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Problem M16.1: Transactional Memory (Spring 2015 Quiz 4, Part B) 
 

Ben Bitdiddle wants to implement a transactional memory system with pessimistic conflict 

detection in a two-core processor. This system has the following characteristics:  

• When a transaction starts, it is assigned a unique global timestamp. 

• The memory system tracks the set of addresses read or written by each transaction (i.e., its 

read set and write set). 

• For every transactional load, the memory system checks whether this load reads an address 

in the write set of any other transaction, and declares a conflict if so. 

• For every transactional store, the memory system checks whether this store writes an 

address in the read set or write set of any other transaction, and declares a conflict if so. 

• On a conflict, the transaction with the later timestamp aborts. 

• An aborted transaction restarts execution 10 cycles later. 

 

Ben runs a program with two types of 

transaction: X and Y, shown below.  

 
Cycle relative to 

start 
Transaction X 

Cycle 0 Starts 

Cycle 10 Read B 

Cycle 20 Read A 

Cycle 30 Write A 

Cycle 40 Ends 

 

 

Problem M16.1.A  

 

Suppose the system is executing two transactions: a type X transaction that starts at cycle 0 and 

receives timestamp 0, and a type Y transaction that starts at cycle 5 and receives timestamp 5. Is 

there a conflict between these two transactions? If so, at what cycle does this conflict happen? 

 

There is a conflict at cycle 30 due the write A in transaction X. 

  

Cycle relative to 

start 
Transaction Y 

Cycle 0 Starts 

Cycle 10 Read B 

Cycle 20 Read A 

Cycle 30 Read B 

Cycle 40 Ends 
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Problem M16.1.B  

 

Ben implements conflict detection by extending a conventional MSI coherence protocol. 

Furthermore, drawing inspiration from the delay invalidation cache coherence protocol in Quiz 3, 

Ben wants to optimize his transactional memory system as follows: 

 

• When a core receives an abort for its currently running transaction, it delays the abort until 

the next local cache miss. If the transaction finishes without additional misses, it will 

commit successfully. 

 

With this optimization, assume the same scenario as in the previous question: a type X transaction 

that starts at cycle 0 and receives timestamp 0, and a type Y transaction that starts at cycle 5 and 

receives timestamp 5. Are any of these transactions aborted? If so, when do aborts happen? 

 

No, since the optimization delays the abort for transaction Y, and it does not miss after that, 

transaction Y will commit. This is logically same as Y starts before X. 

 

 

 

 

 

 

 

 

 

 

 

Does this optimization always provide correct transactional semantics? Explain your answer in 

one or two sentences. 

 

No, it does not provide correct transactional semantics. Consider the following example: 

 
Cycle relative to 

start 
Transaction X 

Cycle 0 Starts 

Cycle 20 Read A 

Cycle 30 
Use value A to 

Write C 

Cycle 40 Ends 

 

If X starts at 0, and Y starts at 5, Y will abort at cycle 25 due to read miss, but X will read the data 

from Y since at cycle 20, it sees the write from Y. Finally, X commits will modification that should 

have abort. 

  

Cycle relative to 

start 
Transaction Y 

Cycle 0 Starts 

Cycle 10 Write A 

Cycle 20 Read B 

Cycle 30 Ends 
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Problem M16.1.C  

 

Ben believes this optimization works well and always needs fewer cycles to complete transactions. 

Is he correct? If so, explain why this always improves performance with one or two sentences. 

Otherwise, provide an example where this optimization causes a transaction to finish later.  

 

No, Ben is incorrect. This optimization is somehow similar to optimistic conflict detection, so it’s 

possible that it takes longer to finish transactions. For example, if a transaction should have abort 

at cycle 10, but delay the abort till later, it will start later and thus finish later. 
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Problem M16.2: Transactional Memory (Spring 2016 Quiz 4, Part D) 
 

You are designing a hardware transactional memory (HTM) system that uses pessimistic 

concurrency control (i.e., on each load/store, the HTM checks for conflicting accesses to the same 

address made by other transactions). Comment on whether the following conflict resolution 

policies suffer from either livelock (i.e., the system may reach a state where no single transaction 

makes forward progress) or starvation (i.e., the system may reach a state where at least one 

transaction does not make forward progress). State your reasoning. 

 

 

1. Requester wins: Upon a conflict, the transaction whose request initiated the conflict 

check is granted access to the data, and any conflicting transactions are aborted. After 

aborting, transactions immediately restart execution.  

 

This policy can livelock. Transactions A and B that conflict, can end up aborting each 

other similar to the scenario discussed in L23-19. This policy is also prone to starvation if 

a transaction gets aborted by conflicting transactions repeatedly. 
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2. Timestamp-based, retain timestamp on abort: Each transaction is assigned a unique 

timestamp when it first begins execution. Timestamps are monotonically increasing. 

Upon a conflict, if the requesting transaction’s timestamp is lower than the timestamps of 

all other conflicting transactions, the requester is granted access to the data, and other 

conflicting transactions are aborted. Otherwise, the requesting transaction is aborted. 

 

After aborting, transactions immediately restart execution. Aborted transactions retain 

their original timestamp when they restart execution. 

 

Cannot livelock or starve. At some point, a transaction becomes the oldest transaction in 

the system (i.e. with the lowest timestamp), and can proceed to completion (commit) at 

that point. 

 

 

 

 

 

 

 

 

 

 

 

3. Timestamp-based, discard timestamp on abort: Like the previous policy, except that 

aborted transactions discard their previous timestamp and acquire a new one when they 

restart execution. 

 

This policy cannot livelock since the lowest timestamp transaction at any point can 

commit. However, this policy can lead to starvation, since an aborted transaction acquires 

a new timestamp on restarting execution. It is possible that it repeatedly conflicts with 

lower timestamp transactions, and is aborted. 
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4. Random-number-based, retain random number on abort: Each transaction is 

assigned a unique random number when it first begins execution. Upon a conflict, if the 

requesting transaction’s random number is lower than the random numbers of all other 

conflicting transactions, the requester is granted access to the data, and other conflicting 

transactions are aborted. Otherwise, the requesting transaction is aborted. 

 

After aborting, transactions immediately restart execution. Aborted transactions retain 

their original random number when they restart execution. 

 

This policy cannot livelock. The lowest timestamp transaction will complete unless a new 

conflicting transaction with lower timestamp arrives in the system (and issues a 

conflicting memory access) before completion of this transaction. Eventually, we should 

generate a transaction with minimum random number allowing it to complete. The policy 

can however lead to starvation if a transaction is assigned the maximum possible random 

number. 

 

 

 

 

 

 

 

 

 

5. Random-number-based, discard random number on abort: Like the previous policy, 

except that aborted transactions discard their previous random number and acquire a new 

one when they restart execution. 

 

This policy cannot livelock (reason similar to the previous question). Since an aborted 

transaction receives a new timestamp on restarting execution, this policy avoids 

starvation. 
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Problem M16.3: Transactional Memory (Spring 2020 Quiz 4, Part C) 

 

 
Ben Bitdiddle is designing a hardware transactional memory (HTM) system. He is concerned 

about three potential issues arising in his system:  

 

1. Deadlock: Some transactions stay stalled indefinitely on a cyclic waiting pattern, so they 

neither commit nor abort.  

 

2. Livelock: Some transactions can execute, but no transaction ever commits (e.g., due to 

repetitive aborts and re-execution). Thus, the system does not make forward progress.  

 

3. Starvation: Some transactions can commit, but at least one other transaction is prevented 

from committing indefinitely. Thus, one or a subset of transactions does not make forward 

progress.  

 

 

Ben wants to classify each of the 4 HTM systems in Questions 1 to 4 as one of four types, according 

to the forward progress guarantees they provide:  

 

A. May deadlock 
B. May livelock, but cannot deadlock 
C. May starve, but cannot deadlock or livelock 
D. Cannot deadlock, livelock, or starve  

 

 

For Questions 1 to 4, write down the letter A, B, C, or D and explain your choice. You can 

either explain intuitively why an issue cannot arise, or use an example to show that the system 

suffers from the issue.  

 

When you choose a particular option, you only need to explain the issues it differentiates between. 

For example, if you choose B, you should explain why the system cannot deadlock, and describe 

an example of how it may livelock. 
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Problem M16.3.A  

 

C.  

 

This system cannot livelock, because transactions can only be aborted by committing transactions, 

so forward progress for at least one transaction is guaranteed.  

 

But it suffers from starvation. Example:  

A long transaction can be repetitively aborted by many short transactions that update the data it 

reads. 
 

 

 

 

 

 

 
Problem M16.3.B  

 

B.  

 

This system cannot deadlock because no transaction is stalled due to conflicts.  

 

But it may livelock. Example:  

Two conflicting transactions that write the same data can repetitively abort each other  
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Problem M16.3.C  

 

A.  

 

This system can deadlock. Example:  

 

TX0: LD A                                        ST B (TX0 stalls, waiting for TX1’s commit/abort)  

TX1: LD B ST A (TX1 stalls, waiting for TX0’s commit/abort) 
 

 

 

 

 

 

 

 

 

 

 

 

 
Problem M16.3.D  

 

D.  

 

This system is free from deadlocks, livelocks, and starvations.  

The transaction with the lowest/oldest timestamp is guaranteed to commit. Because timestamps 

are assigned when beginning execution, starvation cannot happen: each transaction is guaranteed 

to eventually become the oldest one in the system.   
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Problem M16.3.E  

 

HTM 1: Potentially serialized commits  

HTM 4: Potentially serialized timestamp assignment  

Lazy versioning is slow during commits but it happens locally and does not involve serialization 

among multiple transactions. 
 

 

 

 

 

 

 

 

 
Problem M16.3.F  

 

HTM 1: Yes, (N-1)N/2  

HTM 2: No, due to livelocks  

HTM 3: No, due to deadlocks  

 

EDIT: The question is not clear about how many memory locations receive conflicted accesses. If 

there is only one such location, deadlock won’t happen on HTM 3. We’ve adjusted the scores for 

students who reason in this way 
 

 

 

 


