
Transient Side Channels

Mengjia Yan
Fall 2020

Based on slides from Christopher W. Fletcher

Reminder

• 1st paper review due midnight on 09/27 (before the next lecture)

• You will receive an invitation from HotCRP
• https://mit-6888-fa20.hotcrp.com/

6.888 L6-Transient Side Channels 2

https://mit-6888-fa20.hotcrp.com/

Micro-architecture Side Channels

A Channel
(a micro-architecture structure)Victim

Attacker

{Transient, Non-transient} {Cache, DRAM, TLB, NoC, etc.}X

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

6.888 L6-Transient Side Channels 3

Recap: 5-stage Pipeline

Write-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wdrd2

we

IRPC

6.888 L6-Transient Side Channels 4

5-stage Pipeline

• In-order execution:
• Execute instructions according to the program order

time t0 t1 t2 t3 t4 t5 t6 t7
instruction1 IF1 ID1 EX1 MA1 WB1
instruction2 IF2 ID2 EX2 MA2 WB2
instruction3 IF3 ID3 EX3 MA3 WB3
instruction4 IF4 ID4 EX4 MA4 WB4
instruction5 IF5 ID5 EX5 MA5 WB5

Write-Back
(WB)

I-Fetch
(IF)

Execute
(EX)

Decode, Reg. Fetch
(ID)

Memory
(MA)

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wdrd2

we

IRPC

6.888 L6-Transient Side Channels 5

Data Hazard and Control Hazard

time t0 t1 t2 t3 t4 t5 t6 t7

……

LD(R1, 0, R2) IF1 ID1 EX1 MA1 WB1

ADD(R2, 10, R3) IF2 ID2 EX2 MA2 WB2

BNE(R3, Loop) IF3 ID3 EX3 MA3 WB3

……

Loop:

6.888 L6-Transient Side Channels 6

Resolving Hazards

• Stall or Bypass

• Speculation (e.g., branch predictor)
• Guess a value and continue executing anyway
• When actual value is available, two cases

• Guessed correctly à do nothing
• Guessed incorrectly àrestart with correct value (roll back)

time t0 t1 t2 t3 t4 t5 t6 t7
……
LD(R1, 1, R2) IF1 ID1 EX1 MA1 WB1
ADD(R2, 10, R3) IF2 ID2 EX2 MA2 WB2
BNE(R3, Loop) IF3 ID3 EX3 MA3 WB3
……

Loop:

6.888 L6-Transient Side Channels 7

Branch Predictor

• Predict Taken/Not taken
• Not taken: PC+4
• Taken: need to know target address

• Predict target address
• Branch target buffer (BTB)
• Map <current PC, target PC>

• Use history information to setup the predictor

6.888 L6-Transient Side Channels 8

Complex In-order Pipeline

• Need complex bypass/stall/kill paths

• In real systems, EX/MA can take multiple cycles

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

6.888 L6-Transient Side Channels 9

Out-of-order Execution

• When the pipeline is stalled, find something else to do
• When we do out-of-order execution, we are speculating that previous

instructions do not cause exception
• If instruction n is speculative instruction, instruction n+i is also speculative

time t0 t1 t2 t3 t4 t5 t6 t7

LD(R1, 1, R2) IF1 ID1 EX1 MA1 MA1 MA1 MA1 WB1
ADD(R3, 10, R4) IF2 ID2 EX2 MA2 WB2
SUB(R4, 10, R5) IF3 ID3 EX3 MA3 WB3
……

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

6.888 L6-Transient Side Channels 10

Speculative & Out-of-Order Execution

Fetch Decode &
RenamePC

Branch
Prediction

Update predictors

In-Order

In-Order

Commit
(head of ROB)

Branch
Resolution

kill

kill
kill

kill

ALU MEM

Execute

Physical Reg. File

FALU ……

Physical Reg. File

Out-of-Order

Reorder Buffer
(ROB)

Dispatch logic:
Detect data dependency,

issue instructions to execute

11

Terminology

A speculative instruction may squash.
• When executed, can change uArch state

A Transient instruction will squash, i.e., will not commit.

A Non-Transient instruction will not squash, i.e., will eventually retire.

That is, transient instructions are unreachable on a non-speculative
microarchitecture.

6.888 L6-Transient Side Channels 12

AttackerVictim

General Attack Schema

• The difference between transient and non-transient side channels
• Whether the secret access or transmitter execution is transient

Access secret transmit (secret) recv()
Channel

6.888 L6-Transient Side Channels 13

Meltdown & Spectre

Kernel/User Pages

• In x86, a process’s virtual address space
includes kernel pages, but kernel pages are
only accessible in kernel mode
• For performance purpose
• Avoids switching page tables on context switches

• What will happen if accessing kernel
addresses in user mode?
• Protection fault

Virtual memory

Kernel pages

0x00000000

0xffffffff

User pages

6.888 L6-Transient Side Channels 15

Meltdown

• Problem: Speculative instructions can change uArch state, e.g., cache

• Attack procedure
1. Setup: Attacker allocates probe_array, with 256 cache lines. Flushes all its

cache lines
2. Transmit: Attacker executes

3. Receive: After handling protection fault, attacker performs cache side channel
attack to figure out which line of probe_array is accessed à recovers byte

……
Ld1: uint8_t byte = *kernel_address;
Ld2: unit8_t dummy = probe_array[byte*64];

ROB head

… LD2

LD1 …

Exception handling is deferred when the
instruction reaches the head of ROB.

6.888 L6-Transient Side Channels 16

Meltdown Type Attacks

• Can be used to read arbitrary memory
• Leaks across privilege levels
• OS ßà Application
• SGX ßà Application (e.g., Foreshadow)
• Etc

• Mitigations:
• Stall speculation
• Register poisoning

• We generally consider it as a design bug

6.888 L6-Transient Side Channels 17

Spectre Variant 1 – Exploit Branch Condition
• Consider the following kernel code, e.g., in a system call

Br: if (x < size_array1) {

Ld1: secret = array1[x]*64

Ld2: y = array2[secret]

}

Attacker to read arbitrary memory:
1. Setup: Train branch predictor
2. Transmit: Trigger branch misprediction; &array1[x] maps to some desired
kernel address
3. Receive: Attacker probes cache to infer which line of array2 was fetched

ROB head

… LD2

LD1

Br …

Always malicious?
No. It may be a benign misprediction.
We do not consider Spectre as a bug.

6.888 L6-Transient Side Channels 18

Spectre Variant 2 – Exploit Branch Target

• Most BTBs store partial tags and targets…
• <last n bits of current PC, target PC>

Br: if (…) {

… }

…

Ld1: secret = array1[x]*4096

Ld2: y = array2[secret]

Branch target
buffer (BTB)

Fetch

BTB predicts … Ld1, Ld2

……

Train BTB properly à Execute arbitrary gadgets speculatively

oxfff110

oxfff234

6.888 L6-Transient Side Channels 19

General Attack Schema

• Traditional (non-transient) attacks
• Data-dependent program behavior

• Transient attacks
• Meltdown = transient execution + deferred exception handling
• Spectre = transient execution on wrong paths

“Easy” to fix

Hard to fix

Hard to fix

AttackerVictim

Access secret transmit (secret) recv()
Channel

6.888 L6-Transient Side Channels 20

Takeaways

Transient execution attacks use (not “are”) side/covert channels.

“Spectre” (wrong-path execution) is fundamental.
Speculation/prediction is not perfect.

“Meltdown” (deferred exceptions) is not fundamental.

6.888 L6-Transient Side Channels 21

Transient v.s. Non-transient

Access secret transmit (secret) recv()
Channel

Classification

{Transient, Non-transient} secret x {Transient, Non-transient} transmitter

Secret accessed Transmitter Classification

Non-transient Non-transient Traditional side channels

Transient Non-transient Not possible on today’s machines?

Non-transient Transient Spectre

Transient Transient Spectre
23

Non-transient secret + Non-transient transmitter

What can leak?
A subset of committed architectural state, at each point in the program’s dynamic execution.

secret <- load(0x5)
secret <- secret + 1
secret -> store(0x5)

secret <- load(0x5)
Dummy<- load(secret)

secret <- load(0x5)
if (false)

Dummy<-load(secret)

secret does not leak
(assume ‘+’ data independent) secret leaks secret does not leak

6.888 L6-Transient Side Channels 24

Non-transient secret + {Transient, Non-transient} transmitter

secret does not leak secret leaks secret does not leak
Non-transient secret + Non-transient transmitter:

secret does not leak secret leaks secret leaks (!)

Non-transient secret + Transient secret : = =

secret <- load(0x5)
secret <- secret + 1
secret -> store(0x5)

secret <- load(0x5)
Dummy<- load(secret)

secret <- load(0x5)
if (false)

Dummy<-load(secret)

6.888 L6-Transient Side Channels 25

Leakage Summary

Non-transient +
Non-transient

Non-transient + Transient

Transient + Transient

Subset of committed
arch state

(Larger?) Subset of committed
arch state.

Depends on what speculation.

All of program memory

{Transient, Non-transient} secret x {Transient, Non-transient} transmitter

6.888 L6-Transient Side Channels 26

Next Lecture:
Tiwari et al. Complete information flow tracking from the

gates up. ASPLOS. 2009.

https://people.cs.uchicago.edu/~ftchong/papers/ASPLOS-09-glift.pdf

