The CHERI capability model:
Revisiting RISC 1n an age of risk

Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
Michael Roe

Presented by Richard Muri
MIT 6.888 — Secure Hardware Design

Motivation

Memory safety has been an active research area for many years, and continues to be an open
problem in the modern era. In fact, 70% of security patches made to Microsoft Windows
between 2007 and 2019 were addressing memory safety issues.!

Program security 1s dependent on maintaining isolation and pointer safety (bounds and
permissions on a memory region). Address translation 1s a insufficient mechanism for making
security guarantees. A stronger protection mechanism is required, but it must meet practical
demands such as compatibility and scalability.

Capability Hardware Enhanced RISC Instructions (CHERI) introduces a hybrid capability-
based memory system:

& Capabilities are hardware-accelerated objects with stronger safety guarantees than pointers

& Offers binary and source capability with existing systems

I'Trends, challenges, and strategic shifts in software vulnerability mitigation landscape. Miller 2019

Key Contributions

¢ ISA extension and architecture that supports hardware capabilities
¢ Support for incremental adoption

& Feasibly scalable method of providing fine grained, dynamic memory protection domains

Spot the buffer overflow

char buffer[128];
char c;

void fill_buf(char xbuf, size_t len)
{
for (size_t i =0; i =< len; i+)
buf[i] = 'b’;
}

int main(void)
ﬂ (void)buffer;

c="'c’';

printf("c = %c\n", c);
fill_buf(buffer, sizeof(buffer));
printf("c = %c\n", c);

return 0,

Virtual Addresses Aren’t Enough!

A key observation behind CHERI 1s address translation and page tables provide coarse-
grained inter-program isolation and protection, but are less useful for intra-program protection

& Address validity: associate protections with a region of memory (such as W"X)
¢ Paged virtual memory is the de facto modern technique for address validity
& If a program accesses a valid address, it can use the memory
& Pointer safety: associate protections with an object
¢ Capabilities provide bounds, type information, and permissions for individually allocated objects

& A program must use a sufficiently privileged capability to access an object, even if it owns the
whole page

& Traditional systems view memory as “flat”, while capabilities are “segmented”

Threat Model

Unlike many of the papers we have read in 6.888, CHERI does not explicitly define a threat
model. It focuses on introducing a framework of primitives to build a secure ecosystem on
top. My interpretation of an implicit threat model

& A user space process gains fine-grained memory segmentation to provide memory safety
¢ Trusted:

& Hardware

& Operating System

¢ Firmware

¢ Compiler

& Forces ‘intentionality’ to memory accesses — capabilities bundle bounds and permission
checks

Discussion

In which people other than Richard express their opinions about CHERI

Richard’s Opinion

Strengths:
& Unforgeability provides a ‘root of trust’ approach to memory access
& CHERI takes an address the problem, not the symptom approach to spatial memory safety

& Heavy emphasis is placed on compatibility — until you have code for it, a processor is just
cleverly arranged sand

Weaknesses:

& This paper advertises amazing new primitives, but then largely describes theory or future
work when it comes to actually using new capabilities

& [would like to see some presentation of the problems CHERI is solving — what memory
safety vulnerabilities would CHERI have caught? What vulnerabilities does CHERI fail to
catch?

®

What 1s a capability?

Capabilities replace pointers as the key to accessing memory

Analogous to a fat pointer — a starting address plus a valid range

Includes permission field describing WRX data/capability privileges

Enforces run-time invariants, such as bounds checking or permission checking

& Hardware exception issued if capability used incorrectly

Single bit validity tag

permissions (31 bits) I

base (64 bits)
length (64 bits)

256 bits

Capability Architecture

& Capabilities reside in 256 bit registers
¢ Dedicated separate size 32 register file

& Acts as an extension to existing ISA

Mnemonic

CGetBase
CGetlLen
CGetTag
CGetPerm
CGetPCC

CIncBase
CSetLen
CClearTag
CAndPerm

CToPtr

CFromPtr

CBTU
CBTS

CLC
CSC
CL[BHWD][U]

CS[BHWD]

CLLD
CSCD

CIR
CJALR

Description

Move base to a GPR

Move length to a GPR

Move tag bit to a GPR

Move permissions to a GPR
Move the PCC and PC to GPRs

Increase base and decrease length
Set (reduce) length

Invalidate a capability register
Restrict permissions

Generate C0-based integer pointer from
a capability

ClIncBase with support for NULL casts
Branch if capability tag is unset
Branch if capability tag is set

Load capability register

Store capability register

Load byte, half-word, word or double
via capability register, (zero-extend)
Store byte, half-word, word or double
via capability register

Load linked via capability register
Store conditional via capability register

Jump capability register
Jump and link capability register

Capability Co-processor Block Diagram

Scheduler Decod%(Execute ><

Memory >< Writeback
Access

Put Capability
Instruction

|

Exchange
Operands

|

Get
Address

Commlt
Writeback

Offset

I Address j

|

Request

Read

Speculative Write

Forwarding Register File

Write

_Capability Coprocessor

Protecting Capabilities

¢ Tagged memory prevents capability manipulation — all non-capable stores invalidate in-
memory capabilities

& All capability manipulations must happen explicitly via the ISA
& Protection mechanisms are implemented in hardware to avoid requiring syscall overhead
& Capabilities are “unforgeable”

& All changes to capabilities result in privilege de-escalation

¢ Starting with the One Capability to Rule Them All arbitrary restricted domains can be
constructed by deriving new capabilities

Compatibility 1s Key

All loads and stores happen via capabilities, but legacy software does not call the CHERI
ISA

Dedicate special capability registers to instruction fetch and load/store

& All memory accesses are intercepted, and the pointer 1s used as an offset to the base special

register

¢ Legacy code can call CHERI libraries which offer internal segmentation

& CHERI code can call legacy code, and set coarse limits via special registers

Not perfect; pointer subtraction unsupported, and code relying on C undefined behavior
with significant bounds violations may fail to compile

Poll Question

¢ What kind of memory safety does CHERI provide?

& Spatial safety
¢ Temporal safety
& Spatial and Temporal safety

& None of the above

CHERI and the Attack Model

Output data
variable

Data Integ

Interpret the
output data V.B.
Data Space
Randomization

Address Space
Randomization

VILB.
Data-flow Integrity

®

Non-executable Data /

S OK: Et ern al Instruction Set Randomization

1 Code corruption Control-flow Data-only Information
War in Memory.

Szerekes et al.

& 256 bits per capability significantly increases memory overhead

Scalability

Simulation based limit study on pointer intensive Olden benchmark

Overhead [%]

Compared against other hardware accelerated capability/fat pointer

implementations

Overhead [%]

CHERI is competitive or better than the existing works

S
=]
<
o
=
—
o
-
&

compared to 128 bit variant | Total instructions — optimistic count)

1ol

Total instructions — pessimistic (count)
0 = ==
Sl » A & & -
=)

Figure 3: Simulated overheads of Olden benchmarks

Overhead [%]

Overhead [%]

Pertormance Overhead

« Benchmarks performed using a 100 MHz MIPS soft core on FPGA
* Includes CCured software as a reference

UE Allocation
Computation
In Total

®
o

3 &

b3

= =

3)) =

]

o

= =

e

-4

5

o

—e— Trecadd —=— Bisort
Perimeter —e— MST

8 32 64 128 256 512 1024

™ ."I
Lljl_ CI-.:-

> & AP
‘bb 6\0 . G.‘Qb “\C—" ’l‘b ()
& & Q> & .
&S 3 &8 Q"Q

CCured CHERI . . .
Figure 5: Slowdown for CHERI at different heap sizes (KB)

Figure 4: Benchmark results comparing unmodified MIPS
code to software and hardware enforcement

Potential Cool Uses for CHERI

& Capabilities allow arbitrary segmentation of object permissions — thus W”X permissions
can be enforced on JITted code, with a more privileged program having access to the W
capability

& Const char buffer[] can be enforced at runtime

¢ Set the capability giving access to buffer as read only

& Passing capabilities at function boundaries prevent the confused deputy problem

¢ Confused deputy 1s when user space code tricks more privileged code into doing something it
shouldn’t

¢ By passing a capability, the privileged function 1s only as capable as the user space program when
utilizing the capability

Discussion Questions

Which 1s more important for memory safety researchers to protect against contemporary
attacks: enforcing spatial memory safety, or temporal memory safety?

I've also heard of capability-based OSes - how does this principle in the context of an ISA
relate to that? Does CHERI improve when codesigned with the OS/runtime?

Is CHERI the end of the line in the memory safety space (slight optimizations aside), or do
we suspect that there will be larger breakthroughs down the line?

How much safety does CHERI provide in practice? An unwitting program can still provide
access to an overly privileged capability.

