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Goal: Constant-Time Code

• Constant-time code: timing is independent of secrets
• Variable-time instruction
• Memory accesses
• Conditional branches
• Early termination

if (sec)
x = a;

} else {
x = b;

}
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Motivation: Constant-Time Code is Messy

• Existing techniques include using bitmasks, CMOVs, ORAM, etc.
• The problem: 
• Manually optimized code is messy/unreadable/difficult to reason about 

correctness
• Automatically obfuscated code incurs high performance overhead

Rane et. al. Raccoon: closing digital side-channels through obfuscated execution. SEC’15

x = (sec & a) | (~mask & b)
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if (sec)
x = a;

} else {
x = b;

}
(sec) CMOV x = a
(!sec) CMOV x = b



Threat Model

• Attacker can observe execution time of target programs

• Not concretely stated in the paper
• Instruction execution “trace” should be independent from secrets

• However, execution time is determined by micro-arch states
• Thus, miss a computer architecture model, characterized by which kinds of 

instructions can leak information and which can not, e.g., arithmetic 
instructions
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Overview

• A DSL for writing readable constant-time code

• Transform secret control flow to constant-time
• Transform code that leaks secret via early return, conditional branch
• Reject programs that leak secret via memory accesses, loop iterations, 

variable-time instructions

• Ensure transformations can be performed safely
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A DSL Trade-offs Among

Expressiveness

PerformanceSecurity

An example:
To address the imprecision problem of static 
information flow analysis, remove pointers 
and disallow recursive typed references
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Strengths (Potential Long-term Impacts)

• Provide a great abstraction 
• For SW developers, easy to write constant-time programs
• For compiler developers, use different techniques to achieve the constant-

time goal
• ctselect compiles to a series of bitmasks or the CMOV instruction on x86_64

• For HW people, performance optimization for execution on public data

• Well-defined typing systems for information flow tracking and formal 
verification

• A user study to show how easy to write programs using FaCT
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A Controversial Contribution

• Reject programs that leak secret via memory accesses, loop iterations, 
variable-time instructions
• Put the pressure on programmers. What about AES? Is it really a good trade-off?
• How much time is spent on manually fixing these problems?

x = buffer[secret_index];

O(n)O(1)
for (uint32 i from 0 to len buffer) {

if (i == secret_index) {
x = buffer[i];

}
}
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Limitations/Questions

• Impacts of compiler optimizations of FaCT generated code
• Security evaluation using deduct is not sufficient
• More information about generated binary sizes may help reason about the 

performance improvements

• It would be helpful to elaborate more on the trade-offs/reasons for 
picking the specific design choice in the paper

Reparaz et al. Dude, is my code constant time? DATE’17 
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FaCT Technique Details



Explicit Secrecy and Information Flow Tracking

• How to handle st(sec_val, pub_addr) ?

secret uint32 decrypt(
secret uint32 key,
public uint32 msg) {

if (key > 40) {
...

}

...

}

secret uint32 decrypt(
secret uint32 key,
public uint32 msg) {

if (key > 40) {
...

}

...

}
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Type system detects leaks via... 

• Conditional branches

• Early termination

• Function side effects

• Memory access patterns

• Direct assignment

• … 

FaCT transforms these

FaCT disallows these
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Transform Secret Conditionals

x = -s & 40 | (s-1) & x;
if (s) {

x = 40;
} else {

x = 19;
y = x + 2;

}

x = (s-1) & 19 | -s & x;
y = (s-1) & (x + 2) | -s & y;
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Transform Secret Returns

if (s) {

if (!done) {

rval = 40;

done = true;

}

}

if (s) {  
return 40;

}

rval = (-s & (done-1)) & 40 | ...
done = (-s & (done-1)) & true | ...
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Transform Conditional Functions

void foo(secret mut uint32 x, secret bool 
callCtx) { 

x = ctselect(callCtx, 5, x);

} 

... 

foo(x, sec);

void foo(secret mut uint32 x) {
x = 5; 

} 
... 
if (sec) {

foo(x); 
}
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Unsafe transformations

Check for out-of-bounds accesses; Solve constraints using Z3

x = -(j < secret_len) & arr[j]
| ((j < secret_len)-1) & x;

What if j > len arr?

Out of bounds access!

if (j < secret_len) {
x = arr[j];

}
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Porting code to FaCT

• Rewrite the whole library
• Rewrite a function (and callees)
• Rewrite a chunk of code

.c

.fact obj

clang linker

FaCT

Final binaryobj
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Real Code Needs Escape Aatches

• Declassify secrets to public
• secretbox:

• TLS: 

• Assume constraints for solver
• Function preconditions
• Invariants for mutable variables

• Extern function declarations
• OpenSSL:  AES + SHA1 implementations

b = pmac[declassify(i)];

if (!declassify(crypto_verify(...))
return false;
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Performance Evaluation
• Optimized with same optimization flags
• Empirically tested to be constant-time

donna secretbox ssl3 TLS
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Understanding constant-time code
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Task 3 Task 4
secret memzero padding check

Writing constant-time code
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Discussion Questions on HW/SW

• Given modern computers have execution units that may not be constant time 
(specifically division), even a static flow of instructions may not execute with 
constant total time. What would it take to make sure said execution units operate 
in a constant time? Division is rare in crypt, so maybe just avoiding it altogether? 

• What other processor optimizations exist that will make constant-time operation 
hard or impossible? 

• If a given piece of code is made timing-insensitive, is it possible for power side-
channels to still be present?
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Discussion Questions on Code Transformation

• Would a lower level solution to the constant time problem be more effective?

• Could we further extend such constant-time reasoning to the optimizer to 
formally verify the entire compilation flow?

• Is there a more efficient way for the front-end compiler to operate than return 
statements -> conditionals and then conditionals -> constant time code?
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Discussion Questions on Usage

• Are there any cryptographic constructs which are unable to be expressed in 
FaCT?

• Has there been any further user studies done? If so, what have they shown? If 
not, what could we expect to see?

• How well do secrets propagate through the type system in practice? For example, 
if I as an inexperience cryptographer produce a cipher where I mark my salt, my 
key, and my plaintext as secret, is this sufficient? Is it overkill?
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