
6.888 Secure Hardware Design

Mengjia Yan
Fall 2020

Today’s Agenda

• Introduce yourself

• Logistics

• Course Overview

6.888 - L1 Introduction 2

Introduce Yourself

Course Logistics

Basic Administrivia

• Instructor:
• Mengjia Yan <mengjia@csail.mit.edu>

• TA:
• Miles Dai <milesdai@mit.edu>

• Mailing List:
• 6888-fa20-staff@csail.mit.edu

• Website:
http://csg.csail.mit.edu/6.888Yan/
• Paper readings
• Syllabus
• Assignments

• Piazza:
• Announcements
• Discussions

• HotCRP: Submit paper reviews
• Canvas: Submit project proposals &

reports

6.888 - L1 Introduction 5

mailto:mengjia@csail.mit.edu
mailto:milesdai@mit.edu
mailto:6888-fa20-staff@csail.mit.edu
http://csg.csail.mit.edu/6.888Yan/

Course Website

6.888 - L1 Introduction 6

Pre-requisites and Recommendation

• Pre-requisite:
• Basic computation structure course (6.004)

• Recommended but not required
• System security and software security courses (6.858, 6.857)
• Advanced computer architecture course (6.823)
• Basic applied cryptography (6.875)

6.888 - L1 Logistics 7

Assignments and Grading

• Paper reviews (2 papers/week) - 25%
• 500 word summary + 1-2 discussion questions

• Seminars - 15%
• Discussion lead for 1-2 papers - 10%
• Participation - 5%

• Lab assignments - 15%
• Research project - 50%

• Proposal – 10%
• Weekly report + Checkpoint – 10%
• Final report – 15%
• Final presentation – 15%

6.888 - L1 Logistics 8

Seminar Format
• Every student will write a review for each paper

• 500 word summary, comments on pros and cons, and key takeaways
• 1-2 discussion questions
• Due @midnight before each class
• Submit via HotCRP (visible after the due time)

• Each paper will have one student as the lead presenter
• ~45 min presentation: A good opportunity to practice presentation skills
• Send slides to me 24 hours before the lecture
• Design a poll question
• I may invite the authors of the paper to attend the presentation (opportunities to ask

questions that only the authors can answer)

6.888 - L1 Logistics 9

Presentation Format

• Background and Motivation
• Threat Model
• Key technical ideas (insights), main contributions
• Strengths/Weaknesses
• Directions for future work
• Several questions for discussion

6.888 - L1 Introduction 10

Lab Assignments (3.5 weeks)

• Team of 2 persons
1) Dead drop: Build a communication channel via hardware resource contention
2) Capture the flag: Steal a secret via hardware resource contention

• Opportunities to turn into final projects

6.888 - L1 Logistics 11

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Cache

#ways

#s
et

s

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Cache

#ways

#s
et

sSender Receiver

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Cache

#ways

#s
et

sSender Receiver

if (send “1”):
fill the cache

else:
idle

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Cache

#ways

#s
et

sSender Receiver

if (send “1”):
fill the cache

else:
idle

T = time(access cache)
if (T > Threshold):

receive “1”
else:

receive “0”

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Cache

#ways

#s
et

sSender Receiver

if (send “1”):
fill the cache

else:
idle

T = time(access cache)
if (T > Threshold):

receive “1”
else:

receive “0”

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Cache

#ways

#s
et

sSender Receiver

if (send “1”):
fill the cache

else:
idle

T = time(access cache)
if (T > Threshold):

receive “1”
else:

receive “0”

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Cache

#ways

#s
et

sSender Receiver

if (send “1”):
fill the cache

else:
idle

T = time(access cache)
if (T > Threshold):

receive “1”
else:

receive “0”

Dead Drop
• Communicate via hardware resource contention

6.888 - L1 Logistics 12

Cache

#ways

#s
et

sSender Receiver

if (send “1”):
fill the cache

else:
idle

T = time(access cache)
if (T > Threshold):

receive “1”
else:

receive “0”

Capture the Flag
• Steal secrets via hardware resource contention

6.888 - L1 Logistics 13

Cache

#ways

#s
et

sVictim Attacker

Capture the Flag
• Steal secrets via hardware resource contention

6.888 - L1 Logistics 13

Cache

#ways

#s
et

sVictim Attacker

secret in {0,….,127}

Fill a cache set whose
set index = secret

Capture the Flag
• Steal secrets via hardware resource contention

6.888 - L1 Logistics 13

Cache

#ways

#s
et

sVictim Attacker

secret in {0,….,127}

Fill a cache set whose
set index = secret

T = time(access cache set x)
if (T > Threshold):

secret = x
else:

check a different set

Final Project (8 weeks)

• Original research project
• Solo or 2 person groups
• Deliverables
• Proposal (schedule pre-proposal meetings with me)
• Weekly report (short and informal) + Checkpoint (5 min presentation)
• Final report + Final presentation

• Open-ended topics
• Must have some hardware security angle

6.888 - L1 Logistics 14

Hardware Security: The Evil and The Good

• Attack modern processors
• To thoroughly understand HW

vulnerabilities

6.888 - L1 Introduction 15

Hardware Security: The Evil and The Good

• Attack modern processors
• To thoroughly understand HW

vulnerabilities

• Secure computation on HW
• e.g., data oblivious abstraction, enclave

abstraction

6.888 - L1 Introduction 15

Course Project Examples

{Attacks, Defenses} x {Theory, Practice}

• Attack + Practice
• Discover an exploit in existing processors or existing applications

• Attack + Theory
• What architectural principles fundamentally leak what degree of privacy

• Defense + Practice
• Mitigate an existing threat using SW/HW

• Defense + Theory
• Mitigate broad classes of present+future threats

6.888 - L1 Introduction 16

Collaboration Policy and Warning

• Discussions are always encouraged.
• You should carefully acknowledge all contributions of ideas by others,

whether from classmates or from sources you have read.
• MIT academic integrity guidelines

6.888 - L1 Introduction 17

http://web.mit.edu/academicintegrity/index.html

Warning

• Please don’t attack other people’s computers or information without
their prior permission.
• MIT network rules

6.888 - L1 Introduction 18

https://ist.mit.edu/network/rules

TODO Today

• Check the paper list on
http://csg.csail.mit.edu/6.888Yan/schedule.html

• Fill the google form https://forms.gle/G6gh6sEYJ4UY24ePA
• your background/interests (e.g., microarchitecture, theoretical crypto, system

security)
• Top 5 papers that you would like to present

6.888 - L1 Logistics 19

http://csg.csail.mit.edu/6.888Yan/schedule.html
https://forms.gle/G6gh6sEYJ4UY24ePA

Course Overview

Why Hardware Security?

6.888 - L1 Introduction 21

User application

Host operating
system/Hypervisor

Hardware

Computing Systems

Why Hardware Security?

6.888 - L1 Introduction 21

User application

Host operating
system/Hypervisor

Hardware

Computing Systems

Trusted Computing Base
(TCB)

Why Hardware Security?
• What is the interface

between SW and HW?

6.888 - L1 Introduction 21

User application

Host operating
system/Hypervisor

Hardware

Computing Systems

Trusted Computing Base
(TCB)

Why Hardware Security TODAY?

6.888 - L1 Introduction 22

User application

Host operating
system/Hypervisor

Hardware

Computing Systems

E.g, after Spectre
and Meltdown

Why Hardware Security TODAY?

6.888 - L1 Introduction 22

User application

Host operating
system/Hypervisor

Hardware

Computing Systems

E.g, after Spectre
and Meltdown

Open the Pandora’s box

Why Hardware Security TODAY?

6.888 - L1 Introduction 22

User application

Host operating
system/Hypervisor

Hardware

Computing Systems

E.g, after Spectre
and Meltdown

Insufficient
ISA

Open the Pandora’s box

Preview of Modules/Topics

• Introduction
1) Micro-architecture Side Channel
2) Enclaves
3) Opensource Hardware and Verification
4) Physical Side Channels
5) Memory Safety

6.888 - L1 Introduction 23

Introduction

• Commercial processor architectures that include security features:
• LPAR in IBM mainframes (1970s)
• IBM 4758 (2000s)
• ARM TrustZone (2000s)
• Intel TXT & TPM module (2000s)
• Intel SGX (mid 2010s)
• AMD SEV (late 2010s)

6.888 - L1 Introduction 24

Micro-architecture Side Channels

6.888 - L1 Introduction 25

A Channel
(a micro-architecture structure)Victim

Attacker

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Micro-architecture Side Channels

6.888 - L1 Introduction 25

A Channel
(a micro-architecture structure)Victim

Attacker

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Access cache set [secret]

Micro-architecture Side Channels

6.888 - L1 Introduction 25

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Access cache set [secret]

Micro-architecture Side Channels

6.888 - L1 Introduction 25

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Access cache set [secret]

Micro-architecture Side Channels

6.888 - L1 Introduction 25

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Access cache set [secret]

Micro-architecture Side Channels

6.888 - L1 Introduction 25

A Channel
(a micro-architecture structure)Victim

Attacker

{Transient, Non-transient} {Cache, DRAM, TLB, NoC, etc.}X

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Access cache set [secret]

Micro-architecture Side Channel

26

Spectre/
Meltdown

Micro-architecture Side Channel

26

Transient + Cache
e.g, Foreshadow

Spectre/
Meltdown

Transient + Any structure
e.g., RamBleed, RIDDLE

Micro-architecture Side Channel

26

Transient + Cache
e.g, Foreshadow

Spectre/
Meltdown

Micro-architecture Side Channels

Transient + Any structure
e.g., RamBleed, RIDDLE

Micro-architecture Side Channel

26

Transient + Cache
e.g, Foreshadow

Spectre/
Meltdown

Non-transient + Any structure

Micro-architecture Side Channels

6.888 - L1 Introduction 27

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Defenses:

Micro-architecture Side Channels

6.888 - L1 Introduction 27

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Block creation of signals:
Oblivious execution,

speculative execution defenses, etc.

Defenses:

Oblivious Programming

6.888 - L1 Introduction 28

secret in {0,….,127}

Access cache set [secret]

Victim

secret in {0,….,127}

For I from 0 to 127:
access cache set [i]

Micro-architecture Side Channels

6.888 - L1 Introduction 29

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Block creation of signals:
Oblivious execution,

speculative execution defenses, etc.

Defenses:

Micro-architecture Side Channels

6.888 - L1 Introduction 29

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Block creation of signals:
Oblivious execution,

speculative execution defenses, etc.

Close the channel:
Isolation, etc.

Defenses:

Micro-architecture Side Channels

6.888 - L1 Introduction 29

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

[*] Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

Block creation of signals:
Oblivious execution,

speculative execution defenses, etc.

Close the channel:
Isolation, etc.

Block detection of signals:
Randomization, etc.

Defenses:

Enclaves

Process Isolation

6.888 - L1 Introduction 30

App1

OS

Memory

App2 …

Enclaves

Process Isolation

6.888 - L1 Introduction 30

App1

OS

Memory

App2 …
Enclave2

Enclave Isolation

App1

OS

Memory

App2 …
Enclave1

Enclaves

• Side-channel vulnerabilities in
an enclave setup?

6.888 - L1 Introduction 31

Enclave2
App1

OS

Hardware

App2 …
Enclave1

Enclaves

• Side-channel vulnerabilities in
an enclave setup?

• Defend against privileged
attackers?

6.888 - L1 Introduction 31

Enclave2
App1

OS

Hardware

App2 …
Enclave1

Enclaves

• Side-channel vulnerabilities in
an enclave setup?

• Defend against privileged
attackers?

• How to write efficient enclave
applications?

6.888 - L1 Introduction 31

Enclave2
App1

OS

Hardware

App2 …
Enclave1

Opensource Hardware and Verification

• Modern hardware is a mess for security. What if you can design
everything from scratch?

6.888 - L1 Introduction 32

Enclave2
App1

OS

Hardware

App2 …
Enclave1

Opensource Hardware and Verification

• Modern hardware is a mess for security. What if you can design
everything from scratch?

6.888 - L1 Introduction 32

Enclave2
App1

OS

Hardware

App2 …
Enclave1

Opensource Hardware and Verification

• Modern hardware is a mess for security. What if you can design
everything from scratch?

6.888 - L1 Introduction 32

Enclave2
App1

OS

Hardware

App2 …
Enclave1

• Many design choices:
• HW v.s. SW implementations?
• New abstraction of HW?

Opensource Hardware and Verification

• Modern hardware is a mess for security. What if you can design
everything from scratch?

6.888 - L1 Introduction 32

Enclave2
App1

OS

Hardware

App2 …
Enclave1

• Many design choices:
• HW v.s. SW implementations?
• New abstraction of HW?

• How to verify the security of HW
or multiple layers of a system

Physical Attacks

6.888 - L1 Introduction 33

EM side channels to
steal bitcoin signing keys

Physical Attacks

• Modern physical side channels can be done remotely

6.888 - L1 Introduction 34

Physical Attacks

• Modern physical side channels can be done remotely

6.888 - L1 Introduction 34

Physical Attacks

• Modern physical side channels can be done remotely

6.888 - L1 Introduction 34

Memory Safety

• Classical memory safety issues
• E.g., buffer overflow

6.888 - L1 Introduction 35

Memory Safety

• Classical memory safety issues
• E.g., buffer overflow

• HW: accelerators for security checks

6.888 - L1 Introduction 35

Memory Safety

• Classical memory safety issues
• E.g., buffer overflow

• HW: accelerators for security checks

• A more interesting question: what is a
good abstraction?

6.888 - L1 Introduction 35

Software

Hardware

Next:
Secure Processors in Industry

