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Lab Assignment

• Handout on course website
• Each (regular) student will receive an email
• Solo or 2-person group
• Individual GitHub repo
• Info about accessing a server machine

• Listeners can send us an email if you want to try the lab

• Advice:
• Start early. The first step is not to implement the attack, but to reverse 

engineer the machine.
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Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

# ways
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Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

# ways

Receive “1” = 8 accesses à 1 miss

Probe
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Analogy: Bucket/Ball

Shared Cache

Sender Receiver

Cache Set

# ways

Sender’s address Receiver’s address

Each cache set is a bucket 
that can hold 8 balls
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Analogy: Bucket/Ball

Shared Cache

Sender Receiver

Cache Set

# ways

Sender’s address Receiver’s address

Each cache set is a bucket 
that can hold 8 balls
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How many cache lines in total in the system?
How to find the bucket used by the sender?



Practical Cache Side Channels
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• Can think cache mapping as a hash table with limited size
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Cache Mapping – Directly Mapped Cache
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Cache Mapping – Set Associative Cache

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic 
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Cache Mapping – Set Associative Cache

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic 

0

1

2

3

4

5

6

7

Tag Data index Tag Data 

2-way cache

Physical 
Address:

31                                         9 8                6 5                     0

Tag
(high order bits)

Index
(3 bits)

Line offset 
(6 bits)

31                                         9 8                6 5                     0

Tag
(high order bits)

Set Index
(3 bits)

Line offset 
(6 bits)

Find eviction set 
== 

Find addresses with the same set index bits

Question: How to decide which way to use?
Answer: Cache replacement policy.

6.888 L5-Non-transient Side Channels 10



Address Translation (4KB page)

system’s view
Physical Address (32bit):

Programmer’s view
Virtual Address (48bit):

48                                                        12 11                                        0

Virtual page number Page offset
(12 bits)

31                                            12 11                                        0

physical page number Page offset
(12 bits)
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Address Translation (4KB page)

system’s view
Physical Address (32bit):

Programmer’s view
Virtual Address (48bit):
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Virtual page number Page offset
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Page 
Table
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Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):
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Virtual page number Page offset

Physical Address (32bit):
4KB page

31                                            12 11                                        0

physical page number Page offset
(12 bits)
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Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48                                                        12 11                                        0

Virtual page number Page offset

Physical Address (32bit):
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31                                            12 11                                        0

physical page number Page offset
(12 bits)

Cache mapping:
(8 sets)
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Find Eviction Set Using Virtual Addresses
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Physical Address (32bit):
4KB page

31                                            12 11                                        0

physical page number Page offset
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Index
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TagCache mapping:
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Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48                                                        12 11                                        0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31                                            12 11                                        0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Index
(3 bits)

TagCache mapping:
(8 sets)

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

2 
bit

Not controllable via 
virtual address.
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Huge Pages

• Huge page size: 2MB or 1GB
• Number of bits for page offset?
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Huge Pages

• Huge page size: 2MB or 1GB
• Number of bits for page offset?

Virtual Address :
4KB page

48                                                        12 11                                        0

Virtual page number Page offset
(12 bits)

48 21 20                                                                 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page
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Huge Pages

• Huge page size: 2MB or 1GB
• Number of bits for page offset?

Virtual Address :
4KB page

48                                                        12 11                                        0

Virtual page number Page offset
(12 bits)

48 21 20                                                                 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)
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Multi-level Caches core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1
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Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of 

cache to reduce miss penalty

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1
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Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of 

cache to reduce miss penalty

L1-I/D cache L2 cache L3 cache (LLC) DRAM

Size 32KB 256KB 1MB/core 16GB

Associativity
(# ways) 4 or 8 8 16 N/A

Latency
(cycles) 1-5 12 ~40 ~150

A typical configuration of Intel Ivy Bridge.
Configurations are different with processor types.

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1
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Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of 

cache to reduce miss penalty

• LLC is generally divided into multiple slices

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1
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L2
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L2

I-L1 D-L1

Tag Set Index Line offset 

Slice ID = Hash(bits)

An undocumented 
secret hash function
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Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of 

cache to reduce miss penalty

• LLC is generally divided into multiple slices
• Conflict happens if addresses map to the same 

slice and the same set

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

Tag Set Index Line offset 

Slice ID = Hash(bits)

An undocumented 
secret hash function
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Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate 
Addresses
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Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate 
Addresses Wait

Access Target 
Address
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Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate 
Addresses Wait

Access Target 
Address

Measure Latency of 
Each Candidate Address

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19
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Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

Initial:
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Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

6 75 82 31 4

6 75 82 31 49

6 75 82 31 49

Initial:

Prime:

Victim access:

Probe:

Which to evict?
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Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

• A small trick:
• Access addresses in reverse order

6 75 82 31 4

6 75 82 31 49

6 75 82 31 49

Initial:

Prime:

Victim access:

Probe:

Which to evict?
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Measure Latency of Multiple Accesses

• HW Prefetcher + Out-of-order execution

T1 = rdtsc()

Dummy1=Ld(Addr1)

……

Dummy8=Ld(Addr8)

T2 = rdtsc()

Latency = T2-T1
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Time
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Measure Latency of Multiple Accesses

• HW Prefetcher + Out-of-order execution

T1 = rdtsc()

Dummy1=Ld(Addr1)

……

Dummy8=Ld(Addr8)

T2 = rdtsc()

Latency = T2-T1

What we expect:

Ld A1 Ld A2 Ld A8Ld A7……

Time
What actually will happen:

Ld A1

Ld A2

Ld A8

Ld A7……

Time
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Out-of-Order Processor

Fetch Decode RegRead Execute Writeback
(Commit)
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Out-of-Order Processor

Fetch Decode RegRead Execute Writeback
(Commit)

Check whether the register 
to read is ready.
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Out-of-Order Processor

Ld A1

Ld A2

Ld A8

Ld A7……

Time

Fetch Decode RegRead Execute Writeback
(Commit)

Check whether the register 
to read is ready.
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Out-of-Order Processor

Ld A1

Ld A2

Ld A8

Ld A7……

Time

Fetch Decode RegRead Execute Writeback
(Commit)

Check whether the register 
to read is ready.

Question: How to serialize 
data accesses?
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Serialize Data Accesses
• A special instruction “mfence”
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Serialize Data Accesses
• A special instruction “mfence”
• Add data dependency by creating a linked list

Dummy1 = Ld(Addr1)

Addr2 = Ld(Addr1)
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Serialize Data Accesses
• A special instruction “mfence”
• Add data dependency by creating a linked list

dummy A1 dummy A2 dummy A3

content Pointer to the 
next node

……

Dummy1 = Ld(Addr1)

Addr2 = Ld(Addr1)
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Serialize Data Accesses
• A special instruction “mfence”
• Add data dependency by creating a linked list

• Double linked list to access addresses in reverse order

dummy A1 dummy A2 dummy A3

content Pointer to the 
next node

……

A1 A1 A2 A2 A3 ……

Dummy1 = Ld(Addr1)

Addr2 = Ld(Addr1)
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Handle Noise
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Handle Noise
• A real-world example: Square-and-Multiply Exponentiation

for i = n-1 to 0 do

r = sqr(r) mod n

if ei == 1 then

r = mul(r, b) mod n

end 

end

What you generally see in papers:

6.888 L5-Non-transient Side Channels 23



The Multiply Function
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The Multiply Function
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Raw Trace

Access latencies measured in the probe operation in Prime+Probe. 
A sequence of “01010111011001” can be deduced as part of the exponent.

6.888 L5-Non-transient Side Channels 25



There may exist other problems

• Tips for lab assignment
• Build the attack step-by-step
• Recommend to read “Last-Level Cache Side-Channel Attacks are Practical”
• Ask questions via Piazza
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Defenses
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Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

{Transient, Non-transient} {Cache, DRAM, TLB, NoC, etc.}X

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals: 
Oblivious execution,

speculative execution defenses, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals: 
Oblivious execution,

speculative execution defenses, etc.

Close the channel: 
Isolation, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals: 
Oblivious execution,

speculative execution defenses, etc.

Close the channel: 
Isolation, etc.

Block detection of signals: 
Randomization, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18
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Defense Design Considerations

Security Performance

Portability
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The Problem: The ISA Abstraction

• Interface between HW and SW: ISA
• Advantage: HW optimizations without affecting 

usability/portability

Hardware 
(caches, DRAM, TLBs, etc.)

Software
(branch, arithmetic 

instruction, load/store)
ISA

(instruction set 
architecture)
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The Problem: The ISA Abstraction

• Interface between HW and SW: ISA

• ISA specifies functionality, not performance/timing
• Compare Intel Ivy Bridge and Cascade Processor

Hardware 
(caches, DRAM, TLBs, etc.)

Software
(branch, arithmetic 

instruction, load/store)
ISA

(instruction set 
architecture)

Example:

DEC [addr]

6.888 L5-Non-transient Side Channels 33



Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior
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Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original:

if (secret)
a = *(addr1);

else
a = *(addr2);

secret = confidential
addr1 = public
addr2 = public
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Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original:

if (secret)
a = *(addr1);

else
a = *(addr2);
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Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original:

if (secret)
a = *(addr1);

else
a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

Data Oblivious:

a ← load (addr1);
b ← load (addr2);
cmov a = (secret) ? a : b;

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret
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Programming in Circuit Abstraction

• Program = DAG (“circuit”)
• Operations = nodes (“gates”)
• Data transfers = edges (“wires”)

• Topology must be confidential data-independent
• Each gate’s execution must hide its inputs
• Each wire must hide the value it carries

op1 op2

op3

op4

Node/Gate

Edge/Wire
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What assumptions underpin the model?

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret
if (secret)

a = *(addr1);
else

a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

addr1 addr2
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cmov secret, b, a

a b

secret
if (secret)

a = *(addr1);
else

a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

addr1 addr2

36



What assumptions underpin the model?

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent
• Rule 3: circuit/program topology = fixed

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret
if (secret)

a = *(addr1);
else

a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

addr1 addr2
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Today’s machines can violate these assumptions

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent
• Rule 3: circuit/program topology = fixed

Violations due to:

Data-dependent instruction 
optimizations

(e.g., zero-skip, early exit, 
microcode, silent stores, …)

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret addr1 addr2
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Today’s machines can violate these assumptions

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent
• Rule 3: circuit/program topology = fixed

Violations due to:

Data at rest optimizations 

(e.g., compression in 
register file/uop fusion, 
cache, page tables, …)

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret addr1 addr2
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Today’s machines can violate these assumptions

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent
• Rule 3: circuit/program topology = fixed

Violations due to:

Speculative/OoO
execution

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret addr1 addr2
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HW Resource Partition

• Security v.s. Quality of Service (QoS)
• Intel Cache Allocation Technology (CAT)
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• Temporal Partition v.s. Spatial Partition

6.888 L5-Non-transient Side Channels 40



HW Resource Partition

• Security v.s. Quality of Service (QoS)
• Intel Cache Allocation Technology (CAT)

• Temporal Partition v.s. Spatial Partition

• Challenges nowadays:
• Security domain determination is tricky nowadays
• Scalability: what is #domains > #partitions
• How to partition inside cores?
• Why not execute applications on a single node?
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Randomization/Fuzzing

• Introduce noise to time measurement/Make time 
measurement coarse-grained
• Pros and cons?
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Randomization/Fuzzing

• Introduce noise to time measurement/Make time 
measurement coarse-grained
• Pros and cons? + Simple and no performance overhead

+ Effective towards a group of popular attacks
……
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer
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Randomization/Fuzzing

• Introduce noise to time measurement/Make time 
measurement coarse-grained
• Pros and cons?

• Randomize cache mapping functions
• Pros and cons?

+ Simple and no performance overhead
+ Effective towards a group of popular attacks
……
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

+ Generally low performance overhead (still allow cache to be shared)
- Difficult to reason about security
+/- Can reduce attack bandwidth, but unlikely to eliminate attacks

6.888 L5-Non-transient Side Channels 41



Next Lecture:
Transient Side Channels

6.888 L5-Non-transient Side Channels 42


