Hands-On Hardware Side Channels Lab
6.888: Secure Hardware Design, Fall 2020

Mengjia Yan, Miles Dai
Due: October 14, 2020

1 Introduction

This lab explores the practical exploitation of hardware side channels. In the first part, Dead Drop, you
will see how side channels can allow you to bypass process isolation guarantees by creating a covert channel
to send information between two processes that are unable to communicate using traditional means. In the
second part, Capture the Flag, you will fine-tune the concepts you used in Dead Drop to steal a secret from
a victim program by simply observing the cache.

To get started with the lab, see the README in your Github repo located at

https://github.mit.edu/6-888-fa20/lab-<kerberos>

2 Dead Drop: An Evil Chat Client

In this lab, you will build Dead Drop: an evil chat client that can send messages between two processes
running on the same machine. The only rules are:

1. The sender and receiver must be different processes.

2. The sender and receiver may only use syscalls and shared library functions directly accessible from the
provided util.h except system(). Both the sender and receiver may use any x86 instruction except
for c1flush.

The twist is that util.h only contains memory allocators (like malloc) and some convenience functions
for tracking system time. There is no way to set up a shared address space between the sender and receiver,
nor is there a way to call any obviously-useful-for-chat functions such as Unix sockets.

With Dead Drop, you must implement cross-process communication using hardware covert channels.
Suppose the sender and receiver run on the same physical machine at the same time. Processes on this
machine share hardware resources (including caches, DRAM, processor pipelines, etc). If the sender process
uses a hardware resource, it creates contention with other processes trying to use that same resource. Coupled
with a mechanism to measure contention (such as a timer), this can be turned into a reliable way to send
information from process to process that violates software-level process isolation.

2.1 Requirements

Allowed code: As mentioned above, the sender and receiver may only use syscalls and the functions
accessible from the provided util.h except for system(). In addition, you may use any x86 instruction
in your final submission except for c1flush. The point of limiting your code usage is not to force you to
re-implement convenience functions. If you would like to use some convenience code that stays within the
spirit of the lab, please contact the course staff. Obviously, you may not use pre-packaged code from online
for building covert channels (e.g. mastik).

Execution environment: You will be given SSH access to a lab machine to run your code on. For reasons
discussed more below, you will be assigned two CPUs on this machine which are executing as SMT threads
to run your code on. Please be sure to use only these CPUs to avoid interfering with other students who
may be running experiments on the machine.

Expected behavior: The Dead Drop client should behave in the following way. In two different terminals
running on the same machine, you should be able to run the following commands:

1: Terminal B: $ make run_receiver
2: Terminal B: Please press enter.

3: Terminal A: $ make run_sender
4: Terminal A: Please type a message.

5: Terminal B: $
6: Terminal B: Receiver now listening.

7: Terminal A: $ 47

8: Terminal B: 47

In other words, in lines 1 and 2, you start the receiver process in a terminal, and it prompts you to press
enter to start listening for messages. Until you press enter, the receiver is not expected to echo messages
from the sender. In lines 3 and 4, you start the sender in another terminal. Lines 5 and 6 are you pressing
Enter to start the receiver process. It should now be ready to receive messages. In line 7, you type a message
and hit enter on the sender side. Line 8 shows the same message appearing on the receiver side.

For the basic version of Dead Drop, you only need the ability to send integers from 0-255 (inclusive). For
optional extensions to the project, see Section

Checkoff: For checkoff, you will push the final version of your code to your assigned Github repository.
You will also upload a description of (a) how your implementation works, (b) what challenges you ran into,
(c) what worked/didn’t work, and (d) any feedback you have for this lab for future years. You and the
course staff will also set up a 10-minute checkoff, during which you will open up two terminals on the lab
machine and run make run_sender in one and make run receiver in the other to demo your exploit.

2.2 Restrictions

There are two notable restrictions for this lab. First, we are prohibiting the c1flush instruction which
is commonly used in flush-reload attacks. In practice, some architectures do not support this instruction.
Furthermore, some side-channel mitigations suggest making clflush a privileged instruction or disabling it
entirely. Thus, while you may use c1lflush to help you debug and experiment, your submission will need a
different technique to evict cache lines.

The second restriction is that your processes will be running on two specific CPUs. This is done to simplify
the conditions for this lab. The two CPUs you have been assigned are a pair of SMT (aka Hyperthreading)
thread contexts which run on the same physical core and share all the hardware resources on that core such
as private L1 and L2 caches. Your implementation will only need to work on your assigned cores. This is
because a successful exploit across any arbitrary pair of cores would require a resource shared between all
cores on the machine which makes this problem significantly more challenging. Percival describes the threats
associated with SMT in more detail in Cache Missing for Fun and For Profit [3|.

2.3 Getting Started

The following are some suggested steps to help you get started which guide you towards one possible solution,
namely a cache-based side channel. There are many other hardware side channels that can be exploited.

You are free to explore other options if you so choose, but using the cache side channel will be more useful
for the next part of the lab.

2.3.1 Setting Up Your Environment

Before starting, test your SSH access to the lab machine. Next, modify the SENDER_CPU and RECEIVER_CPU

variables in your Makefile to your assigned CPUs. Using tmux, screen, or simply two SSH connections, you

should be able to run make run_sender in one terminal and make run_receiver in another terminal. These

two make recipes will compile your code and start the two processes on the correct CPUs using taskset.

IMPORTANT: Set SENDER_CPU and RECEIVER CPU to your assigned values before running code

for any portion of this lab. Otherwise, you may be interfering with another student’s lab.
The files included for the Dead Drop portion of the lab are

e sender.c, receiver.c - template code for your sender and receiver respectively

e util.h, util.c - utility functions and library imports you are permitted to use (except for c1flush)

2.3.2 Determine the Machine Architecture

Before exploiting any hardware side channels, you must first understand the machine architecture. There
are a few commands that can help with this on Linux.

e lscpu: provides information on the type of processor and some summary information about the archi-
tecture in the machine.

e less /proc/cpuinfo: provides detailed information about each logical processor in the machine.

e getconf -a | grep CACHE: displays the system configurations related to the cache. This will provide
detailed information about how the cache is structured.

In addition, WikiChip provides a lot of information specific to each processor and architecture. You may
find the pages on the [Intel Xeon Gold 5220R processor| and the Cascade Lake architecture| useful.

2.3.3 Timing a Memory Access

Take a look at the provided measure_one block_access_time utility function in utils.c which measures
the length of time required to access a particular memory address.

Try using this function to measure the access time of a memory address. Then try using c1flush to evict
the memory address from the cache and into DRAM, and measure the access time again. You should notice
a large (> 100%) increase in the latency. (Remember that you should not use c1flush in your solution; this
is just to demonstrate the memory access latency difference.) Can you achieve a similar result without using
the c1flush instruction? In other words, can you create a cache eviction without c1flush?

2.3.4 Detecting a Cache Eviction Across Processes

Because we are unable to create a shared memory space between the two processes, traditional flush-+reload
or evict+reload attacks cannot be used. Instead, we can explore the possibility of using a prime+probe
style attack. Can you implement a basic prime+probe function to detect cache evictions? You may find the
clflush function helpful for debugging. In addition, you may find the C5 Covert Channel paper helpful in
guiding your methodology [2].

2.4 Common Pitfalls

Virtual Address Abstraction: Keep in mind that the addresses you are dealing with in your C code
are virtual addresses. However, physical addresses (which you will not have access to within your code) may
be used when indexing into lower level caches. You may need to consider how address translation interacts
with cache indexing/tagging as well as run some experiments to see if this presents a problem for your cover
channel implementation.

https://en.wikichip.org/wiki/intel/xeon_gold/5220r
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake

For a review of virtual memory, please refer to the lecture slides or to past 6.004 lectures (FA19-L18,
SP17-1.16)).

2.5 Optional: Dead Drop Extensions

There are several extensions you can implement for bonus points that are not required for the checkoff or
for full points on the lab.

e Reduce the transmission time by using a single cache set as a covert channel instead of the entire cache.
Note that this will require understanding how set indexes are derived from addresses.

e Add support for text transmission instead of just the integers from 0-255.

2.6 Acknowledgments

The original Dead Drop lab was developed by Christopher Fletcher for CS 598CLF at UIUC. The starting
code and lab handout are both heavily adapted from his work.

3 Capture the Flag (CTF)

In this part of the lab, you will be attempting to extract a secret value from a victim program. To keep the
lab manageable, we have created a simple program, victim.c, that performs a secret-dependent memory
access (pseudocode in Listing . Your task will be to write a program, attacker.c that determines this
secret value.

1 |// Set flag to random integer in the

> |// range [0, NUM_L2_CACHE_SETS)

s |int flag = random (0, NUM_L2_CACHE_SETS);
. |printf (flag);

6 |// Allocate a large memory buffer
7 | char *buf = get_buffer();

o |// Find four addresses in buf that all map to the cache set
o |// with an index of flag to create a partial eviction set
11 | char *eviction_set [4];

2 |get_partial_eviction_set(eviction_set, target);

1 | // Main loop
15 |while (true) {

16 for (int i = 0; i < 4; i++) {

17 // Access the eviction address
s (x(eviction_set [i]))++;

19 T

Listing 1: victim.c process pseudocode

3.1 Requirements

With the description of the victim program provided above, you should be able to extract the secret flag
value from a second program running on the same core.

https://6004.mit.edu/web/fall20/resources/fa19
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-structures-spring-2017/c16/

Allowed code: The code constraints for the CTF are identical to that of Dead Drop. In addition, you
are allowed to use the sys/mman.h library for the purpose of allocating memory only (i.e. mmap() or
posix memalign()). Once again, use of the c1flush instruction and the system() function are not allowed.

Execution environment: The execution environment for CTF is identical to that of Dead Drop. You
will use two terminals, one to run the victim binary and one to run your attack code. They will be running
on the same pair of SMT thread contexts as in Dead Drop.

Expected behavior: The victim code will print out the randomly chosen flag before it enters the infinite
loop. Your code, upon running, should perform some operations to determine the flag, then clearly print the
flag as shown in the starter code. While you are free to print whatever debugging information you may find
useful, please try to keep your terminal output relatively clean for the checkoff.

Checkoff: As with Dead Drop, you will upload your code to your assigned Github repository. In your
scheduled checkoff time, you will open up two terminals on the lab machine, run make run victim on one,
and run make run_attacker on the other to demo your exploit and show that the two printed flag values
are the same.

3.2 Setting Up Your Environment

You will use the same setup as the Dead Drop portion of the lab. IMPORTANT: Make sure SENDER_CPU
and RECEIVER_CPU are set to your assigned values in the Makefile before running code for any
portion of this lab. Otherwise, you may be interfering with another student’s lab. The files
included for the CTF portion of the lab are

e attacker.c - template code for your attacker

e victim - victim binary that you will be stealing a secret from. Note that you will not have access to
the victim source code, only the pseudocode provided above.

e util.c, util.h - utility functions and library imports you are permitted to use (except c1flush)

Using tmux, screen, or simply two SSH connections, you should be able to run make run victim in one
terminal and make run_attacker in another terminal. These two make recipes will compile your code and
start the two processes on the correct CPUs using taskset. If you have problems running the victim binary,
you may need to run chmod +x victim within your lab directory.

3.3 Common Pitfalls

Virtual Address Abstraction: Similarly to the situation in Dead Drop, address translation may present
an issue with your attack. To help mitigate some of the virtual address problems, we have enabled hugepages
on the machine. You are free to use 2 MiB hugepages if you need them for the CTF portion of the lab only.
See Appendix [B] for help on how to allocate a hugepage.

Cache Replacement Policy: While least recently used (LRU) is the most common example of a cache
replacement policy, practical processor implementations often use much more complex policies. You may
need to experiment a bit to roughly figure out how eviction works on your processor.

Furthermore, be sure to carefully consider how you are accessing your cache lines. With prime+probe
attacks, it is common to encounter thrashing, a situation in which the attacker primes the cache set only
to evict their own data with subsequent accesses while probing. One way to avoid this problem is to prime
the cache by accessing the eviction set in one direction and probe in the reverse direction, as described by
Tromer et al. [4].

Hardware Prefetching: Modern processors have hardware that can prefetch data into the cache before
it is required as it attempts to anticipate future accesses. This may cause spurious cache evictions or mask
evictions caused by the victim. This hardware can also be triggered by linear, fixed-stride access patterns
within a page. To avoid these issues, one technique is called “pointer-chasing,” in which the eviction set
addresses are randomly ordered and then organized as a linked list in which each each address stores the
address of the next member of the eviction set [4]. Liu et al. concretely show how to traverse this list quickly
with a few lines of assembly [llﬂ

Cache Pollution: While prime+probe is a simple attack in theory, it suffers from high levels of noise
partially due to cache pollution issues. Keep in mind that everything involving a memory access will use the
cache, not only data but also instruction fetches. You will need to carefully manage the interval between
when you prime and when you finish probing to minimize the number of cache evictions caused by accesses
other than the victim process.

Noisy or Inconsistent Results: Because side channels exploit shared resources in unintended ways, the
resulting covert channels can be quite noisy. Modern processors often contain optimizations that make them
behave differently from the simplified architectures taught in class. This lab requires experimentation to
find working approaches and values. You should not expect your solution to work on the first attempt, so
be sure to incrementally build up your solutions and verify that each step is working before proceeding.

Appendix A Useful Functions

There are some useful functions and libraries included in the starter code.

e time.h provides the clock () function which returns the current number of clock ticks. Thus two calls
to clock () can be used to measure elapsed CPU time.

e clflush() is a wrapper around the clflush x86 instruction which will flush a particular memory
address from all levels of the cache meaning that the next fetch to that memory address must come
from DRAM.

e measure_one_block_access_time() is a utility function written in assembly that measures the amount
of time required to access a particular memory address using the rdtsc instruction. Note that ad-
ditional 1fence instructions are used to prevent the processor from reordering the timing-critical
instructions.

Appendix B Linux Hugepages

The default page size used by most operating systems is 4K (2!?) bytes. You may find it useful to use a
larger page size to guarantee consecutive physical addresses. In particular, Linux (as of 2.6.38) supports
transparent huge pages (THP) for private anonymous pages, which will allow programs to allocate 2 MiB
pages, ensuring 22! consecutive physical addresses.

Allocating Hugepages

THP relies on the madvise syscall to tell the kernel to back the virtual pages with hugepages. The following
sample code demonstrates how to allocate a single hugepage.

1You do not need to write your own assembly to complete this lab, but it can make for cleaner results.

1 void *xbuf = NULL;

2 int buf_size = 1 << 21; // one hugepage

if (posix_memalign (&buf, 1 << 21, buf_size)) {
; perror ("posix_memalign");

, }

6 madvise (buf, buf_size, MADV_HUGEPAGE) ;

7 // the buffer can now be used

8 *((char *)buf) = 1;

Listing 2: allocating a hugepage

Note that if you are monitoring the use of hugepages on the system, you will not see anything until you
actually write to the hugepage (i.e. line 8) due to copy-on-write mechanisms.

Monitoring Hugepage Usage

The implementation of THP is rather complex but essentially involves the kernel scanning the areas marked
as hugepage candidates to replace them with huge pages. Thus hugepages may not be immediately available
when requested by the Softwareﬂ

As such, it may be useful to monitor the hugepage usage on your system. One approach is to use
getchar() to pause program execution after allocating the hugepage and monitoring the system-wide
hugepage usage.

To get more information about hugepages on a Linux system, you can use cat /proc/meminfo | grep
Huge. This will give you information about the size of hugepage configured on the system. Furthermore, if
any hugepages are currently allocated, they will be visible under AnonHugePages.

You can use the watch command to continuously monitor the output of a command. For example, the
following command will poll the output of the cat /proc/meminfo command above every 0.5 seconds and
highlight the changes (Ctrl-C to quit):

watch -d -n 0.5 "cat /proc/meminfo | grep Huge"

In addition, you can get a list of all your processes that are using hugepages with the following shell
command

grep -e AnonHugePages -s /proc/*/smaps | awk '{if ($2>0) print $03}'

The victim code uses one hugepage. You can use this to test the above commands. Run the commands
with and without the victim code in a separate terminal. You should see an increase in the number hugepages
used.

References

[1] Fangfei Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: 2015 IEEE Symposium on
Security and Privacy. 2015 IEEE Symposium on Security and Privacy (SP). San Jose, CA: IEEE, May
2015, pp. 605-622. 1SBN: 978-1-4673-6949-7. DOI: [10.1109/SP.2015.43. URL: https://ieeexplore.
ieee.org/document/7163050/| (visited on 09/18/2020).

[2] Clémentine Maurice et al. “C5: Cross-Cores Cache Covert Channel”. In: Detection of Intrusions and Mal-
ware, and Vulnerability Assessment. Ed. by Magnus Almgren, Vincenzo Gulisano, and Federico Maggi.
Vol. 9148. Series Title: Lecture Notes in Computer Science. Cham: Springer International Publishing,
2015, pp. 46-64. 1SBN: 978-3-319-20549-6 978-3-319-20550-2. DOI: [10.1007/978-3-319-20550-2_3|
URL: http://link.springer.com/10.1007/978-3-319-20550-2_3| (visited on 09/18/2020).

[3] Colin Percival. “CACHE MISSING FOR FUN AND PROFIT”. In: (), p. 13.

2madvise only advises the kernel to take action but does not guarantee that the kernel will follow the advice.

https://doi.org/10.1109/SP.2015.43
https://ieeexplore.ieee.org/document/7163050/
https://ieeexplore.ieee.org/document/7163050/
https://doi.org/10.1007/978-3-319-20550-2_3
http://link.springer.com/10.1007/978-3-319-20550-2_3

[4] Eran Tromer, Dag Arne Osvik, and Adi Shamir. “Efficient Cache Attacks on AES, and Counter-
measures”. In: Journal of Cryptology 23.1 (Jan. 2010), pp. 37-71. 1sSN: 0933-2790, 1432-1378. DOI:

10.1007/s00145-009-9049-y. URL: http://link. springer.com/10.1007/s00145-009-9049-y
(visited on 09/18/2020).

https://doi.org/10.1007/s00145-009-9049-y
http://link.springer.com/10.1007/s00145-009-9049-y

	Introduction
	Dead Drop: An Evil Chat Client
	Requirements
	Restrictions
	Getting Started
	Setting Up Your Environment
	Determine the Machine Architecture
	Timing a Memory Access
	Detecting a Cache Eviction Across Processes

	Common Pitfalls
	Optional: Dead Drop Extensions
	Acknowledgments

	Capture the Flag (CTF)
	Requirements
	Setting Up Your Environment
	Common Pitfalls

	Useful Functions
	Linux Hugepages

