
Last updated:

11/28/2022

Problem M16.1: Transactional Memory (Spring 2015 Quiz 4, Part B)

Ben Bitdiddle wants to implement a transactional memory system with pessimistic conflict

detection in a two-core processor. This system has the following characteristics:

• When a transaction starts, it is assigned a unique global timestamp.

• The memory system tracks the set of addresses read or written by each transaction (i.e., its

read set and write set).

• For every transactional load, the memory system checks whether this load reads an address

in the write set of any other transaction, and declares a conflict if so.

• For every transactional store, the memory system checks whether this store writes an

address in the read set or write set of any other transaction, and declares a conflict if so.

• On a conflict, the transaction with the later timestamp aborts.

• An aborted transaction restarts execution 10 cycles later.

Ben runs a program with two types of

transaction: X and Y, shown below.

Cycle relative to

start
Transaction X

Cycle 0 Starts

Cycle 10 Read B

Cycle 20 Read A

Cycle 30 Write A

Cycle 40 Ends

Problem M16.1.A

Suppose the system is executing two transactions: a type X transaction that starts at cycle 0 and

receives timestamp 0, and a type Y transaction that starts at cycle 5 and receives timestamp 5. Is

there a conflict between these two transactions? If so, at what cycle does this conflict happen?

There is a conflict at cycle 30 due the write A in transaction X.

Cycle relative to

start
Transaction Y

Cycle 0 Starts

Cycle 10 Read B

Cycle 20 Read A

Cycle 30 Read B

Cycle 40 Ends

Last updated:

11/28/2022

Problem M16.1.B

Ben implements conflict detection by extending a conventional MSI coherence protocol.

Furthermore, drawing inspiration from the delay invalidation cache coherence protocol in Quiz 3,

Ben wants to optimize his transactional memory system as follows:

• When a core receives an abort for its currently running transaction, it delays the abort until

the next local cache miss. If the transaction finishes without additional misses, it will

commit successfully.

With this optimization, assume the same scenario as in the previous question: a type X transaction

that starts at cycle 0 and receives timestamp 0, and a type Y transaction that starts at cycle 5 and

receives timestamp 5. Are any of these transactions aborted? If so, when do aborts happen?

No, since the optimization delays the abort for transaction Y, and it does not miss after that,

transaction Y will commit. This is logically same as Y starts before X.

Does this optimization always provide correct transactional semantics? Explain your answer in

one or two sentences.

No, it does not provide correct transactional semantics. Consider the following example:

Cycle relative to

start
Transaction X

Cycle 0 Starts

Cycle 20 Read A

Cycle 30
Use value A to

Write C

Cycle 40 Ends

If X starts at 0, and Y starts at 5, Y will abort at cycle 25 due to read miss, but X will read the data

from Y since at cycle 20, it sees the write from Y. Finally, X commits will modification that should

have abort.

Cycle relative to

start
Transaction Y

Cycle 0 Starts

Cycle 10 Write A

Cycle 20 Read B

Cycle 30 Ends

Last updated:

11/28/2022

Problem M16.1.C

Ben believes this optimization works well and always needs fewer cycles to complete transactions.

Is he correct? If so, explain why this always improves performance with one or two sentences.

Otherwise, provide an example where this optimization causes a transaction to finish later.

No, Ben is incorrect. This optimization is somehow similar to optimistic conflict detection, so it’s

possible that it takes longer to finish transactions. For example, if a transaction should have abort

at cycle 10, but delay the abort till later, it will start later and thus finish later.

Last updated:

11/28/2022

Problem M16.2: Transactional Memory (Spring 2016 Quiz 4, Part D)

You are designing a hardware transactional memory (HTM) system that uses pessimistic

concurrency control (i.e., on each load/store, the HTM checks for conflicting accesses to the same

address made by other transactions). Comment on whether the following conflict resolution

policies suffer from either livelock (i.e., the system may reach a state where no single transaction

makes forward progress) or starvation (i.e., the system may reach a state where at least one

transaction does not make forward progress). State your reasoning.

1. Requester wins: Upon a conflict, the transaction whose request initiated the conflict

check is granted access to the data, and any conflicting transactions are aborted. After

aborting, transactions immediately restart execution.

This policy can livelock. Transactions A and B that conflict, can end up aborting each

other similar to the scenario discussed in L23-19. This policy is also prone to starvation if

a transaction gets aborted by conflicting transactions repeatedly.

Last updated:

11/28/2022

2. Timestamp-based, retain timestamp on abort: Each transaction is assigned a unique

timestamp when it first begins execution. Timestamps are monotonically increasing.

Upon a conflict, if the requesting transaction’s timestamp is lower than the timestamps of

all other conflicting transactions, the requester is granted access to the data, and other

conflicting transactions are aborted. Otherwise, the requesting transaction is aborted.

After aborting, transactions immediately restart execution. Aborted transactions retain

their original timestamp when they restart execution.

Cannot livelock or starve. At some point, a transaction becomes the oldest transaction in

the system (i.e. with the lowest timestamp), and can proceed to completion (commit) at

that point.

3. Timestamp-based, discard timestamp on abort: Like the previous policy, except that

aborted transactions discard their previous timestamp and acquire a new one when they

restart execution.

This policy cannot livelock since the lowest timestamp transaction at any point can

commit. However, this policy can lead to starvation, since an aborted transaction acquires

a new timestamp on restarting execution. It is possible that it repeatedly conflicts with

lower timestamp transactions, and is aborted.

Last updated:

11/28/2022

4. Random-number-based, retain random number on abort: Each transaction is

assigned a unique random number when it first begins execution. Upon a conflict, if the

requesting transaction’s random number is lower than the random numbers of all other

conflicting transactions, the requester is granted access to the data, and other conflicting

transactions are aborted. Otherwise, the requesting transaction is aborted.

After aborting, transactions immediately restart execution. Aborted transactions retain

their original random number when they restart execution.

This policy cannot livelock. The lowest timestamp transaction will complete unless a new

conflicting transaction with lower timestamp arrives in the system (and issues a

conflicting memory access) before completion of this transaction. Eventually, we should

generate a transaction with minimum random number allowing it to complete. The policy

can however lead to starvation if a transaction is assigned the maximum possible random

number.

5. Random-number-based, discard random number on abort: Like the previous policy,

except that aborted transactions discard their previous random number and acquire a new

one when they restart execution.

This policy cannot livelock (reason similar to the previous question). Since an aborted

transaction receives a new timestamp on restarting execution, this policy avoids

starvation.

Last updated:

11/28/2022

Problem M16.3: Transactional Memory (Spring 2020 Quiz 4, Part C)

Ben Bitdiddle is designing a hardware transactional memory (HTM) system. He is concerned

about three potential issues arising in his system:

1. Deadlock: Some transactions stay stalled indefinitely on a cyclic waiting pattern, so they

neither commit nor abort.

2. Livelock: Some transactions can execute, but no transaction ever commits (e.g., due to

repetitive aborts and re-execution). Thus, the system does not make forward progress.

3. Starvation: Some transactions can commit, but at least one other transaction is prevented

from committing indefinitely. Thus, one or a subset of transactions does not make forward

progress.

Ben wants to classify each of the 4 HTM systems in Questions 1 to 4 as one of four types, according

to the forward progress guarantees they provide:

A. May deadlock
B. May livelock, but cannot deadlock
C. May starve, but cannot deadlock or livelock
D. Cannot deadlock, livelock, or starve

For Questions 1 to 4, write down the letter A, B, C, or D and explain your choice. You can

either explain intuitively why an issue cannot arise, or use an example to show that the system

suffers from the issue.

When you choose a particular option, you only need to explain the issues it differentiates between.

For example, if you choose B, you should explain why the system cannot deadlock, and describe

an example of how it may livelock.

Last updated:

11/28/2022

Problem M16.3.A

C.

This system cannot livelock, because transactions can only be aborted by committing transactions,

so forward progress for at least one transaction is guaranteed.

But it suffers from starvation. Example:

A long transaction can be repetitively aborted by many short transactions that update the data it

reads.

Problem M16.3.B

B.

This system cannot deadlock because no transaction is stalled due to conflicts.

But it may livelock. Example:

Two conflicting transactions that write the same data can repetitively abort each other

Last updated:

11/28/2022

Problem M16.3.C

A.

This system can deadlock. Example:

TX0: LD A ST B (TX0 stalls, waiting for TX1’s commit/abort)

TX1: LD B ST A (TX1 stalls, waiting for TX0’s commit/abort)

Problem M16.3.D

D.

This system is free from deadlocks, livelocks, and starvations.

The transaction with the lowest/oldest timestamp is guaranteed to commit. Because timestamps

are assigned when beginning execution, starvation cannot happen: each transaction is guaranteed

to eventually become the oldest one in the system.

Last updated:

11/28/2022

Problem M16.3.E

HTM 1: Potentially serialized commits

HTM 4: Potentially serialized timestamp assignment

Lazy versioning is slow during commits but it happens locally and does not involve serialization

among multiple transactions.

Problem M16.3.F

HTM 1: Yes, (N-1)N/2

HTM 2: No, due to livelocks

HTM 3: No, due to deadlocks

EDIT: The question is not clear about how many memory locations receive conflicted accesses. If

there is only one such location, deadlock won’t happen on HTM 3. We’ve adjusted the scores for

students who reason in this way

