of transactions does not make forward 

progress.  

 

 

Ben wants to classify each of the 4 HTM systems in Questions 1 to 4 as one of four types, according 

to the forward progress guarantees they provide:  

 

A. May deadlock 
B. May livelock, but cannot deadlock 
C. May starve, but cannot deadlock or livelock 
D. Cannot deadlock, livelock, or starve  

 

 

For Questions 1 to 4, write down the letter A, B, C, or D and explain your choice. You can 

either explain intuitively why an issue cannot arise, or use an example to show that the system 

suffers from the issue.  

 

When you choose a particular option, you only need to explain the issues it differentiates between. 

For example, if you choose B, you should explain why the system cannot deadlock, and describe 

an example of how it may livelock. 
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Problem M16.3.A  

 

HTM 1: Optimistic conflict detection, lazy versioning, and committer-wins resolution policy. 

Assume there is enough capacity for versioning (so transactions do not overflow speculative 

buffers, e.g., the L1 cache).  

 

 

The committer-wins resolution policy works as follows. Upon a conflict, the committing 

transaction wins and any conflicting transactions are aborted. After aborting, transactions 

immediately restart execution. 

 

 

 

 

 

 

 

 

 

 

 
Problem M16.3.B  

 

HTM 2: Pessimistic conflict detection, lazy versioning, and requester-wins resolution policy. 

Assume there is enough capacity for versioning.  

 

The requester-wins resolution policy works as follows. Upon a conflict, the transaction that 

triggers the detection (the requester) wins and any conflicting transactions are aborted. After 

aborting, transactions immediately restart execution. 
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Problem M16.3.C  

 

HTM 3: Pessimistic conflict detection, eager versioning, and requester-stalls resolution policy. 

Assume there is enough capacity for versioning.  

 

The requester-stalls resolution policy works as follows. Upon a conflict, the transaction that 

triggers the detection (the requester) stalls until the conflicting transactions abort or commit. After 

aborting, transactions immediately restart execution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problem M16.3.D  

 

HTM 4: Pessimistic conflict detection, lazy versioning, and oldest-wins resolution policy. Assume 

there is enough capacity for versioning. 

 

The oldest-wins resolution policy works as follows. Each transaction is assigned a unique, 

monotonically increasing timestamp when it first begins execution. Upon a conflict, if the 

requesting transaction’s timestamp is lower than the timestamps of all other conflicting 

transactions, the requesting transaction commits and other conflicting transactions are aborted. 

Otherwise, the requesting transaction is aborted. After aborting, transactions immediately restart 

execution. Aborted transactions retain their original timestamp when they restart execution. 
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Problem M16.3.E  

 

Consider HTM 1, HTM 2, HTM 3, and HTM 4.  

Which HTM(s) may suffer from serialization bottlenecks when running only non-conflicting 

transactions concurrently? Point out such bottlenecks for each HTM design. 

 

 

 

 

 

 

 

 

 

 
Problem M16.3.F  

 

Consider an HTM system. Suppose N identical transactions are running simultaneously on N 

cores. All the transactions read and write to the same memory location, causing conflicts between 

any pair of them.  

 

Does the HTM design guarantee that all the transactions can commit in the end? If so, what is the 

maximum number of aborts?  

 

Answer the questions above for each of HTM 1, HTM 2, and HTM 3, respectively 


