
Non-transient Side Channels

Mengjia Yan
Fall 2020

6.888 L5-Non-transient Side Channels 1

Lab Assignment

• Handout on course website
• Each (regular) student will receive an email
• Solo or 2-person group
• Individual GitHub repo
• Info about accessing a server machine

• Listeners can send us an email if you want to try the lab

• Advice:
• Start early. The first step is not to implement the attack, but to reverse

engineer the machine.

6.888 L5-Non-transient Side Channels 2

Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

ways

6.888 L5-Non-transient Side Channels 3

Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

ways

6.888 L5-Non-transient Side Channels 4

Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

ways

6.888 L5-Non-transient Side Channels 4

Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

ways

6.888 L5-Non-transient Side Channels 4

Recap: Prime+Probe

Shared Cache

Sender Receiver
Sender line

Receiver line

Time

Prime

Cache Set

Wait

Access

ways

Receive “1” = 8 accesses à 1 miss

Probe

6.888 L5-Non-transient Side Channels 5

Analogy: Bucket/Ball

Shared Cache

Sender Receiver

Cache Set

ways

Sender’s address Receiver’s address

Each cache set is a bucket
that can hold 8 balls

6.888 L5-Non-transient Side Channels 6

Analogy: Bucket/Ball

Shared Cache

Sender Receiver

Cache Set

ways

Sender’s address Receiver’s address

Each cache set is a bucket
that can hold 8 balls

6.888 L5-Non-transient Side Channels 6

How many cache lines in total in the system?

Analogy: Bucket/Ball

Shared Cache

Sender Receiver

Cache Set

ways

Sender’s address Receiver’s address

Each cache set is a bucket
that can hold 8 balls

6.888 L5-Non-transient Side Channels 6

How many cache lines in total in the system?
How to find the bucket used by the sender?

Practical Cache Side Channels

6.888 L5-Non-transient Side Channels 7

31 0

32bit

Cache Mapping – Directly Mapped Cache

0

1

2

3

4

5

6

7

Tag Data (64 bytes)
Physical
Address:

index

• Can think cache mapping as a hash table with limited size

6.888 L5-Non-transient Side Channels 8

31 0

32bit

Cache Mapping – Directly Mapped Cache

0

1

2

3

4

5

6

7

Tag Data (64 bytes)
Physical
Address:

index

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

6.888 L5-Non-transient Side Channels 8

31 0

32bit

Cache Mapping – Directly Mapped Cache

0

1

2

3

4

5

6

7

Tag Data (64 bytes)
Physical
Address:

index

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

6.888 L5-Non-transient Side Channels 8

Set Index = (Addr / Block Size) % Number of Sets

Cache Mapping – Directly Mapped Cache

0

1

2

3

4

5

6

7

Tag Data (64 bytes)31 9 8 6 5 0

Tag
(high order bits)

Set Index
(3 bits)

Line offset
(6 bits)

Physical
Address:

index

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

6.888 L5-Non-transient Side Channels 9

Assuming byte-addressable

Cache Mapping – Directly Mapped Cache

0

1

2

3

4

5

6

7

Tag Data (64 bytes)31 9 8 6 5 0

Tag
(high order bits)

Set Index
(3 bits)

Line offset
(6 bits)

Physical
Address:

index

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

Question: Given an 1MB L2 with 1024 sets, how
many bits are used for set index?

6.888 L5-Non-transient Side Channels 9

Assuming byte-addressable

Cache Mapping – Directly Mapped Cache

0

1

2

3

4

5

6

7

Tag Data (64 bytes)31 9 8 6 5 0

Tag
(high order bits)

Set Index
(3 bits)

Line offset
(6 bits)

Physical
Address:

index

Number of bits for set index =
log2(Number of sets)

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

Question: Given an 1MB L2 with 1024 sets, how
many bits are used for set index?

6.888 L5-Non-transient Side Channels 9

Assuming byte-addressable

Cache Mapping – Directly Mapped Cache

0

1

2

3

4

5

6

7

Tag Data (64 bytes)31 9 8 6 5 0

Tag
(high order bits)

Set Index
(3 bits)

Line offset
(6 bits)

Physical
Address:

index

To distinguish addresses
in the same set

Number of bits for set index =
log2(Number of sets)

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

Question: Given an 1MB L2 with 1024 sets, how
many bits are used for set index?

6.888 L5-Non-transient Side Channels 9

Assuming byte-addressable

31 9 8 6 5 0

32bit

Cache Mapping – Directly Mapped Cache

0

1

2

3

4

5

6

7

Tag Data (64 bytes)31 9 8 6 5 0

Tag
(high order bits)

Set Index
(3 bits)

Line offset
(6 bits)

Physical
Address:

index

To distinguish addresses
in the same set

Number of bits for set index =
log2(Number of sets)

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

Question: Given an 1MB L2 with 1024 sets, how
many bits are used for set index?

6.888 L5-Non-transient Side Channels 9

Assuming byte-addressable

Cache Mapping – Set Associative Cache

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

0

1

2

3

4

5

6

7

Tag Data index Tag Data

2-way cache

Physical
Address:

31 9 8 6 5 0

Tag
(high order bits)

Index
(3 bits)

Line offset
(6 bits)

6.888 L5-Non-transient Side Channels 10

Cache Mapping – Set Associative Cache

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

0

1

2

3

4

5

6

7

Tag Data index Tag Data

2-way cache

Physical
Address:

31 9 8 6 5 0

Tag
(high order bits)

Index
(3 bits)

Line offset
(6 bits)

Question: How to decide which way to use?

6.888 L5-Non-transient Side Channels 10

Cache Mapping – Set Associative Cache

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

0

1

2

3

4

5

6

7

Tag Data index Tag Data

2-way cache

Physical
Address:

31 9 8 6 5 0

Tag
(high order bits)

Index
(3 bits)

Line offset
(6 bits)

Question: How to decide which way to use?
Answer: Cache replacement policy.

6.888 L5-Non-transient Side Channels 10

Cache Mapping – Set Associative Cache

• Can think cache mapping as a hash table with limited size
• Linear cache set mapping using modular arithmetic

0

1

2

3

4

5

6

7

Tag Data index Tag Data

2-way cache

Physical
Address:

31 9 8 6 5 0

Tag
(high order bits)

Index
(3 bits)

Line offset
(6 bits)

31 9 8 6 5 0

Tag
(high order bits)

Set Index
(3 bits)

Line offset
(6 bits)

Find eviction set
==

Find addresses with the same set index bits

Question: How to decide which way to use?
Answer: Cache replacement policy.

6.888 L5-Non-transient Side Channels 10

Address Translation (4KB page)

system’s view
Physical Address (32bit):

Programmer’s view
Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset
(12 bits)

31 12 11 0

physical page number Page offset
(12 bits)

6.888 L5-Non-transient Side Channels 11

Address Translation (4KB page)

system’s view
Physical Address (32bit):

Programmer’s view
Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset
(12 bits)

31 12 11 0

physical page number Page offset
(12 bits)

6.888 L5-Non-transient Side Channels 11

Copy
page offset

Address Translation (4KB page)

system’s view
Physical Address (32bit):

Programmer’s view
Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset
(12 bits)

31 12 11 0

physical page number Page offset
(12 bits)

Page
Table

6.888 L5-Non-transient Side Channels 11

Copy
page offset

Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

6.888 L5-Non-transient Side Channels 12

Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

Cache mapping:
(8 sets)

6.888 L5-Non-transient Side Channels 12

Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Cache mapping:
(8 sets)

6.888 L5-Non-transient Side Channels 12

Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Index
(3 bits)

Cache mapping:
(8 sets)

6.888 L5-Non-transient Side Channels 12

Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Index
(3 bits)

TagCache mapping:
(8 sets)

6.888 L5-Non-transient Side Channels 12

Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Index
(3 bits)

TagCache mapping:
(8 sets)

Cache mapping:
(256 sets)

6.888 L5-Non-transient Side Channels 12

Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Index
(3 bits)

TagCache mapping:
(8 sets)

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

6.888 L5-Non-transient Side Channels 12

Find Eviction Set Using Virtual Addresses

Virtual Address (48bit):

48 12 11 0

Virtual page number Page offset

Physical Address (32bit):
4KB page

31 12 11 0

physical page number Page offset
(12 bits)

Line offset
(6 bits)

Index
(3 bits)

TagCache mapping:
(8 sets)

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

2
bit

Not controllable via
virtual address.

6.888 L5-Non-transient Side Channels 12

Huge Pages

• Huge page size: 2MB or 1GB
• Number of bits for page offset?

6.888 L5-Non-transient Side Channels 13

Huge Pages

• Huge page size: 2MB or 1GB
• Number of bits for page offset?

Virtual Address :
4KB page

48 12 11 0

Virtual page number Page offset
(12 bits)

48 21 20 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page

6.888 L5-Non-transient Side Channels 13

Huge Pages

• Huge page size: 2MB or 1GB
• Number of bits for page offset?

Virtual Address :
4KB page

48 12 11 0

Virtual page number Page offset
(12 bits)

48 21 20 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

6.888 L5-Non-transient Side Channels 13

Multi-level Caches core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

6.888 L5-Non-transient Side Channels 14

Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of

cache to reduce miss penalty

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

6.888 L5-Non-transient Side Channels 14

Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of

cache to reduce miss penalty

L1-I/D cache L2 cache L3 cache (LLC) DRAM

Size 32KB 256KB 1MB/core 16GB

Associativity
(# ways) 4 or 8 8 16 N/A

Latency
(cycles) 1-5 12 ~40 ~150

A typical configuration of Intel Ivy Bridge.
Configurations are different with processor types.

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

6.888 L5-Non-transient Side Channels 14

Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of

cache to reduce miss penalty

• LLC is generally divided into multiple slices

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

6.888 L5-Non-transient Side Channels 15

Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of

cache to reduce miss penalty

• LLC is generally divided into multiple slices

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

Tag Set Index Line offset

6.888 L5-Non-transient Side Channels 15

Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of

cache to reduce miss penalty

• LLC is generally divided into multiple slices

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

Tag Set Index Line offset

Slice ID = Hash(bits)

An undocumented
secret hash function

6.888 L5-Non-transient Side Channels 15

Multi-level Caches
• Motivation:
• A memory cannot be large and fast. Add level of

cache to reduce miss penalty

• LLC is generally divided into multiple slices
• Conflict happens if addresses map to the same

slice and the same set

core

L2

LLC

…I-L1 D-L1

core

L2

I-L1 D-L1

Tag Set Index Line offset

Slice ID = Hash(bits)

An undocumented
secret hash function

6.888 L5-Non-transient Side Channels 15

Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate
Addresses

6.888 L5-Non-transient Side Channels 16Shared Cache

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate
Addresses Wait

Access Target
Address

6.888 L5-Non-transient Side Channels 17

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

Eviction Set Construction Algorithm

Sender Receiver
Sender line

Receiver line

Time

Access Candidate
Addresses Wait

Access Target
Address

Measure Latency of
Each Candidate Address

Vila et al. Theory and Practice of Finding Eviction Sets. S&P’19

6.888 L5-Non-transient Side Channels 18

Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

Initial:

6.888 L5-Non-transient Side Channels 19

Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

6 75 82 31 4

Initial:

Prime:

6.888 L5-Non-transient Side Channels 19

Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

6 75 82 31 4

6 75 82 31 49

Initial:

Prime:

Victim access:

6.888 L5-Non-transient Side Channels 19

Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

6 75 82 31 4

6 75 82 31 49

6 75 82 31 49

Initial:

Prime:

Victim access:

Probe:

Which to evict?

6.888 L5-Non-transient Side Channels 19

Problems Due to Replacement Policy

• Self-eviction due to replacement policy
• An LRU (least recently used) example

• A small trick:
• Access addresses in reverse order

6 75 82 31 4

6 75 82 31 49

6 75 82 31 49

Initial:

Prime:

Victim access:

Probe:

Which to evict?

6.888 L5-Non-transient Side Channels 19

Measure Latency of Multiple Accesses

• HW Prefetcher + Out-of-order execution

T1 = rdtsc()

Dummy1=Ld(Addr1)

……

Dummy8=Ld(Addr8)

T2 = rdtsc()

Latency = T2-T1

6.888 L5-Non-transient Side Channels 20

Measure Latency of Multiple Accesses

• HW Prefetcher + Out-of-order execution

T1 = rdtsc()

Dummy1=Ld(Addr1)

……

Dummy8=Ld(Addr8)

T2 = rdtsc()

Latency = T2-T1

What we expect:

Ld A1 Ld A2 Ld A8Ld A7……

Time

6.888 L5-Non-transient Side Channels 20

Measure Latency of Multiple Accesses

• HW Prefetcher + Out-of-order execution

T1 = rdtsc()

Dummy1=Ld(Addr1)

……

Dummy8=Ld(Addr8)

T2 = rdtsc()

Latency = T2-T1

What we expect:

Ld A1 Ld A2 Ld A8Ld A7……

Time
What actually will happen:

Ld A1

Ld A2

Ld A8

Ld A7……

Time
6.888 L5-Non-transient Side Channels 20

Out-of-Order Processor

Fetch Decode RegRead Execute Writeback
(Commit)

6.888 L5-Non-transient Side Channels 21

Out-of-Order Processor

Fetch Decode RegRead Execute Writeback
(Commit)

Check whether the register
to read is ready.

6.888 L5-Non-transient Side Channels 21

Out-of-Order Processor

Ld A1

Ld A2

Ld A8

Ld A7……

Time

Fetch Decode RegRead Execute Writeback
(Commit)

Check whether the register
to read is ready.

6.888 L5-Non-transient Side Channels 21

Out-of-Order Processor

Ld A1

Ld A2

Ld A8

Ld A7……

Time

Fetch Decode RegRead Execute Writeback
(Commit)

Check whether the register
to read is ready.

Question: How to serialize
data accesses?

6.888 L5-Non-transient Side Channels 21

Serialize Data Accesses
• A special instruction “mfence”

6.888 L5-Non-transient Side Channels 22

https://www.felixcloutier.com/x86/mfence

Serialize Data Accesses
• A special instruction “mfence”
• Add data dependency by creating a linked list

Dummy1 = Ld(Addr1)

Addr2 = Ld(Addr1)

6.888 L5-Non-transient Side Channels 22

https://www.felixcloutier.com/x86/mfence

Serialize Data Accesses
• A special instruction “mfence”
• Add data dependency by creating a linked list

dummy A1 dummy A2 dummy A3

content Pointer to the
next node

……

Dummy1 = Ld(Addr1)

Addr2 = Ld(Addr1)

6.888 L5-Non-transient Side Channels 22

https://www.felixcloutier.com/x86/mfence

Serialize Data Accesses
• A special instruction “mfence”
• Add data dependency by creating a linked list

• Double linked list to access addresses in reverse order

dummy A1 dummy A2 dummy A3

content Pointer to the
next node

……

A1 A1 A2 A2 A3 ……

Dummy1 = Ld(Addr1)

Addr2 = Ld(Addr1)

6.888 L5-Non-transient Side Channels 22

https://www.felixcloutier.com/x86/mfence

Handle Noise

6.888 L5-Non-transient Side Channels 23

Handle Noise
• A real-world example: Square-and-Multiply Exponentiation

for i = n-1 to 0 do

r = sqr(r) mod n

if ei == 1 then

r = mul(r, b) mod n

end

end

What you generally see in papers:

6.888 L5-Non-transient Side Channels 23

The Multiply Function

6.888 L5-Non-transient Side Channels 24

The Multiply Function

6.888 L5-Non-transient Side Channels 24

Raw Trace

Access latencies measured in the probe operation in Prime+Probe.
A sequence of “01010111011001” can be deduced as part of the exponent.

6.888 L5-Non-transient Side Channels 25

There may exist other problems

• Tips for lab assignment
• Build the attack step-by-step
• Recommend to read “Last-Level Cache Side-Channel Attacks are Practical”
• Ask questions via Piazza

6.888 L5-Non-transient Side Channels 26

Defenses

6.888 L5-Non-transient Side Channels 27

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

{Transient, Non-transient} {Cache, DRAM, TLB, NoC, etc.}X

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 28

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals:
Oblivious execution,

speculative execution defenses, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 29

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals:
Oblivious execution,

speculative execution defenses, etc.

Close the channel:
Isolation, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 29

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

secret-dependent
execution

Block creation of signals:
Oblivious execution,

speculative execution defenses, etc.

Close the channel:
Isolation, etc.

Block detection of signals:
Randomization, etc.

Defenses:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L5-Non-transient Side Channels 29

Defense Design Considerations

Security Performance

Portability

6.888 L5-Non-transient Side Channels 30

The Problem: The ISA Abstraction

• Interface between HW and SW: ISA
• Advantage: HW optimizations without affecting

usability/portability

Hardware
(caches, DRAM, TLBs, etc.)

Software
(branch, arithmetic

instruction, load/store)
ISA

(instruction set
architecture)

6.888 L5-Non-transient Side Channels 31

6.888 L5-Non-transient Side Channels 32
From https://www.felixcloutier.com/x86/index.html

The Problem: The ISA Abstraction

• Interface between HW and SW: ISA

• ISA specifies functionality, not performance/timing
• Compare Intel Ivy Bridge and Cascade Processor

Hardware
(caches, DRAM, TLBs, etc.)

Software
(branch, arithmetic

instruction, load/store)
ISA

(instruction set
architecture)

Example:

DEC [addr]

6.888 L5-Non-transient Side Channels 33

Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

6.888 L5-Non-transient Side Channels 34

Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original:

if (secret)
a = *(addr1);

else
a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

6.888 L5-Non-transient Side Channels 34

Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original:

if (secret)
a = *(addr1);

else
a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

Data Oblivious:

a ← load (addr1);
b ← load (addr2);
cmov a = (secret) ? a : b;

6.888 L5-Non-transient Side Channels 34

Data Oblivious/“Constant time” Programming

Write program w/o data-dependent behavior

Original:

if (secret)
a = *(addr1);

else
a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

Data Oblivious:

a ← load (addr1);
b ← load (addr2);
cmov a = (secret) ? a : b;

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret

6.888 L5-Non-transient Side Channels 34

Programming in Circuit Abstraction

• Program = DAG (“circuit”)
• Operations = nodes (“gates”)
• Data transfers = edges (“wires”)

• Topology must be confidential data-independent
• Each gate’s execution must hide its inputs
• Each wire must hide the value it carries

op1 op2

op3

op4

Node/Gate

Edge/Wire

6.888 L5-Non-transient Side Channels 35

What assumptions underpin the model?

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret
if (secret)

a = *(addr1);
else

a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

addr1 addr2

36

What assumptions underpin the model?

• Rule 1: instruction/gate execution = confidential data-independent

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret
if (secret)

a = *(addr1);
else

a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

addr1 addr2

36

What assumptions underpin the model?

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret
if (secret)

a = *(addr1);
else

a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

addr1 addr2

36

What assumptions underpin the model?

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent
• Rule 3: circuit/program topology = fixed

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret
if (secret)

a = *(addr1);
else

a = *(addr2);

secret = confidential
addr1 = public
addr2 = public

addr1 addr2

36

Today’s machines can violate these assumptions

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent
• Rule 3: circuit/program topology = fixed

Violations due to:

Data-dependent instruction
optimizations

(e.g., zero-skip, early exit,
microcode, silent stores, …)

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret addr1 addr2

37

Today’s machines can violate these assumptions

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent
• Rule 3: circuit/program topology = fixed

Violations due to:

Data at rest optimizations

(e.g., compression in
register file/uop fusion,
cache, page tables, …)

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret addr1 addr2

38

Today’s machines can violate these assumptions

• Rule 1: instruction/gate execution = confidential data-independent
• Rule 2: data transfer/wire = confidential data-independent
• Rule 3: circuit/program topology = fixed

Violations due to:

Speculative/OoO
execution

a ← load addr1 b ← load addr2

cmov secret, b, a

a b

secret addr1 addr2

39

HW Resource Partition

• Security v.s. Quality of Service (QoS)
• Intel Cache Allocation Technology (CAT)

6.888 L5-Non-transient Side Channels 40

HW Resource Partition

• Security v.s. Quality of Service (QoS)
• Intel Cache Allocation Technology (CAT)

• Temporal Partition v.s. Spatial Partition

6.888 L5-Non-transient Side Channels 40

HW Resource Partition

• Security v.s. Quality of Service (QoS)
• Intel Cache Allocation Technology (CAT)

• Temporal Partition v.s. Spatial Partition

• Challenges nowadays:
• Security domain determination is tricky nowadays
• Scalability: what is #domains > #partitions
• How to partition inside cores?
• Why not execute applications on a single node?

6.888 L5-Non-transient Side Channels 40

Randomization/Fuzzing

• Introduce noise to time measurement/Make time
measurement coarse-grained
• Pros and cons?

6.888 L5-Non-transient Side Channels 41

Randomization/Fuzzing

• Introduce noise to time measurement/Make time
measurement coarse-grained
• Pros and cons? + Simple and no performance overhead

+ Effective towards a group of popular attacks
……
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

6.888 L5-Non-transient Side Channels 41

Randomization/Fuzzing

• Introduce noise to time measurement/Make time
measurement coarse-grained
• Pros and cons?

• Randomize cache mapping functions
• Pros and cons?

+ Simple and no performance overhead
+ Effective towards a group of popular attacks
……
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

6.888 L5-Non-transient Side Channels 41

Randomization/Fuzzing

• Introduce noise to time measurement/Make time
measurement coarse-grained
• Pros and cons?

• Randomize cache mapping functions
• Pros and cons?

+ Simple and no performance overhead
+ Effective towards a group of popular attacks
……
- Not effective to attacks that do not measure time
- Not effective to victims that cause big timing difference
- Affect usability if benign application needs to use a fine-grained timer

+ Generally low performance overhead (still allow cache to be shared)
- Difficult to reason about security
+/- Can reduce attack bandwidth, but unlikely to eliminate attacks

6.888 L5-Non-transient Side Channels 41

Next Lecture:
Transient Side Channels

6.888 L5-Non-transient Side Channels 42

