Secure Processors in Industry

Mengjia Yan Fall 2020

Based on slides from Christopher W. Fletcher and Jakub Szefer

Reminder

- Fill the google form
 - https://forms.gle/G6gh6sEYJ4UY24ePA
- First review will be due @ 09/27 (2.5 weeks from now)

Recommended Reading

- Intel SGX Explained; Victor Costan, Srini Devadas
 - Great refresh on computer architecture
 - Background on cryptographic
 - Basic SGX programing model and architecture support (next lecture)

Outline

- IBM secure coprocessor 3848 and follow-ons
- Trusted Platform Module (TPM)
- Intel TXT, AMD
- Arm TrustZone
- Intel SGX
- AMD SEV

Threat model

Trusted Computing Base (TCB)

Physical Attacks

Computing Model

Hardware Adversary

- Pre-fab adversary (HW trojans)
- Physical attacks
 - Generally require physical access
 - Classified according to cost
 - A cold boot attack example

Advanced Hardware Hacking Techniques; Joe Grand; DEFCON'12

A Cold Boot Attack Example

Frozen RAM retains contents for a short period

https://www.youtube.com/watch?v=vWHDqBV9yGc

Gutmann et al. "Data Remanence in Semiconductor Devices"

6.888 L2 - Secure Processors in Industry

More Physical Attack Examples

Tap board used to intercept data transfer over Xbox's HyperTransport bus from *http://www.xenatera.com/bunnie/proj/anatak/xboxmod.html*

IC analysis. Extract information from a Flash ROM storage cell from http://testequipmentcanada.com/VoltageContrastPaper.html

Physical Tamper Resistance

Tampering Detection

- Standalone security modules to protect cryptographic keys and personal identification numbers (PINs)
- A history lesson of physical security by IBM 4758

IBM 4758 Secure Co-Processor

- Memory remanence
 - constant movement of values from place to place
- Cold boot
 - detects changes of temperature
- X-ray
 - a radiation sensor
- Power side channels
 - Solid aluminium shielding and a lowpass filter (a Faraday cage)

Photo of IBM 4758 Cryptographic Coprocessor (courtesy of Steve Weingart) from https://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html

Expensive. Other secure processors only focus on a limited set of physical attacks.

IBM 4758 and Follow-ons

From Dyer et al. "Building the IBM 4758 Secure Coprocessor"

- The first FIPS 140-1 Level 4 validation, arguably the only general-purpose computational platform validated at this level by 2001
- A multipurpose programmable device
- Secure Boot and SW attacks (discussed later)

Bond et al. "API-Level Attacks on Embedded Systems."

Trusted Platform Module (TPM)

- "Commoditized IBM 4758"
- Standard LPC interface attaches to commodity motherboards
- Weaker computation capability
- Uses:
 - Verify platform integrity (firmware+OS)
 - Disk encryption and password protection

Software Attacks

Software Stack

Intel's Privilege Level

	Less Privilege			Ring 3		
User application		Ring 3	Application Enclave application			4 App
Host operating system/Hypervisor		Ring 2		Ring 0		
		Ring 1			Guest OS	Guest OS
		Ring 0	OS kernel	Ring -1	Hypervisor (VMM)	
Hardware		SMM	BIOS/firmware	Ring -2	SMM (firmware)	

More Privilege

SMM: system management mode

Process Isolation When Sharing Hardware

• Share HW resources in SMT contexts, same processor chips, across sockets.

Virtual Address Abstraction

Benefits of virtual memory abstraction:

- Over-commit memory: the illusion that they own all resources
- Security: process isolation
- Programmability: software independent of DRAM size

Page Table

- Page table:
 - A data structure to store address translation entries
 - Multi-level trees
- Page table entry attributes:
 - Writable (W), Executable (X), Supervisor (S), etc.
 - E.g., data execution prevention (DEP)
- MMU (memory management unit)
 - A hardware unit performs address translation
- TLB:
 - Caches for page tables

Trusted computing base (TCB)

- Trusted computing base (TCB)
 - TCB is trusted to be correctly implemented
 - Vulnerabilities or attacks on TCB nullify TEE protections
 - TCB may not be trustworthy
- Attacks, e.g., Rootkit, may change the integrity of TCB
- How to verify platform (HW + low-level SW) integrity

Platform Initialization (Booting)

Also manage booting. Processor Chip (socket) Processor Chip (socket) ME core core core core L1/L2 L1/L2 L1/L2L1/L2 • • • ... (management engine) LLC LLC System Bus (logically) Non-volatile other I/O Devices Memory (DRAM) storage device

For remote system management.

Cryptographic Hashing (e.g., SHA 1-3)

Use as fingerprints

- One-way hash
 - Practically infeasible to invert, Difficult to find collision
- Avalanche effect
 - "Bob Smith got an A+ in ELE386 in Spring 2005"→01eace851b72386c46
 - "Bob Smith got an B+ in ELE386 in Spring 2005"→936f8991c111f2cefaw

Secure Boot using TPM

• Static root of trust for measurement (SRTM)

- Report a measurement list to a remote verifier
- Problem: How can the verifier know the list is not faked?

Public Key Cryptography (e.g., RSA, EC)

- A pair of keys:
 - Private key (K_{pri} kept as secret); Public key (K_{pub} safe to release publicly)
- Encryption:
 - Encrypt(plaintext, K_{pub}) = ciphertext
 - Decrypt(ciphertext, K_{pri}) = plaintext
- Digital signatures:
 - Proof that msg comes from whoever owns private key corresponding to K_{pub}
 - Sign(msg):
 - h = Hash(msg); signature = Encrypt(h, K_{pri})
 - Return {signature, msg}
 - Verify:
 - Decrypt(signature, K_{pub}) ?= Hash(msg)

• Defend against replay attack: Freshness

How to know this key

Security Objectives Summary

- Privacy
 - Alice sends msg *m* to Bob. Only Bob should be able to read *m*. (asymmetric or symmetric encryption)
- Integrity
 - Alice sends msgs *m1* ... *mn* to Bob.
 - Authenticity: Bob receives msg p. Bob can verify p \in m1 ... mn. (Hash)
 - Freshness: Bob has received msgs *p1* ... *pn*. Bob can verify *pi = mi*. (Hash+nonce)
- Identity
 - Bob wants to know if Alice is really Alice.
- Availability
 - Does Bob ever see the n messages?

Protocols can be constructed using crypto primitives and infrastructures

Intel TXT

- Uses TPM for software attestation
- Dynamic root of trust for measurement (DRTM)
 - PCRs 17-22 are reset by the SINIT ACM, every time a TXT VM is launched
- Marketed as more secure, but there are various attacks targeting TXT

Open-source Choice: Google Titan

from https://www.hotchips.org/hc30/1conf/1.14_Google_Titan_GoogleFinalTitanHotChips2018.pdf

6.888 L2 - Secure Processors in Industry

Security Vulnerabilities of Using TPM

- Vulnerable to bus sniffing attacks
- TPM Reset attacks
 - SW reports hash values
- Bugs in the trusted software

Han et al. A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping. Usenix Security'18 Wojtczuk et al. Attacking Intel TXT[®] via SINIT code execution hijacking. 2011

Shrink Trusted Computing Base (TCB)

Arm TrustZone

from Hua et al. vTZ: Virtualizing ARM TrustZone. Usenix'17

6.888 L2 - Secure Processors in Industry

Shrink Trusted Computing Base (TCB)

Next Lecture: Intel SGX

