Transient Side Channels

Mengjia Yan
Fall 2020

Based on slides from Christopher W. Fletcher

I)

CSAIL

I Reminder

* 15t paper review due midnight on 09/27 (before the next lecture)

* You will receive an invitation from HotCRP
e https://mit-6888-fa20.hotcrp.com/

Tiwari et al. Complete information flow tracking from the gates up. ASPLOS.
Hardware to
.. 2009.
9/28 (Mon) | Enforce Non- Mengjia) . .
interference Optional: Ferraiuolo et al. HyperFlow: A processor architecture for
nonmalleable, timing-safe information flow security. CCS. 2018.
Transient Yu et al. Speculative Taint Tracking (STT) A Comprehensive Protection for
i
9/30 . . Speculatively Accessed Data. MICRO. 2019.
Execution Lindsey . L
(Wed) Defenses Optional: Guarnieri et al. Hardware-Software Contracts for Secure
Speculation. arXiv preprint. 2020.

6.888 L6-Transient Side Channels

https://mit-6888-fa20.hotcrp.com/

Micro-architecture Side Channels

secret-dependent
execution

% A Channel Q éﬁ

Victim (a micro-architecture structure)
Attacker

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L6-Transient Side Channels

Micro-architecture Side Channels

secret-dependent
execution

% A Channel Q éﬁ

Victim (a micro-architecture structure)
Attacker

/\

{Transient, Non-transient} X {Cache, DRAM, TLB, NoC, etc.}

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L6-Transient Side Channels

I Recap: 5-stage Pipeline

v we
>rsl i B
»Irs2
rdl V we
LA
] > wz 4 A SAL addr
GPRs > rdata
Inst. -J_ LA Data
Imm] Memory
Memory o D Jf waiata
LA

I-Fetch " Decode, Reg. Fetch" Execute” Memory Write-Back
(IF) (ID) (EX) (MA) (WB)

6.888 L6-Transient Side Channels

I 5-stage Pipeline
ﬂtmdﬁdﬁaﬁ%%ﬁi %%D e

rdata
Data

GPRs
Inst. J_

Imm] Memor
Memory Ext] wdata

I-Fetch ' pecode, Reg. Fetch' Execute’ Memory Write-Back

(IF) (ID) (EX) (MA) (WB)
time t0O t1 t2 t3 t4 t5 t6 t7/
instructionl IF;, ID; EX; MA; WB;
instruction3 IF; IDs EX3 MAs; WBs
instruction4 IF, ID, EX4s MA; WB,4
instruction5 IF. IDs EXs MAc WB:

6.888 L6-Transient Side Channels 5

I 5-stage Pipeline
ﬂ[a"dﬁdataﬁLiD%}fazii %%D e

GPR rdata
S Data

Inst. J_ M
i] emor
Memory ETtm] wdata

I-Fetch ' pecode, Reg. Fetch' Execute’ Memory Write-Back

(IF) (ID) (EX) (MA) (WB)
time t0O t1 t2 t3 |t4 |t5 t6 t7/
instructionl IF; ID; EX; MA{]WB;
instruction?2 IF, ID, EX; | MA,IWB>
instruction3 IF; IDs |EX53|MAs; WBs
instruction4 IF, 1ID4 |EX4s MA; WB4
instruction’ IF. |ID< EXs MAs WB:

6.888 L6-Transient Side Channels 5

I 5-stage Pipeline

>rsl

>rs2
addr ws rdl 1 V we
rdatg —Wdrd2 _’D._ AL N addr

rdata
Data

GPRs
Inst. J_

Imm] Memor
Memory Ext] wdata

I-Fetch ' pecode, Reg. Fetch' Execute’ Memory Write-Back
(IF) (ID) (EX) (MA) (WB)

* In-order execution:
e Execute instructions according to the program order

time t0O t1 t2 t3 |t4 |t5 t6 t7/
instructionl IF; ID; EX; MA{]WB;

instruction3 IF; IDs |EX53|MAs; WBs
instruction4 IF, 1ID4 |EX4s MA; WB4
instruction5 IF. |IDs EX: MAs WBs

6.888 L6-Transient Side Channels 5

Data Hazard and Control Hazard

time tO t1 t2 t3 t4 t5 t6 t7
Loop: ...

LD(R1, 0, R2) IF, ID; EX; MA; WB;

BNE(R3, Loop) IF; ID; EX5; MA; WB;

6.888 L6-Transient Side Channels

Resolving Hazards

e Stall or Bypass
time t0 t1 t2 t3 t4 t5 t6

LD(R1, 1, R2) IF; ID; EX; MA; WB;

» Speculation (e.g., branch predictor)
e Guess a value and continue executing anyway
 When actual value is available, two cases
e Guessed correctly = do nothing
* Guessed incorrectly =2 restart with correct value (roll back)

6.888 L6-Transient Side Channels

t/

I Branch Predictor

* Predict Taken/Not taken
* Not taken: PC+4
* Taken: need to know target address

6.888 L6-Transient Side Channels

I Branch Predictor

* Predict Taken/Not taken
* Not taken: PC+4
* Taken: need to know target address

* Predict target address
* Branch target buffer (BTB)
* Map <current PC, target PC>

6.888 L6-Transient Side Channels

Branch Predictor

* Predict Taken/Not taken
* Not taken: PC+4
* Taken: need to know target address

* Predict target address
* Branch target buffer (BTB)
* Map <current PC, target PC>

e Use history information to setup the predictor

6.888 L6-Transient Side Channels

I Complex In-order Pipeline

IF "1 ID » Issue

GPRs
FPRs

* Need complex bypass/stall/kill paths

6.888 L6-Transient Side Channels

ALU

Mem

/

Fadd

WB

Fmul

Fdiv

N\

I Complex In-order Pipeline

IF "1 ID » Issue

GPRs
FPRs

* Need complex bypass/stall/kill paths

* |n real systems, EX/MA can take multiple cycles

6.888 L6-Transient Side Channels

ALU

Mem

/

Fadd

WB

Fmul

Fdiv

N\

I Out-of-order Execution

* When the pipeline is stalled, find something else to do

IF

ID

ALU

GPRs
FPRs

WB

J time t0

N\

6.888 L6-Transient Side Channels

t1

t2

t3

t4

t5

t6

t7/

10

I Out-of-order Execution

* When the pipeline is stalled, find something else to do

IF

ID

Issue

ALU

GPRs
FPRs

Fadd

WB

J time t0

N\

Fmul

Fdiv

LD(R1, 1, R2) IF,
R3

6.888 L6-Transient Side Channels

t1

1D,

t2

EX4

t3 t4 t5 t6 t/

MA; MA; MA; MA; WB;,

10

I Out-of-order Execution

* When the pipeline is stalled, find something else to do

* When we do out-of-order execution, we are speculating that previous
instructions do not cause exception

IF

—1 ID

Issue

ALU

GPRs
FPRs

Fadd

WB

J time t0

N\

Fmul

Fdiv

LD(R1, 1, R2) IF,
R3

6.888 L6-Transient Side Channels

t1

1D,

t2

EX4

t3 t4 t5 t6 t/

MA; MA; MA; MA; WB;,

10

I Out-of-order Execution

* When the pipeline is stalled, find something else to do

* When we do out-of-order execution, we are speculating that previous
instructions do not cause exception

* If instruction n is speculative instruction, instruction n+i is also speculative

IF

—1 ID

Issue

ALU

GPRs
FPRs

Fadd

WB

J time t0O t1 t2 t3 t4 t5 t6 t7/

N\

Fmul

Fdiv

LD(R1, 1, R2) IF, ID; EX; MA; MA; MA; MA; WB;
R3

6.888 L6-Transient Side Channels 10

I Speculative & Out-of-Order Execution

Branch
Prediction

Fetch ™

Decode &

Rename

7

~—

In-Order

Update predictors

In-Order
AL
'd N\

| Commit

(head of ROB)-

11

I Speculative & Out-of-Order Execution

Update predictors
Branch
Prediction
In-Orjcjer
' \
=+ PC[¥ Fetch [DReCOde& — J commit _
€hame (head of ROB)
— —~ _J I 1 I A I A
In-Order v 1 v v
Physical Reg. File
ALU [|MEM || FALU | «.....

Execute

11

I Speculative & Out-of-Order Execution

Update predictors
Branch
Prediction
Out-of-Order In-Order
' N Ve A \
] pe Fotch P Decode & [____| Reorder Buffer J Commit _
Rename (ROB) (head of ROB)
— — %)
~~ |t |
In-Order LA L1 =

Execute

Physical Reg. File

11

25

W

ALU

MEM

FALU

11

I Speculative & Out-of-Order Execution

Update predictors
Branch
Prediction
Out-of-Order In-Order
' N Ve A \
] pe Fotch P Decode & [____| Reorder Buffer J Commit [
Rename (ROB) (head of ROB)
- — | A LA L_A
'l 1 1 1 |
In-Order LA L1 L1

Execute

Physical Reg. File

1T 1

W

ALU || MEM

FALU

S

Dispatch logic:
Detect data dependency,
issue instructions to execute

11

I Speculative & Out-of-Order Execution

Update predictors
Branch
Prediction
Out-of-Order In-Order
' N Ve A \
] pe Fotch P Decode & [____| Reorder Buffer J Commit [
Rename (ROB) (head of ROB)
- — | A LA L_A
'l 1 1 1 |
In-Order LA L1 L1

Execute

Physical Reg. File

11

25

W

ALU

MEM

FALU

S

Dispatch logic:
Detect data dependency,
issue instructions to execute

11

I Speculative & Out-of-Order Execution

v

\

Update predictors
Branch
Prediction 1l
I
\ - A—
] pe Fotch Decode & [____| Reorder Buffer Commit | |
Rename (ROB) (head of ROB)
- — | A LA L_A
'l 1 1 1 |
In-Order LA L1 L1

Execute

Physical Reg. File

11

25

W

ALU

MEM

FALU

S

Dispatch logic:
Detect data dependency,
issue instructions to execute

11

I Terminology

A speculative instruction may squash.
* When executed, can change uArch state

6.888 L6-Transient Side Channels

12

Terminology

A speculative instruction may squash.
* When executed, can change uArch state

A Transient instruction will squash, i.e., will not commit.

A Non-Transient instruction will not squash, i.e., will eventually retire.

6.888 L6-Transient Side Channels 12

I Terminology

A speculative instruction may squash.
* When executed, can change uArch state

A Transient instruction will squash, i.e., will not commit.
A Non-Transient instruction will not squash, i.e., will eventually retire.

That is, transient instructions are unreachable on a non-speculative
microarchitecture.

6.888 L6-Transient Side Channels 12

I General Attack Schema

Victim

Access secret transmit (secret)

{l) »& Channel

6.888 L6-Transient Side Channels 13

General Attack Schema

Victim

Access secret transmit (secret)

% »& Channel

* The difference between transient and non-transient side channels
* Whether the secret access or transmitter execution is transient

6.888 L6-Transient Side Channels 13

Meltdown & Spectre

I)

CCCCC

I Kernel/User Pages

Virtual memory

0x00000000 ,]
* In x86, a process’s virtual address space

Kernel pages includes kernel pages, but kernel pages are
only accessible in kernel mode

* For performance purpose

* Avoids switching page tables on context switches

User pages

Oxffffffff 6.888 L6-Transient Side Channels 15

I Kernel/User Pages

Virtual memory

0x00000000 ,]
* In x86, a process’s virtual address space

Kernel pages includes kernel pages, but kernel pages are
only accessible in kernel mode

* For performance purpose

* Avoids switching page tables on context switches

User pages What will happen if accessing kernel
addresses in user mode?

Oxffffffff 6.888 L6-Transient Side Channels 15

I Kernel/User Pages

Virtual memory

0x00000000 ,]
* In x86, a process’s virtual address space

Kernel pages includes kernel pages, but kernel pages are
only accessible in kernel mode

* For performance purpose

* Avoids switching page tables on context switches

User pages What will happen if accessing kernel
addresses in user mode?

* Protection fault

Oxffffffff 6.888 L6-Transient Side Channels 15

I Meltdown

* Problem: Speculative instructions can change uArch state, e.g., cache

6.888 L6-Transient Side Channels

16

I Meltdown

* Problem: Speculative instructions can change uArch state, e.g., cache

* Attack procedure

1. Setup: Attacker allocates probe_array, with 256 cache lines. Flushes all its
cache lines

2. Transmit: Attacker executes

Ldl: uint8 t byte = *kernel address;
Ld2: unit8 t dummy = probe array[byte*64];

6.888 L6-Transient Side Channels 16

I Meltdown

* Problem: Speculative instructions can change uArch state, e.g., cache

* Attack procedure

1. Setup: Attacker allocates probe_array, with 256 cache lines. Flushes all its
cache lines

2. Transmit: Attacker executes ROBfead

Ldl: uint8 t byte = *kernel address;
Ld2: unit8 t dummy = probe array[byte*64];

cai
1ai

6.888 L6-Transient Side Channels 16

I Meltdown

* Problem: Speculative instructions can change uArch state, e.g., cache

* Attack procedure

1. Setup: Attacker allocates probe_array, with 256 cache lines. Flushes all its
cache lines

2. Transmit: Attacker executes ROBfead

Ldl: uint8 t byte = *kernel address;
Ld2: unit8 t dummy = probe array[byte*64];

cai
1ai

6.888 L6-Transient Side Channels 16

I Meltdown

* Problem: Speculative instructions can change uArch state, e.g., cache

* Attack procedure

1. Setup: Attacker allocates probe array, with 256 cache lines

cache lines
2. Transmit: Attacker executes

ROB head

y

Ldl: uint8 t byte = *kernel address;
Ld2: unit8 t dummy = probe array[byte*64];

6.888 L6-Transient Side Channels

. Flushes all its

16

I M EItd own Exception handling is deferred when the

instruction reaches the head of ROB.

* Problem: Speculative instructions can change uArch state, e.g., cat

* Attack procedure

1. Setup: Attacker allocates probe_array, with 256 cache lines. Flufes all its

cache lines

2. Transmit: Attacker executes ROBfead

Ldl: uint8 t byte = *kernel address;
Ld2: unit8 t dummy = probe array[byte*64];

6.888 L6-Transient Side Channels 16

I M EItd own Exception handling is deferred when the

instruction reaches the head of ROB.

* Problem: Speculative instructions can change uArch state, e.g., cat

* Attack procedure

1. Setup: Attacker allocates probe_array, with 256 cache lines. Flufes all its
cache lines

2. Transmit: Attacker executes ROBfead

Ldl: uint8 t byte = *kernel address;
Ld2: unit8 t dummy = probe array[byte*64];

3. Receive: After handling protection fault, attacker performs cache side channel
attack to figure out which line of probe _array is accessed = recovers byte
6.888 L6-Transient Side Channels 16

I Meltdown Type Attacks

* Can be used to read arbitrary memory

* Leaks across privilege levels
* OS <2 Application
e SGX <2 Application (e.g., Foreshadow)
* Etc

6.888 L6-Transient Side Channels

17

Meltdown Type Attacks

* Can be used to read arbitrary memory

* Leaks across privilege levels

* OS <2 Application
e SGX <2 Application (e.g., Foreshadow)

* Etc

* Mitigations:
* Stall speculation
* Register poisoning

6.888 L6-Transient Side Channels

17

Meltdown Type Attacks

* Can be used to read arbitrary memory

* Leaks across privilege levels
* OS <2 Application
e SGX <2 Application (e.g., Foreshadow)
* Etc

* Mitigations:
* Stall speculation
* Register poisoning

* We generally consider it as a design bug

6.888 L6-Transient Side Channels

17

I Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a system call

Br:

Ldl:
Ld2:

if (x < size arrayl) {

secret = arrayl[x]|*64

y

array2[secret]

ROB head

y

cail
a1

id

6.888 L6-Transient Side Channels

18

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a system call

Br: if (x < size arrayl) {

Ld1: secret = arrayl[x]*64 Rosfead
Ld2: y = array2[secret]
} S| R|F

Attacker to read arbitrary memory:
1. Setup: Train branch predictor

6.888 L6-Transient Side Channels 18

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a system call

Br: if (x < size arrayl) {

Ld1: secret = arrayl[x]*64 Rosfead
Ld2: y = array2[secret]
) 52|

Attacker to read arbitrary memory:
1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x| maps to some desired
kernel address

6.888 L6-Transient Side Channels 18

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a system call

Br: if (x < size arrayl) {

Ld1: secret = arrayl[x]*64 ROB head

y

Ld2: y = array2[secret]

id

Attacker to read arbitrary memory:
1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x| maps to some desired
kernel address

6.888 L6-Transient Side Channels 18

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a system call

Br: if (x < size arrayl) {

Ld1: secret = arrayl[x]*64 ROB head

y

Ld2: y = array2[secret]

id

Attacker to read arbitrary memory:

1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x| maps to some desired
kernel address

3. Receive: Attacker probes cache to infer which line of array2 was fetched

6.888 L6-Transient Side Channels 18

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a systs Always malicious?
Br: 1if (x < size_arrayl) {/
Ld1: secret = arrayl[x]*64 ROBfead
Ld2: y = array2[secret]
o
}

Attacker to read arbitrary memory:

1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x| maps to some desired
kernel address

3. Receive: Attacker probes cache to infer which line of array2 was fetched

6.888 L6-Transient Side Channels 18

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a systs Always malicious?
No. It may be a benign misprediction.
Br: if (x < size_arrayl) { /
Ld1: secret = arrayl[x]*64 ROBfead
Ld2: y = array2[secret]
oy
}

Attacker to read arbitrary memory:

1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x| maps to some desired
kernel address

3. Receive: Attacker probes cache to infer which line of array2 was fetched

6.888 L6-Transient Side Channels 18

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a systs Always malicious?
No. It may be a benign misprediction.

s G (x @ S snrepEl) 4 / We do not consider Spectre as a bug.

Ld1: secret = arrayl[x]*64 ROB head

y

Ld2: y = array2[secret]

id

Attacker to read arbitrary memory:

1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x| maps to some desired
kernel address

3. Receive: Attacker probes cache to infer which line of array2 was fetched

6.888 L6-Transient Side Channels 18

I Spectre Variant 2 — Exploit Branch Target

* Most BTBs store partial tags and targets...
 <|ast n bits of current PC, target PC>

oxfff110 | Br: if (..) {
}

oxfff234 | Ld1l: secret = *4096

Ld2: y = array2[secret]

6.888 L6-Transient Side Channels

I Spectre Variant 2 — Exploit Branch Target

* Most BTBs store partial tags and targets...
 <|ast n bits of current PC, target PC>

oxfff110

oxfff234

Br: if (..) {
}
Ldl: secret =

Ld2: y = array2[secret]

BTB predicts ... Ld1, Ld2

buffer (BTB)

Branch target |

A 4

*4096

6.888 L6-Transient Side Channels

Fetch —— —

19

I Spectre Variant 2 — Exploit Branch Target

* Most BTBs store partial tags and targets...

oxfff110

oxfff234

 <|ast n bits of current PC, target PC>

Br: if (..) {
}
Ldl: secret =

Ld2: y = array2[secret]

*4096

BTB predicts ... Ld1, Ld2

Branch target |

buffer (BTB)

A 4

Fetch —— —

Train BTB properly = Execute arbitrary gadgets speculatively

6.888 L6-Transient Side Channels

19

General Attack Schema

Victim

Access secret transmit (secret)

»Cg % Channel

* Traditional (non-transient) attacks
* Data-dependent program behavior

* Transient attacks
* Meltdown = transient execution + deferred exception handling

* Spectre = transient execution on wrong paths
6.888 L6-Transient Side Channels 20

General Attack Schema

Victim

Access secret transmit (secret)
»Cg % Channel

e Traditional (non-transient) attacks
* Data-dependent program behavior

* Transient attacks
* Meltdown = transient execution + deferred exception handling

* Spectre = transient execution on wrong paths
6.888 L6-Transient Side Channels 20

General Attack Schema

Victim

Access secret transmit (secret)
»Cg % Channel

e Traditional (non-transient) attacks
* Data-dependent program behavior

* Transient attacks

* Meltdown = transient execution + deferred exception handling “Easy” to fix
* Spectre = transient execution on wrong paths

6.888 L6-Transient Side Channels 20

General Attack Schema

Victim

Access secret transmit (secret)
»Cg % Channel

e Traditional (non-transient) attacks
* Data-dependent program behavior

* Transient attacks

* Meltdown = transient execution + deferred exception handling “Easy” to fix
* Spectre = transient execution on wrong paths [FEPEEEREY

6.888 L6-Transient Side Channels

20

I Takeaways

Transient execution attacks use (not “are”) side/covert channels.

6.888 L6-Transient Side Channels

21

I Takeaways

{ Transient execution attacks use (not “are”) side/covert channels. }

“Spectre” (wrong-path execution) is fundamental.
Speculation/prediction is not perfect.

6.888 L6-Transient Side Channels 21

I Takeaways

{ Transient execution attacks use (not “are”) side/covert channels. }

“Spectre” (wrong-path execution) is fundamental.
Speculation/prediction is not perfect.

L “Meltdown” (deferred exceptions) is not fundamental. J

6.888 L6-Transient Side Channels 21

Transient v.s. Non-transient

CSAIL

Classification

Access secret transmit (secret) recv()

| |

{Transient, Non-transient} secret x {Transient, Non-transient} transmitter

Secret accessed Transmitter Classification

Non-transient Non-transient | Traditional side channels
Transient Non-transient | Not possible on today’s machines?
Non-transient Transient Spectre

Transient Transient Spectre

23

secret + transmitter

What can leak?

A subset of committed architectural state, at each point in the program’s dynamic execution.

6.888 L6-Transient Side Channels 24

secret + transmitter

What can leak?

A subset of committed architectural state, at each point in the program’s dynamic execution.

secret <- load(@©x5)
secret <- secret + 1
secret -> store(0x5)

6.888 L6-Transient Side Channels 24

secret + transmitter

What can leak?

A subset of committed architectural state, at each point in the program’s dynamic execution.

secret <- load(@©x5)
secret <- secret + 1
secret -> store(0x5)

secret does not leak
(assume ‘4’ data independent)

6.888 L6-Transient Side Channels 24

secret + transmitter

What can leak?

A subset of committed architectural state, at each point in the program’s dynamic execution.

secret <- load(0x5) secret <- load(©0x5)
secret <- secret + 1 Dummy<- load(secret)
secret -> store(0x5)

secret does not leak

(assume ‘+’ data independent) secret leaks

6.888 L6-Transient Side Channels 24

secret + transmitter

What can leak?

A subset of committed architectural state, at each point in the program’s dynamic execution.

secret <- load(©x5) secret <- load(©x5) secret <- load(@©x5)
secret <- secret + 1 Dummy<- load(secret) if (false)
secret -> store(0x5) Dummy<-1load(secret)

secret does not leak

(assume ‘+’ data independent) secret leaks secret does not leak

6.888 L6-Transient Side Channels 24

I secret + {Transient,

} transmitter

secret <- load(©x5)
secret <- secret + 1
secret -> store(0x5)

secret <- load(0x5)
Dummy<- load(secret)

secret <- load(0x5)
if (false)
Dummy<-load(secret)

secret
secret does not leak

transmitter
secret leaks

6.888 L6-Transient Side Channels

secret does not leak

25

secret + {Transient, } transmitter

secret <- load(©x5) secret <- load(@x5) secret <- load(©x5)
secret <- secret + 1 Dummy<- load(secret) if (false)
secret -> store(0x5) Dummy<-load(secret)
secret transmitter
secret does not leak secret leaks secret does not leak

secret + Transient secret :

6.888 L6-Transient Side Channels 25

secret + {Transient,

} transmitter

secret <- load(©x5)
secret <- secret + 1
secret -> store(0x5)

secret <- load(0x5)
Dummy<- load(secret)

secret <- load(0x5)
if (false)
Dummy<-load(secret)

secret
secret does not leak

transmitter
secret leaks

secret + Transient secret : | |

secret does not leak

secret leaks

6.888 L6-Transient Side Channels

secret does not leak

25

secret + {Transient,

} transmitter

secret <- load(©x5)
secret <- secret + 1
secret -> store(0x5)

secret <- load(0x5)
Dummy<- load(secret)

secret <- load(0x5)
if (false)
Dummy<-load(secret)

secret
secret does not leak

transmitter
secret leaks

secret + Transient secret : | |

secret does not leak

secret leaks

6.888 L6-Transient Side Channels

secret does not leak

o

secret leaks (!)

25

Leakage Summary

{Transient, Non-transient} secret x {Transient, Non-transient} transmitter

Transient + Transient

Non-transient + Transient

6.888 L6-Transient Side Channels 26

Leakage Summary

{Transient, Non-transient} secret x {Transient, Non-transient} transmitter

Transient + Transient
Non-transient + Transient
Non-transient +
Non-transient

Subset of committed
arch state

6.888 L6-Transient Side Channels 26

Leakage Summary

{Transient, Non-transient} secret x {Transient, Non-transient} transmitter

Transient + Transient

Non-transient + Transient

Non-transient +
Non-transient

(Larger?) Subset of committed
arch state.
6.888 L6-Transient Side Channels Depends on what speculation.

Subset of committed
arch state

Leakage Summary

{Transient, Non-transient} secret x {Transient, Non-transient} transmitter

All of program memory

Transient + Transient

Non-transient + Transient

Non-transient +
Non-transient

(Larger?) Subset of committed
arch state.
6.888 L6-Transient Side Channels Depends on what speculation.

Subset of committed
arch state

Next Lecture:

Tiwari et al. Complete information flow tracking from the
gates up. ASPLOS. 2009.

I)

CSAIL

https://people.cs.uchicago.edu/~ftchong/papers/ASPLOS-09-glift.pdf

