Non-transient Side Channels

Mengjia Yan
Fall 2020

TH A
I I I I 6.888 L5-Non-transient Side Channels

CSAIL

Lab Assignment

* Handout on course website

e Each (regular) student will receive an email

* Solo or 2-person group
* Individual GitHub repo
* Info about accessing a server machine

e Listeners can send us an email if you want to try the lab

e Advice:

e Start early. The first step is not to implement the attack, but to reverse
engineer the machine.

6.888 L5-Non-transient Side Channels

I Recap: Prime+Probe

Sender

ways

. Sender line

Receiver line

Time

Shared Cache

Prime

6.888 L5-Non-transient Side Channels

Vv

I Recap: Prime+Probe

ways

. Sender line
. Receiver line

Access

Time

Prime

Wait

Shared Cache

6.888 L5-Non-transient Side Channels

Vv

I Recap: Prime+Probe

. Sender line
. Receiver line

ways

Access :
Cache Set Time

Vv

Prime Wait

Shared Cache

6.888 L5-Non-transient Side Channels

Recap: Prime+Probe

. Sender line
. Receiver line

ways

Access :
Cache Set Time

Vv

Prime Wait

Shared Cache

6.888 L5-Non-transient Side Channels

I Recap: Prime+Probe

Cache Set

. Sender line
. Receiver line

Access

Time

Vv

Prime

Wait

Probe

Shared Cache

Receive “1” = 8 accesses =2 1 miss

6.888 L5-Non-transient Side Channels

I Analogy: Bucket/Ball

Sender Receiver

ways

Sender’s address Receiver’s address

Cache Set —

Shared Cache r\

Each cache set is a bucket
that can hold 8 balls

6.888 L5-Non-transient Side Channels 6

I Analogy: Bucket/Ball

How many cache lines in total in the system?

Sender’s address \M\Address

Sender Receiver

ways

Cache Set —

Shared Cache r\

Each cache set is a bucket
that can hold 8 balls

6.888 L5-Non-transient Side Channels 6

I Analogy: Bucket/Ball

How many cache lines in total in the system?
How to find the bucket used by the sender?

Sender’s address \M\Address

Sender Receiver

ways

Cache Set —

Shared Cache r\

Each cache set is a bucket
that can hold 8 balls

6.888 L5-Non-transient Side Channels 6

Practical Cache Side Channels

I I 6.888 L5-Non-transient Side Channels

CYAIL

I Cache Mapping — Directly Mapped Cache

e Can think cache mapping as a hash table with limited size

31 0 index Tag Data (64 bytes)
Physical 32bit 0
Address: 1
2
3
4
5
6
7

6.888 L5-Non-transient Side Channels 8

I Cache Mapping — Directly Mapped Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic

31 0 index Tag Data (64 bytes)
Physical 32bit 0
Address: 1
2
3
4
5
6
7

6.888 L5-Non-transient Side Channels 8

I Cache Mapping — Directly Mapped Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic

31 0 index Tag Data (64 bytes)

Physical 32bit 0
Address: 1
2

3

Set Index = (Addr / Block Size) % Number of Sets 4

5

6

7

6.888 L5-Non-transient Side Channels 8

Cache Mapping — Directly Mapped Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic Assuming byte-addressable

31 9 8 6 5 0 index Tag Data (64 bytes)
Physical Tag Set Index Line offset 0
Address: (high order bits) (3 bits) (6 bits) 1
2
3
4
5
6
7

6.888 L5-Non-transient Side Channels 9

Cache Mapping — Directly Mapped Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic Assuming byte-addressable

31 9 8 6 5 0 index Tag Data (64 bytes)

Physical Tag Set Index Line offset 0
Address: (high order bits) (3 bits) (6 bits) 1
2

3

4

5

Question: Given an 1MB L2 with 1024 sets, how 6

many bits are used for set index? 7

6.888 L5-Non-transient Side Channels 9

Cache Mapping — Directly Mapped Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic Assuming byte-addressable

31 9 8 6 5 0 index Tag Data (64 bytes)
Physical Tag Set Index Line offset 0
Address: (high order bits) (3 bits) (6 bits) 1
2
Number of bits for set index = 3
log,(Number of sets) 4
5
Question: Given an 1MB L2 with 1024 sets, how 6
many bits are used for set index? 7

6.888 L5-Non-transient Side Channels 9

Cache Mapping — Directly Mapped Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic Assuming byte-addressable

31 9 8 6 5 0 index Tag Data (64 bytes)
Physical Tag Set Index Line offset 0
Address: (high order bits) (3 bits) (6 bits) 1
2
To distinguish addresses Number of bits for set index = 3
in the same set log,(Number of sets) 4
5
Question: Given an 1MB L2 with 1024 sets, how 6
many bits are used for set index? 7

6.888 L5-Non-transient Side Channels 9

Cache Mapping — Directly Mapped Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic Assuming byte-addressable

31 9 8 6 5 0 index Tag Data (64 bytes)
Physical Tag Set Index Line offset 0
Address: (high order bits) (3 bits) (6 bits) 1
2
To distinguish addresses Number of bits for set index = 3
in the same set log,(Number of sets) 4
5
Question: Given an 1MB L2 with 1024 sets, how 6
many bits are used for set index? 7

6.888 L5-Non-transient Side Channels 9

Cache Mapping — Set Associative Cache

e Can think cache mapping as a hash table with limited size

* Linear cache set mapping using modular arithmetic 2-way cache

index Tag Data Tag Data

31 9 8 6 5 0
Physical Tag Index Line offset 0
Address: (high order bits) (3 bits) (6 bits) 1
2
3
4
5
6
7

6.888 L5-Non-transient Side Channels 10

Cache Mapping — Set Associative Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic

2-way cache
31 9 8 6 5 0 index Tag Data Tag Data
Physical Tag Index Line offset 0
Address: (high order bits) (3 bits) (6 bits) 1
2
3
4
5
Question: How to decide which way to use? :

6.888 L5-Non-transient Side Channels 10

Cache Mapping — Set Associative Cache

e Can think cache mapping as a hash table with limited size

* Linear cache set mapping using modular arithmetic

Physical
Address:

31

6

5

0

Tag
(high order bits)

Index
(3 bits)

Line offset
(6 bits)

Question: How to decide which way to use?

Answer: Cache replacement policy.

6.888 L5-Non-transient Side Channels

index Tag

0

N o o B WN

2-way cache

Data Tag Data

10

Cache Mapping — Set Associative Cache

e Can think cache mapping as a hash table with limited size
* Linear cache set mapping using modular arithmetic

2-way cache

31 9 3 6 5 0 index Tag Data Tag Data
Physical Tag Set Index Line offset 0
Address: (high order bits) (3 bits) (6 bits) 1
2
Find eviction set 3
== 4
Find addresses with the same set index bits 5
. . . 6
Question: How to decide which way to use? ;

Answer: Cache replacement policy.
6.888 L5-Non-transient Side Channels 10

Address Translation (4KB page)

48 12 11
Programmer’s view Page offset
Virtual Address (48bit): Virtual page number (12 bits)
31 12 11
system’s view hysical page number Page offset
Physical Address (32bit): Py page nu (12 bits)

6.888 L5-Non-transient Side Channels

Address Translation (4KB page)

48 12 11 0
Programmer’s view Page offset
Virtual Address (48bit): Virtual page number (12 bits)
Copy
page offset
31 12 11 0
system’s view vsical umber Page offset
Physical Address (32bit): physical page numbe (12 bits)

6.888 L5-Non-transient Side Channels

11

Address Translation (4KB page)

48 12 11 0
Programmer’s view Page offset
Virtual Address (48bit): Virtual page number (12 bits)
1\ J
Page
Table Copy
page offset
31 ! 12 11 0
system’s view vsical umber Page offset
Physical Address (32bit): physical page numbe (12 bits)

6.888 L5-Non-transient Side Channels

Find Eviction Set Using Virtual Addresses

48

12

111

Virtual Address (48bit):

Virtual page number

Page offset

Physical Address (32bit):
4KB page

31 12

11

physical page number

Page offset
(12 bits)

6.888 L5-Non-transient Side Channels

12

Find Eviction Set Using Virtual Addresses

48 12 111 0

Virtual Address (48bit): Virtual page number Page offset

31 12 ,11 0

Physical Address (32bit): . i Page offset
4KB page physical page numbe (12 bits)

Cache mapping:
(8 sets)

6.888 L5-Non-transient Side Channels

Find Eviction Set Using Virtual Addresses

48 12 111 0
Virtual Address (48bit): Virtual page number Page offset
I
31 12 ;11 0
Physical Address (32bit): | Pase offeer
4KB page physical page number (12 bits)
Cache mapping: Line offset
(8 sets) (6 bits)

6.888 L5-Non-transient Side Channels

12

Find Eviction Set Using Virtual Addresses

48 12 111 0

Virtual Address (48bit): Virtual page number Page offset

31 12

Physical Address (32bit): | Pase offeer
4KB page physical page number (12 bits)
Cache mapping: Index | Line offset
(8 sets) (3 bits) (6 bits)

6.888 L5-Non-transient Side Channels

Find Eviction Set Using Virtual Addresses

48 12 111 0
Virtual Address (48bit): Virtual page number Page offset
:
31 12 111 0
Physical Address (32bit): | page offset
4KB page physical page number (12 bits)
Cache mapping: Tag Index | Line offset
(8 sets) (3 bits) (6 bits)

6.888 L5-Non-transient Side Channels

12

Find Eviction Set Using Virtual Addresses

48 12 111 0)
Virtual Address (48bit): Virtual page number Page offset
:
31 12 11 0
Physical Address (32bit): | page offset
4KB page physical page number (12 bits)
Cache mapping: Tag : Index | Line offset
(8 sets) ! (3 bits) (6 bits)
Cache mapping: i
(256 sets) ;
I

6.888 L5-Non-transient Side Channels

12

Find Eviction Set Using Virtual Addresses

48 12 111 0

Virtual Address (48bit): Virtual page number Page offset

31 12

Physical Address (32bit): | Ve ifa
4KB page physical page number (12 bits)
Cache mapping: Tag : Index | Line offset
(8 sets) ! (3 bits) (6 bits)
Cache mapping: Tag : Set Index Line offset
(256 sets) ! (8 bits) (6 bits)

6.888 L5-Non-transient Side Channels

Find Eviction Set Using Virtual Addresses

48 12 111 0
Virtual Address (48bit): Virtual page number Page offset
:
31 12 111 0
Physical Address (32bit): | page offset
4KB page physical page number (12 bits)
Cache mapping: Tag : Index | Line offset
(8 sets) ! (3 bits) (6 bits)

Cache mapping: Tag 2 | Set Index Line offset

(256 sets) / bit | (8 bits) (6 bits)

Not controllable via
virtual address.

6.888 L5-Non-transient Side Channels

I Huge Pages

* Huge page size: 2MB or 1GB
* Number of bits for page offset?

6.888 L5-Non-transient Side Channels

13

Huge Pages

* Huge page size: 2MB or 1GB
* Number of bits for page offset?

Virtual Address :
4KB page

Virtual Address :
2MB page

48 12

11

Virtual page number

Page offset
(12 bits)

48 21 20

Virtual page number

Page offset
(21 bits)

6.888 L5-Non-transient Side Channels

13

Huge Pages

* Huge page size: 2MB or 1GB
* Number of bits for page offset?

Virtual Address :
4KB page

Virtual Address :
2MB page

Cache mapping:

(256 sets)

48 12 11 0
| Page offset
Virtual page number (12 bits)
a8 21 20 0
. Page offset
Virtual page number (21 bits)
Tag Set Index Line offset
(8 bits) (6 bits)

6.888 L5-Non-transient Side Channels

13

I Multi-level Caches

6.888 L5-Non-transient Side Channels

core core
I-L1 || D-L1 | | I-L1 || D-L1
L2 L2
LLC

I Multi-level Caches

* Motivation:

* A memory cannot be large and fast. Add level of
cache to reduce miss penalty

6.888 L5-Non-transient Side Channels

core

core

I-L1

D-L1

I-L1

D-L1

L2

L2

LLC

Multi-level Caches

* Motivation:

* A memory cannot be large and fast. Add level of
cache to reduce miss penalty

A typical configuration of Intel Ivy Bridge.
Configurations are different with processor types.

L1-1/D cache L2 cache L3 cache (LLC)
Size 32KB 256KB 1MB/core
Associativity 4ors 3 16
(# ways)
Latency 1.5 12 ~40
(cycles)

core

core

I-L1

D-L1

I-L1

D-L1

L2

L2

LLC

DRAM

16GB

N/A

~150

6.888 L5-Non-transient Side Channels

14

Multi-level Caches

* Motivation:

* A memory cannot be large and fast. Add level of
cache to reduce miss penalty

* LLC is generally divided into multiple slices

6.888 L5-Non-transient Side Channels

core core
I-L1 D-L1 I-L1 D-L1
L2 L2
LLC
PCle
System agent | Memory
display controller
I
Core 0 LLC slice 0
Core 1 LLC slice 1
Core 2 LLC slice 2
Core 3 | LLC slice 3

Graphics and video

15

Multi-level Caches

* Motivation:

* A memory cannot be large and fast. Add level of
cache to reduce miss penalty

* LLC is generally divided into multiple slices

Tag Line offset

6.888 L5-Non-transient Side Channels

core core
I-L1 D-L1 I-L1 D-L1
L2 L2
LLC
PCle
System agent | Memory
display controller
I
Core 0 LLC slice 0
Core 1 LLC slice 1
Core 2 LLC slice 2
Core 3 | LLC slice 3

Graphics and video

15

Multi-level Caches

* Motivation:
* A memory cannot be large and fast. Add level of
cache to reduce miss penalty

* LLC is generally divided into multiple slices

Tag Line offset

\ J

T An undocumented
Slice ID = Hash(bits secret hash function

6.888 L5-Non-transient Side Channels

core core
I-L1 D-L1 I-L1 D-L1
L2 L2
LLC
PCle
System agent | Memory
display controller
I
Core 0 LLC slice 0
Core 1 LLC slice 1
Core 2 LLC slice 2
Core 3 | LLC slice 3

Graphics and video

15

Multi-level Caches

* Motivation:

* A memory cannot be large and fast. Add level of
cache to reduce miss penalty

* LLC is generally divided into multiple slices

e Conflict happens if addresses map to the same
slice and the same set

Tag Line offset

\ J

T An undocumented
Slice ID = Hash(bits secret hash function

6.888 L5-Non-transient Side Channels

core core
I-L1 D-L1 I-L1 D-L1
L2 L2
LLC
PCle
System agent | Memory
display controller
I
Core 0 LLC slice 0
Core 1 LLC slice 1
Core 2 LLC slice 2
Core 3 | LLC slice 3

Graphics and video

15

Eviction Set Construction Algorithm

Sender

Shared Cache

Receiver line

. Sender line

Time

Access Candidate
Addresses

A\

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

6.888 L5-Non-transient Side Channels

16

Eviction Set Construction Algorithm

Sender line

. Receiver line

Receiver

Access Target
Address Time

v

Access Candidate
Addresses

Wait

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

6.888 L5-Non-transient Side Channels 17

Eviction Set Construction Algorithm

Sender line

Sender Receiver .

Receiver line

Access Target

Address Time
Access Candidate Wait Measure Latency of
Addresses Each Candidate Address

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

6.888 L5-Non-transient Side Channels 18

I Problems Due to Replacement Policy

* Self-eviction due to replacement policy
* An LRU (least recently used) example

Initial:

6.888 L5-Non-transient Side Channels

19

I Problems Due to Replacement Policy

* Self-eviction due to replacement policy
* An LRU (least recently used) example

Initial:

Prime:

6.888 L5-Non-transient Side Channels

19

I Problems Due to Replacement Policy

* Self-eviction due to replacement policy
* An LRU (least recently used) example

Initial:

i 1 2 3 4 5 6 7 8

Victim access: 9 2 3 45 6 7 8

6.888 L5-Non-transient Side Channels 19

I Problems Due to Replacement Policy

* Self-eviction due to replacement policy
* An LRU (least recently used) example

Initial:

i 1 2 3 4 5 6 7 8
9 2 3 45 6 7 8

Victim access:

Probe: 9 2 3 4 5 6 7 8

/ Which to evict?

6.888 L5-Non-transient Side Channels 19

Problems Due to Replacement Policy

* Self-eviction due to replacement policy
* An LRU (least recently used) example

Initial:

A small trick: Prime: 1 2 3 45 6 7 8

* Access addresses in reverse order

Victim access:

9 2 3 45 6 7 8

Probe: 9 2 3 45 6 7 8

/ Which to evict?

6.888 L5-Non-transient Side Channels 19

I Measure Latency of Multiple Accesses

e HW Prefetcher + Out-of-order execution

Tl = rdtsc()
Dummyl=Ld(Addrl)
Dummy8=Ld (Addr8)
T2 = rdtsc()
Latency = T2-T1

6.888 L5-Non-transient Side Channels

I Measure Latency of Multiple Accesses

e HW Prefetcher + Out-of-order execution

Tl = rdtsc()
Dummyl=Ld(Addrl)
Dummy8=Ld (Addr8)
T2 = rdtsc()
Latency = T2-T1

What we expect:

6.888 L5-Non-transient Side Channels

20

I Measure Latency of Multiple Accesses

e HW Prefetcher + Out-of-order execution

Tl = rdtsc()
Dummyl=Ld(Addrl)
Dummy8=Ld (Addr8)
T2 = rdtsc()
Latency = T2-T1

What we expect:

What actually will happen:

Ld Al
Ld A7

~

6.888 L5-Non-transient Side Channels

7

Time

20

I Out-of-Order Processor

Fetch

» Decode

» RegRead

\ 4

Execute

, Writeback
(Commit)

6.888 L5-Non-transient Side Channels

21

I Out-of-Order Processor

, Writeback
(Commit)

\ 4

Fetch » Decode [—| RegRead Execute

Check whether the register
to read is ready.

6.888 L5-Non-transient Side Channels

I Out-of-Order Processor

: Writeback
(Commit)

\ 4

\ 4

Fetch » Decode RegRead Execute

Check whether the register
to read is ready.

Ld Al
Ld A2

Ld A7
Ld A8

6.888 L5-Non-transient Side Channels

~
T

Time

I Out-of-Order Processor

: Writeback
(Commit)

\ 4

\ 4

\ 4

Fetch Decode RegRead Execute

Check whether the register
to read is ready.

Ld Al
Ld A2 . .
Question: How to serialize

data accesses?

Ld A7
Ld A8

Time
6.888 L5-Non-transient Side Channels 21

~
T

I Serialize Data Accesses

e As pec E | instruction “ m fe N Ce” https://www.felixcloutier.com/x86/mfence

6.888 L5-Non-transient Side Channels

22

I Serialize Data Accesses

o A SpECial instruction “mfence” https://www.felixcloutier.com/x86/mfence
* Add data dependency by creating a linked list

Dummyl = Ld(Addrl)

Addr2 = Ld(Addrl)

6.888 L5-Non-transient Side Channels 22

Serialize Data Accesses

* A special instruction “mfence”

https://www.felixcloutier.com/x86/mfence

* Add data dependency by creating a linked list

conteQ:

Pointer to the

nexzﬁode

\

dummy

v
Al —

—

dummy

A2—

dummy

A3 —

6.888 L5-Non-transient Side Channels

Dummyl = Ld(Addrl)

Addr2 = Ld(Addrl)

22

Serialize Data Accesses

o A SpECial instruction “mfence” https://www.felixcloutier.com/x86/mfence
* Add data dependency by creating a linked list

content Pointer to the Dummyl = Ld(Addrl)
é\ next/(ode
\ Y
dummy Al —r—> dummy A2—1—> dummy A3 ———=> Addr2 = Ld(Addrl)

* Double linked list to access addresses in reverse order

/\/\\ /\

Al ——> A1 A——> A2 A3 ——>

6.888 L5-Non-transient Side Channels 22

I Handle Noise

6.888 L5-Non-transient Side Channels

23

I Handle Noise

A real-world example: Square-and-Multiply Exponentiation

What you generally see in papers:

fori=n-1to 0 do
r = sqgr(r) mod n
if e, == 1 then
r = mul(r, b) mod n
end

end

6.888 L5-Non-transient Side Channels

23

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

The Multiply Function

471 mpi_limb_t
472 mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,

{

mpi_ptr_t vp, mpi_size_t vsize)

mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
mpi_limb_t cy;
karatsuba_ctx ctx;

1f(vsize < KARATSUBA_THRESHOLD) {
mpi_size_t 1i;
mpi_limb_t v_limb;

if('vsize)
return 0;

/* Multiply by the first 1imb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = vp[0];
ifC v_limb <= 1) {
ifC v_1limb == 1)
MPN_COPY(prodp, up, usize);
else
MPN_ZERO(prodp, usize);
cy = Y5
}
else
cy = mpihelp_mul_1(prodp, up, usize,

prodp[ulize] = Cy;
prodp++;

/* For each iteration in the outer loop, multiply one limb from
* U with one 1imb from V, and add it to PROD. */
for(i =1; 1 < vsize; i++) {
v_limb = vp[i];
if(v_limb <= 1)
Cy = 95
1fC v_limb == 1)
cy = mpihelp_add_n(prodp, prodp, up, usize);

else
cy = mpihelp_addmul_1(prodp, up, usize, v_limb);

prodp[usize] = cy;
prodp++;

return cy;

}

memset(&ctx, 0, sizeof ctx);

mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx);
mpihelp_release_karatsuba_ctx(&ctx);

return *prod_endp;

6.888 L5-Non-transient Side Channels

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

The Multiply Function

471 mpi_limb_t
472 mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,

{

mpi_ptr_t vp, mpi_size_t vsize)

mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
mpi_limb_t cy;
karatsuba_ctx ctx;

1f(vsize < KARATSUBA_THRESHOLD) {
mpi_size_t 1i;
mpi_limb_t v_limb;

if('vsize)
return 0;

/* Multiply by the first 1imb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = vp[0];
ifC v_limb <= 1) {
ifC v_1limb == 1)
MPN_COPY(prodp, up, usize);
else
MPN_ZERO(prodp, usize);
cy = Y5
}
else
cy = mpihelp_mul_1(prodp, up, usize,

prodp[ulize] = Cy;
prodp++;

/* For each iteration in the outer loop, multiply one limb from
* U with one 1imb from V., and add it to PROD. */
for(i =1; 1 < vsize; i++) {
v_limb = vp[i];
if(v_limb <= 1)
Cy = 95
1fC v_limb == 1)
cy = mpihelp_add_n(prodp, prodp, up, usize);

else
cy = mpihelp_addmul_1(prodp, up, usize, v_limb);

prodp[usize] = cy;
prodp++;

return cy;

}

memset(&ctx, 0, sizeof ctx);

mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx);
mpihelp_release_karatsuba_ctx(&ctx);

return *prod_endp;

6.888 L5-Non-transient Side Channels

Raw Trace

300
x mul
275 1 X
X X X X X N
~ 250 - % X X % X-x¢
RS N I I T R ;
%225— N K ¢ 5908 >§<>>(<x Xx X K X%
Ezoo— X X 2
= X X X
@ 175 A %X X s s X%
N B oMk e e SSSRRRK
bit"O”| bit"1" |
125 1
]_00 T T T T T T T
2400 2450 2500 2550 2600 2650 2700 2750 2800
Sample ID

Access latencies measured in the probe operation in Prime+Probe.
A sequence of “01010111011001” can be deduced as part of the exponent.

6.888 L5-Non-transient Side Channels

I There may exist other problems

* Tips for lab assignment
* Build the attack step-by-step
« Recommend to read “Last-Level Cache Side-Channel Attacks are Practical”
* Ask questions via Piazza

6.888 L5-Non-transient Side Channels

26

Defenses

I I 6.888 L5-Non-transient Side Channels

cEalL

Micro-architecture Side Channels

O

() A Channel éj

Victim (a micro-architecture structure)
Attacker

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

secret-dependent
execution

% A Channel éj

Victim (a micro-architecture structure)
Attacker

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

secret-dependent
execution

O
) A Channel

Victim (a micro-architecture structure)

S

Attacker

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

secret-dependent
execution

% A Channel Q GS

Victim (a micro-architecture structure)
Attacker

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

secret-dependent
execution

% A Channel Q 55

Victim (a micro-architecture structure)
Attacker

/\

{Transient, Non-transient} X {Cache, DRAM, TLB, NoC, etc.}

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

secret-dependent

O execution
i % A Channel @S
Victim (a micro-architecture structure)

Attacker
Defenses:

Block creation of signals:
Oblivious execution,
speculative execution defenses, etc.

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 29

Micro-architecture Side Channels

secret-dependent
execution

Victim § (a micro- Zstructure) Q 85
Attacker

Defenses:

Block creation of signals:
Oblivious execution,
speculative execution defenses, etc.

Close the channel:
Isolation, etc.

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 29

Micro-architecture Side Channels

secret-dependent
execution

Victim § (a micro- Z'structure) E

Attacker
Defenses: \
BIc())ckI:l-cr-eatmn of S|gnals: Close the channel: Block detection of signals:
ZDIVIOUS gxecutlon, Isolation, etc. Randomization, etc.
speculative execution defenses, etc.

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 29

I Defense Designh Considerations

Security Performance

Portability

6.888 L5-Non-transient Side Channels

30

I The Problem: The ISA Abstraction

e Interface between HW and SW: ISA

* Advantage: HW optimizations without affecting
usability/portability

Software
(branch, arithmetic
instruction, load/store)

ISA
(instruction set

architecture) Hardware

(caches, DRAM, TLBs, etc.)

6.888 L5-Non-transient Side Channels 31

DEC — Decrement by 1

Opcode Instruction Op/En 64-Bit Mode @ Compat/Leg Mode Description

FE /1 DEC r/m8 M Valid Valid Decrement r/m8 by 1.
REX + FE /1 DEC r/m8 M Valid N.E. Decrement r/m8 by 1.
FF /1 DECr/ml6 M Valid Valid Decrement r/m16 by 1.
FF /1 DECrim32 M Valid Valid Decrement r/m32 by 1.
REX.W+FF/1 DECrim64 M Valid N.E. Decrement r/m64 by 1.
48+rw DECri6 (0] N.E. Valid Decrement r16 by 1.
48+rd DEC r32 o N.E. Valid Decrement r32 by 1.

* In64-bitmode r/m8cannotbeencodedtoaccessthefollowingbyteregistersifaREXprefixisused: AH,BH,CH,DH.

Instruction Operand Encoding

Op/En = Operand 1 Operand2 = Operand 3 =~ Operand 4

M ModRM:r/m (r,w) NA NA NA

(0) opcode +rd (r, w) = NA NA NA
Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destination operand can be a register or a
memory location. This instruction allows a loop counter to be updated without disturbing the CF flag. (To perform a decrement
operation that updates the CF flag, use a SUB instruction with an immediate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H through 4FH are REX prefixes). Otherwise, the
instruction’s 64-bit mode default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-
R15). Use of the REX.W prefix promotes operation to 64 bits.

See the summary chart at the beginning of this section for encoding data and limits.

Operation From https://www.felixcloutier.com/x86/index.html|

DEST « DEST — 1;

I The Problem: The ISA Abstraction

e Interface between HW and SW: ISA

* |SA specifies functionality, not performance/timing Software
. (branch, arithmetic
* Compare Intel lvy Bridge and Cascade Processor instruction, load/store)
ISA

(instruction set

architecture)
Example: Hardware
(caches, DRAM, TLBs, etc.)

DEC [addr]

6.888 L5-Non-transient Side Channels 33

I Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

6.888 L5-Non-transient Side Channels 34

Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior
Original:

if (secret)

a = *(addrl);
else

a = *(addr2);

secret = confidential
addrl = public
addr2 = public

6.888 L5-Non-transient Side Channels 34

Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original: Data Oblivious:
if (secret) a €& load (addrl);
a = *(addr1l); b & load (addr2);
else cmov a = (secret) ? a : b;

a = *(addr2);

secret = confidential
addrl = public
addr2 = public

6.888 L5-Non-transient Side Channels 34

Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original: Data Oblivious:
| secret
if (secret) a & load (addrl);
a = *(addrl); b < load (addr2); [a < load addr1] [b < load addr2]

else cmov a = (secret) ? a : b;
a = *(addr2); \/

=L cmov secret, b, a]

secret = confidential
addrl = public
addr2 = public

6.888 L5-Non-transient Side Channels 34

Programming in Circuit Abstraction

* Program = DAG (“circuit”)
Node/Gate

 Operations = nodes (“gates”)

Data transfers = edges (“wires” Edge/Wire

Topology must be confidential data-independent

Each gate’s execution must hide its inputs

Each wire must hide the value it carries

6.888 L5-Non-transient Side Channels 35

I What assumptions underpin the model?

secret addr1 addr2

if (secret) l l

a = *(addrl);
else L a < load addrl } L b < load addr2 }

a = *(addr2);

a b

secret = confidential v
addrl = public

addr2 = public =Lcmov secret, b, a J

36

What assumptions underpin the model?

secret ,44r1 addr2
if (secret)
a = *(addrl);

else
a = *(addr2);

secret = confidential
addrl = public
addr2 = public

* Rule 1: instruction/gate execution = confidential data-independent

36

What assumptions underpin the model?

‘secret | ,4qr1 addr2

if (secret) l l
a = *(addrl);
else { a & load addrl } L b ¢ load addr2 }

secret = confidential
addrl = public (
addr2 = public :LcmOV secret, b, a

* Rule 1: instruction/gate execution = confidential data-independent

* Rule 2: data transfer/wire = confidential data-independent
36

ttttt
" >

I What assumptions underpin the model?

i secret L4dr1 addr2
if (secret) l l
a = *(addrl); ;
else L a < load addr1 } L b < load addr2 }

a = *(addr2);
a b
secret = confidential

addrl = public :
addr2 = public =Lcmov secret, b, a

. o
.o .
.....

* Rule 1: instruction/gate execution = confidential data-independent

* Rule 2: data transfer/wire = confidential data-independent
36

* Rule 3: circuit/program topology = fixed

Today’s machines can violate these assumptions

secret _44r1 addr2
Violations due to: l --- J -----------------------

-
-
-
-
-
-
-

Data-dependent instruction | { a < load addrl b <~ load addr2 }
optimizations

(e.g., zero-skip, early exit,
microcode, silent stores, ...) (

pRe
-
-
-
-

~ -
~ -
~ -
= -

* Rule 1: instruction/gate execution = confidential data-independent

37

Today’s machines can violate these assumptions

‘secret | ,4qr1 addr2
Violations due to: l l

{ a < load addrl } L b & Iog__gl addr2 }

Data at rest optimizations

(e.g., compression in
register file/uop fusion,

* Rule 2: data transfer/wire = confidential data-independent
38

.....
" e

I Today’s machines can violate these assumptlons

secret _44r1 addr2

Violations due to: { a & load addr1 } { b & load addr2 }

Speculative/OoO v
. d b
execution

=Lcmov secret, b, a J

. o
.o .
.....

* Rule 3: circuit/program topology = fixed

39

I HW Resource Partition

 Security v.s. Quality of Service (QoS)

Cache Allocation Technology (CAT) Example - 20 bit Mask
19 < Capacity Mask > 0
CLOS[0): Mask [1]2[1]1|o[o|o/0/0|o[0|0|0[0|0O|0O|O[0O[0O]|O]
CLOS[1]: Mask [0[0[0/of1][1[1]1]/0][o[o]o/o]/o]0]0]0|0]0]0]
CLOS[2]: Mask [0|0/0|0fo[o|o/ol1|af2]1]1]2]0/0/0[0[0]|0]
CLOS[3]: Mask [0[0]o|o|o[o[oofafaalafa]a]a a]2]2]2]1]

* Intel Cache Allocation Technology (CAT)

6.888 L5-Non-transient Side Channels 40

I HW Resource Partition

 Security v.s. Quality of Service (QoS)

Cache Allocation Technology (CAT) Example - 20 bit Mask

19 < Capacity Mask > 0
.. . .. CLOS[0): Mask [1]2[1]1|o[o|o/0/0|o[0|0|0[0|0O|0O|O[0O[0O]|O]
* Temporal Partition v.s. Spatial Partition cLos[1]: Mask [0[0]o[o[i]3[1]1l0[olo[olo[olo[ol0[olo]0]
cLOS[2]: Mask [0|0|0|o]o|o|ofofafa]1]1]a1]1]0]0l0|0[0]0]
CLOS[3]: Mask [0]|o|o]o]o[ofofofafafa]afalala]ala]2]2]1]

* Intel Cache Allocation Technology (CAT)

6.888 L5-Non-transient Side Channels 40

HW Resource Partition

 Security v.s. Quality of Service (QoS)

Cache Allocation Technology (CAT) Example - 20 bit Mask

19 < Capacity Mask > 0
.. . .. CLOS[0): Mask [1]2[1]1|o[o|o/0/0|o[0|0|0[0|0O|0O|O[0O[0O]|O]
* Temporal Partition v.s. Spatial Partition cLos[1]: Mask [0[0]o[o[i]3[1]1l0[olo[olo[olo[ol0[olo]0]
CLOS[2]: Mask [0[0[0/0]o[o[ofola]2]1]1]1]1]0]0l00]0]0]
CLOS[3]: Mask [0]|o|o]o]o[ofofofafafa]afalala]ala]2]2]1]

* Intel Cache Allocation Technology (CAT)

* Challenges nowadays:
e Security domain determination is tricky nowadays
 Scalability: what is #domains > #partitions
* How to partition inside cores?
* Why not execute applications on a single node?

6.888 L5-Non-transient Side Channels 40

I Randomization/Fuzzing

* Introduce noise to time measurement/Make time
measurement coarse-grained

* Pros and cons?

6.888 L5-Non-transient Side Channels

41

I Randomization/Fuzzing

* Introduce noise to time measurement/Make time
measurement coarse-grained

* Pros and cons? + Simple and no performance overhead
+ Effective towards a group of popular attacks
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

6.888 L5-Non-transient Side Channels 41

I Randomization/Fuzzing

* Introduce noise to time measurement/Make time
measurement coarse-grained

* Pros and cons? + Simple and no performance overhead
+ Effective towards a group of popular attacks

- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

 Randomize cache mapping functions
* Pros and cons?

6.888 L5-Non-transient Side Channels 41

I Randomization/Fuzzing

* Introduce noise to time measurement/Make time
measurement coarse-grained

* Pros and cons? + Simple and no performance overhead
+ Effective towards a group of popular attacks
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

 Randomize cache mapping functions

o ?
Pros and cons: + Generally low performance overhead (still allow cache to be shared)

- Difficult to reason about security
+/- Can reduce attack bandwidth, but unlikely to eliminate attacks

6.888 L5-Non-transient Side Channels 41

Next Lecture:
Transient Side Channels

C¥AlL

