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Goal: Non-Interference
• Non-Interference: a change in a High input can never be observed or 

inferred from changes in the Low output. That is, High data should never 
leak to Low
• Confidentiality-Integrity Duality:  “High” is more conservative label. 

Secret or Tainted/Untrusted.
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Information Flow for Privacy

• General lattice policies
• Secret vs. Unclassified Data
• Secret: data with restricted access permission
• Unclassified: data with unrestricted access

• Enforce the property of non-interference: 
• Verify information never flows from high to low.
• Secret information is never used to modify unclassified data



Information Flow for Integrity

• Trusted vs. Untrusted Tasks
• Trusted: processes which are critical to the correct functionality of the space 

vehicle systems
• Untrusted: mission processes, diagnostics, anything whose malfunction will 

not cause a vehicle loss

• Enforce the property of non-interference: 
• Verify information never flows from high to low.
• Untrusted information is never used to make critical (trusted) decisions nor to 

determine the schedule (real-time)
router
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Threat Model

• Low output can include 
• Program output
• Timing
• Contention on system resources

• Not include
• Untrusted hardware component problem 
• Physical attacks that may tamper with memory
• Non-digital side-channel attacks (power distribution and RF signals)
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Highlights

• A secure SW/HW co-design which is verifiable

• Gate-level information flow tracking
• More precise than conventional IFT

• ISA restrictions to prevent taint explosion
• Handling conditional branch
• Handling loops
• Handling loads/stores
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A new way to look at IFT from 
a new perspective.

Usage: GLIFT + Information Flow Policy 



The Vision: Hardware Design for 
Software Security Verification
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Information Flow Analysis

• Information flows through Space
• Registers, Memory, Micro-architectural state etc.

if (high == 1)
out1 =  1 

else
out2 = 0

(implicit flow)

out1 = ld(high)

(explicit flow)



Static and Dynamic Information Flow Tracking

• Static analysis is conservative (need alias analysis for precise results)
• Dynamic analysis has difficulty in analyzing implicit flow
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if (high == 1)
out1 =  1 

else
out2 = 0

(implicit flow)

out1 = ld(high)

out2 = ld(low)

(explicit flow)

out2 is tainted if the 
address or the memory 

value is tainted 



Information Flow Analysis

• Information flows through Space
• Registers, Memory, Micro-architectural state etc.

• Information flows through Time
• Observable events such as PC, I/O channels etc.

Memory

CPU A CPU B



The paper addresses two challenges

• How to account for all information flows in a system?
à So that the security property can be verifiable
à Avoid taint explosion

• How to construct practical systems that won’t leak?
à Use the concept of GLIFT to guide the design
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High-level View: Track all flows

• Flatten design to a (giant) state machine
• Does every output have desired label?

Separation Kernel 
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High-level View: Track all flows

• Insight: All flows explicit at the gate level
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High-level View: Track all flows

• Outputs: Logic function of state and inputs
• Output Labels: Logic func. of state, inputs, and labels

Separation Kernel 
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Analysis Technique: GLIFT
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Shadow AND for labelsAND

Conservative.

If one of a and b is tainted, 
the output is tainted.



Motivation: Require Precise Information Flow 

• Conventional OR-ing of labels monotonic

clock

reset
D Q 010101…
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Precise Information Flow: AND Gate
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When a=0, b can not affect 
the value of the output.

à no-interference



Analysis Technique: GLIFT
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Sound Composition of Shadow Logic
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MUX: Gatekeeper of trust
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Implicit Information Flows: Taint Explosion

Instr Mem

+4

jump target
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R2
Reg
File

is jump?

through
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PCPC

if (secret==1)
out =  1

tmp = 5
out

tmp

Conditional execution taints critical state (PC)



Convert Implicit Flow to Explicit Flow
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Instr Mem
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Convert Implicit Flow to Explicit Flow
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Instr Mem
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Similar Mechanisms for Loop/Load/Store

• Variable length loops à fixed size loops (bounding)
• Indirect loads/stores à Direct loads/stores

• Recommend to read their follow-on work:
• Execution Leases: A Hardware-Supported Mechanism for Enforcing Strong 

Non-Interference; Tiwari et al.; MICRO’09
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- Harder to program and inefficient
+ Verifiable system



Evaluation

+ Security
- Area overhead/Power consumption
- Performance overhead
- Programmability

Appropriate use cases:
• When critical or sensitive operations need to be performed, a co-processor 

augmented with these abilities could be an attractive option.
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Discussion Questions



Discussion Questions on Taint Tracking

• Who designates an input as untrusted/trusted? Where in the 
architecture/implementation does an input first get marked as 
untrustworthy?

• Can/should there be a method of promoting data from untrusted to 
trusted? (from High to Low)

• How does the GLIFT method handle optimizations such as out-of-order 
execution, speculation etc? Will the proposed architecture be able to 
detect covert and side channel attacks such as Meltdown and Spectre?
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Example MLS System
Example Satellite Application. [Tzvetan Metodi, Aerospace Corp.]

Kernel and
Diagnostics Crypto

Command
Telemetry
Interface

Time 
Keeping

I/O 
Secret

Mission
Secret

Mission
Unclass.

Interrupt Handlers (Sensitive)

Non-sensitive

Sensitive

Note: Since this is not a real schedule, the processes are not in any sensible execution order

Execution Time
Primary Execution Schedule

Interrupt Handlers (Non-sensitive)



Example: Satellite System

Untrusted & Unclassified

Untrusted & Secret

Trusted & Unclassified

Trusted & Secret

Kernel,  Interrupt Handlers (Unclassified), Time Keeping Programs

Diagnostics, Telemetry Interfaces Custom code on Secret data

Libraries (e.g. encryption) that operate on Secret data



Discussion Questions on Use Cases
• One specific use case: What if we needed to load in a new firmware blob to compute a new 

function. Could we send it in encrypted and have a way of validating and then trusting it?

• In the end, it seems the ISA is the secure step, and the trust bits are just useful in validating the 
design. (Does the restricted ISA make program secure against side channels?)

• This kind of processor would be a pain to program. If most applications on it are small, important 
kernels, such as AES, would it not be better to produce a specially tuned ASIC/IP core?

• Are there any programs or algorithms that are rendered impossible (or extremely difficult) to 
write as a result of the limitations that they've placed on loops?
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Discussion Questions on Future Work

• Rather than implementing a CPU with this restricted ISA, since this is used only for edge case 
computation, could an FPGA-based enclave in a traditional CPU be used with this ISA instead as a 
cost-effective implementation?

• Rather than apply the concept of gate level flow tracking to the ISA, I envision further work that 
could apply the same concepts to FPGA tooling.
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Great idea. 
Read “HyperFlow: A Processor Architecture for Nonmalleable, Timing-

Safe Information Flow Security”; Ferraiuolo et al. CCS’18



Discussion Questions on Side Channels

• How does the GLIFT detect a side channel/covert channel? What is the “sink” of taint tracking 
in such cases?

• If we do not plan to use GLIFT to track side channel leakage, do we need to ISA restriction on 
indirect loads? (not indirect stores)

• How GLIFT different from static taint analysis and traditional dynamic taint analysis?
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