
 6.5900 Computer System Architecture  
 Prerequisite Self-Assessment Test  
Assigned Sept. 7, 2022  Due Sept. 9, 2022 

 
http://csg.csail.mit.edu/6.5900/ 

 
 

 This self-assessment test is intended to help you determine your level of preparation for 
6.5900 by going through some of the background material we expect you to have seen already.  
We also hope working through the problem set will help refresh your memory on these topics.  We 
will only have a short review of this material in 6.5900.   
 For each question, we ask that you fill out the table at the end of the problem set handout 
indicating your level of confidence with each assigned problem and hand this in with your 
solutions.  If you have never seen the material before, then please enter “0”. If you have seen the 
material, and think you should know it, but can’t answer the question without spending time 
studying your old notes, then please enter “1”. If you are very comfortable with the material, then 
enter “2”.  You should turn in solutions for problems where you entered “1” and “2”, but do not 
have to turn in solutions for problems for which you entered a “0”. 
 If you have more than 6 or 7 “0”s in the table, or feel uncomfortable with your background 
preparation or our expectations for the course, then you should arrange a meeting with a lecturer 
to discuss your particular situation before the third week of class.  Our experience is that most 
students with some background in logic design or assembly-level computer programming can 
complete the course successfully. 
 
For this test only, you must work individually and turn in your own solutions.  Do not discuss 
the problems with others. 
 
 
Problem 1 
 
Construct the following logic functions using only two-input NAND gates (please use hierarchy 
where possible to simplify your designs): 
 
a) inverter 
b) two-input XOR gate 
c) 2-to-1 multiplexer 
d) 2-to-4 decoder 
 
 
 



Problem 2   
 
The questions below refer to the following circuit.  The flip-flops are positive-edge triggered, 
and FF0 has an enable input (Q only changes if En is high).  Assume that all timing constraints 
are satisfied. 
  
 

 
 

 
Draw a state transition diagram or fill out the state-transition table below for the sequential logic 
drawn above. 

FF0 FF1 FF0’ FF1’ 

    

    

    

    

 
 

 

XOR 
 

e 

d 

clk 

 

D Q 
FF1 

q 

 

D Q 
En 

FF0 

Inv 



Problem 3 
 
The followings are two code segments written in MIPS64 assembly language (refer to the 
accompanying handout for information on the MIPS64 instruction set): 
 
Segment A: 
Loop: LD  r5, 0(r1)  # r5  Mem[r1+0] 

LD  r6, 0(r2)  # r6  Mem[r2+0] 
DADD  r5, r5, r6  # r5  r5 + r6 
SD  r5, 0(r3)  # Mem[r3+0]  r5 
LD  r5, 0(r1)  # r5  Mem[r1+0] 
LD  r6, 0(r2)  # r6  Mem[r2+0] 
DSUB  r5, r5, r6  # r5  r5 - r6 
SD  r5, 0(r4)  # Mem[r4+0]  r5 
DADDIU r1, r1, 8  # r1  r1 + 8 
DADDIU r2, r2, 8  # r2  r2 + 8 
DADDIU r3, r3, 8  # r3  r3 + 8 
DADDIU r4, r4, 8  # r4  r4 + 8 
BNE  r1, r9, Loop # branch to Loop if r1 ≠ r9 
 

Segment B: 
Loop: LD  r5, 0(r1)  # r5  Mem[r1+0] 

LD  r6, 0(r2)  # r6  Mem[r2+0] 
DADD  r7, r5, r6  # r7  r5 + r6 
DSUB  r8, r5, r6  # r8  r5 - r6 
SD  r7, 0(r3)  # Mem[r3+0]  r7 
SD  r8, 0(r4)  # Mem[r4+0]  r8 
DADDIU r1, r1, 8  # r1  r1 + 8 
DADDIU r2, r2, 8  # r2  r2 + 8 
DADDIU r3, r3, 8  # r3  r3 + 8 
DADDIU r4, r4, 8  # r4  r4 + 8 
BNE  r1, r9, Loop # branch to Loop if r1 ≠ r9 
 

In both segments, assume r1, r2, r3, r4 initially hold valid memory addresses. Register r9 is 
pre-computed to be 80 larger than the initial value of r1. All instructions operate on 64-bit 
doubleword values and the memory address space is byte-addressable. 
 
a) If both segments are expected to perform the same task, can you guess what the task is? You 

can write the answer in C-like pseudo code. 
 
b) In general, which segment do you expect to perform better when executed? 
 
c) Can you specify initial conditions for r1, r2, r3, and r4 which makes the two segments 

behave differently? 
 
     



Problem 4  
 
The following figure shows a 5-stage pipelined processor.  The pipelined processor should always 
compute the same results as an unpipelined processor.  Answer the following questions for each 
of the instruction sequences below: 

• Why does the sequence require special handling (what could go wrong)?   
• What are the minimal hardware mechanisms required to ensure correct behavior? 
• What additional hardware mechanisms, if any, could help preserve performance? 

Assume that the architecture does not have any branch delay slots, and assume that branch 
conditions are computed by the ALU. 

 
a) BEQ  r1, r0, 200 # branch to PC+200 if r1 == r0 

DADD  r2, r3, r5  # r2  r3 + r5  
DSUB r4, r5, r6  # r4  r5 - r6 
… 
 

b) DADD  r1, r0, r2  # r1  r0 + r2 
DSUB  r4, r1, r2  # r4  r1 - r2 
… 

 
c) LD  r1, 0(r2)  # r1  Mem[r2+0] 

DADD r3, r1, r2  # r3  r1 + r2 
… 
 



Problem 5  
 
Describe the operation of a data cache.  Your description should include discussion of the 
following: 
 
a) Spatial and temporal locality. 
b) Valid bits. 
c) Direct mapped versus set-associative structures.  Show how cache indexing and tag  
    match works for both direct mapped and 2-way set-associative cache configurations assuming 

one word per cache line.  What are the advantages and disadvantages of direct mapped versus 
set-associative structures? 

d) Multiple-word cache lines.  What are the advantages and disadvantages of multiple-word cache 
lines?  Describe how they are implemented for a direct mapped cache. 

e) LRU and random replacement policies. What are their relative advantages and disadvantages? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Problem Ratings 
 
 
 

0 No idea 
1 Used to know it 
2 Know it 

 subproblem 

pr
ob

le
m

 

 A B C D E F G 
1                
2        
3        
4        
5        


	Problem 1
	Problem 2
	Problem 3
	The followings are two code segments written in MIPS64 assembly language (refer to the accompanying handout for information on the MIPS64 instruction set):
	Loop: LD  r5, 0(r1)  # r5 ( Mem[r1+0]
	LD  r6, 0(r2)  # r6 ( Mem[r2+0]
	DADD  r5, r5, r6  # r5 ( r5 + r6
	SD  r5, 0(r3)  # Mem[r3+0] ( r5
	LD  r5, 0(r1)  # r5 ( Mem[r1+0]
	LD  r6, 0(r2)  # r6 ( Mem[r2+0]
	DSUB  r5, r5, r6  # r5 ( r5 - r6
	SD  r5, 0(r4)  # Mem[r4+0] ( r5
	DADDIU r1, r1, 8  # r1 ( r1 + 8
	DADDIU r2, r2, 8  # r2 ( r2 + 8
	DADDIU r3, r3, 8  # r3 ( r3 + 8
	DADDIU r4, r4, 8  # r4 ( r4 + 8
	BNE  r1, r9, Loop # branch to Loop if r1 ≠ r9
	Segment B:
	Loop: LD  r5, 0(r1)  # r5 ( Mem[r1+0]
	LD  r6, 0(r2)  # r6 ( Mem[r2+0]
	DADD  r7, r5, r6  # r7 ( r5 + r6
	DSUB  r8, r5, r6  # r8 ( r5 - r6
	SD  r7, 0(r3)  # Mem[r3+0] ( r7
	SD  r8, 0(r4)  # Mem[r4+0] ( r8
	DADDIU r1, r1, 8  # r1 ( r1 + 8
	DADDIU r2, r2, 8  # r2 ( r2 + 8
	DADDIU r3, r3, 8  # r3 ( r3 + 8
	DADDIU r4, r4, 8  # r4 ( r4 + 8
	BNE  r1, r9, Loop # branch to Loop if r1 ≠ r9
	In both segments, assume r1, r2, r3, r4 initially hold valid memory addresses. Register r9 is pre-computed to be 80 larger than the initial value of r1. All instructions operate on 64-bit doubleword values and the memory address space is byte-addressa...
	a) If both segments are expected to perform the same task, can you guess what the task is? You can write the answer in C-like pseudo code.
	Problem 4
	The following figure shows a 5-stage pipelined processor.  The pipelined processor should always compute the same results as an unpipelined processor.  Answer the following questions for each of the instruction sequences below:
	 Why does the sequence require special handling (what could go wrong)?
	 What are the minimal hardware mechanisms required to ensure correct behavior?
	Problem 5
	Problem Ratings


