
Complete Information Flow
Tracking from Gates Up

Mohit Tiwari, Xun Li, Hassan M G Wassel, Frederic T Chong, Timothy Sherwood

Presented by Mengjia Yan
Based on slides from Mohit Tiwari

Goal: Non-Interference
• Non-Interference: a change in a High input can never be observed or

inferred from changes in the Low output. That is, High data should never
leak to Low
• Confidentiality-Integrity Duality: “High” is more conservative label.

Secret or Tainted/Untrusted.

High

Low
LowX

“system”
Source Sink

Information Flow for Privacy

• General lattice policies
• Secret vs. Unclassified Data
• Secret: data with restricted access permission
• Unclassified: data with unrestricted access

• Enforce the property of non-interference:
• Verify information never flows from high to low.
• Secret information is never used to modify unclassified data

Information Flow for Integrity

• Trusted vs. Untrusted Tasks
• Trusted: processes which are critical to the correct functionality of the space

vehicle systems
• Untrusted: mission processes, diagnostics, anything whose malfunction will

not cause a vehicle loss

• Enforce the property of non-interference:
• Verify information never flows from high to low.
• Untrusted information is never used to make critical (trusted) decisions nor to

determine the schedule (real-time)
router

X

passenger

avionics

Threat Model

• Low output can include
• Program output
• Timing
• Contention on system resources

• Not include
• Untrusted hardware component problem
• Physical attacks that may tamper with memory
• Non-digital side-channel attacks (power distribution and RF signals)

6.888 Fall 2020 5

Highlights

• A secure SW/HW co-design which is verifiable

• Gate-level information flow tracking
• More precise than conventional IFT

• ISA restrictions to prevent taint explosion
• Handling conditional branch
• Handling loops
• Handling loads/stores

6.888 Fall 2020 6

A new way to look at IFT from
a new perspective.

Usage: GLIFT + Information Flow Policy

The Vision: Hardware Design for
Software Security Verification

Applications

Language

Logic Gates

Microarchitecture

Instruction Set (ISA)

Compiler/OS

Se
cu

rit
y

Pr
op

er
tie

s

Sound
Information Flow
Analysis

Hardware/Software
Design for Verifiable
Security

Information Flow Analysis

• Information flows through Space
• Registers, Memory, Micro-architectural state etc.

if (high == 1)
out1 = 1

else
out2 = 0

(implicit flow)

out1 = ld(high)

(explicit flow)

Static and Dynamic Information Flow Tracking

• Static analysis is conservative (need alias analysis for precise results)
• Dynamic analysis has difficulty in analyzing implicit flow

6.888 Fall 2020 9

if (high == 1)
out1 = 1

else
out2 = 0

(implicit flow)

out1 = ld(high)

out2 = ld(low)

(explicit flow)

out2 is tainted if the
address or the memory

value is tainted

Information Flow Analysis

• Information flows through Space
• Registers, Memory, Micro-architectural state etc.

• Information flows through Time
• Observable events such as PC, I/O channels etc.

Memory

CPU A CPU B

The paper addresses two challenges

• How to account for all information flows in a system?
à So that the security property can be verifiable
à Avoid taint explosion

• How to construct practical systems that won’t leak?
à Use the concept of GLIFT to guide the design

6.888 Fall 2020 11

High-level View: Track all flows

• Flatten design to a (giant) state machine
• Does every output have desired label?

Separation Kernel

P0 P1

CPU

Mem I/O Dev

S/W
H/W

Secure System

001000101

external
inputs

Combinational Logic

external outputs

clock
state

Equivalent State Machine

1001110101111011
0001011001111111

High-level View: Track all flows

• Insight: All flows explicit at the gate level

Separation Kernel

P0 P1

CPU

Mem I/O Dev

S/W
H/W

Secure System

001000101

external
inputs

external outputs

clock
state

Equivalent State Machine

1001110101111011
0001011001111111

High-level View: Track all flows

• Outputs: Logic function of state and inputs
• Output Labels: Logic func. of state, inputs, and labels

Separation Kernel

P0 P1

CPU

Mem I/O Dev

S/W
H/W

Secure System

001000101

external
inputs

external outputs

clock
state

Equivalent State Machine

1001110101111011
0001011001111111

Analysis Technique: GLIFT

a b

o

t

o

a bt

t

Shadow AND for labelsAND

Conservative.

If one of a and b is tainted,
the output is tainted.

Motivation: Require Precise Information Flow

• Conventional OR-ing of labels monotonic

clock

reset
D Q 010101…

11 0

Precise Information Flow: AND Gate

0 0

0

0 1

1 0
1 1

0 01
0 0
0 1

0 0010

0
0

1
0

00
0 1 0

0

0 1
a b o

a b

o

Use both inputs and input labels

untainted tainted

When a=0, b can not affect
the value of the output.

à no-interference

Analysis Technique: GLIFT

a b

o

t

o

a bt

t

b a

o

btta

t

Sound Composition of Shadow Logic

ba

o

s

t1 t2

to

a satts b sbtts

t1 t2

MUX: Gatekeeper of trust

a b

s 0

o

a b

s 1

o

a b

s *

o

Implicit Information Flows: Taint Explosion

Instr Mem

+4

jump target

R1

R2
Reg
File

is jump?

through
decode

PCPC

if (secret==1)
out = 1

tmp = 5
out

tmp

Conditional execution taints critical state (PC)

Convert Implicit Flow to Explicit Flow

6.888 Fall 2020 22

Instr Mem

+4

jump target

R1

R2
Reg
File

is jump?

through
decode

PC

if (secret==1)
out = 1

tmp = 5

P0 = secret
(P0) out = 1
tmp = 5

P0

out

P0 = secret
(P0) out = 1
tmp = 5

Convert Implicit Flow to Explicit Flow

6.888 Fall 2020 23

Instr Mem

+4

jump target

R1

R2
Reg
File

is jump?

through
decode

PC

if (secret==1)
out = 1

tmp = 5

P0

out

5

tmp

P0 = secret
(P0) out = 1
tmp = 5

P0 = secret
(P0) out = 1
tmp = 5

Similar Mechanisms for Loop/Load/Store

• Variable length loops à fixed size loops (bounding)
• Indirect loads/stores à Direct loads/stores

• Recommend to read their follow-on work:
• Execution Leases: A Hardware-Supported Mechanism for Enforcing Strong

Non-Interference; Tiwari et al.; MICRO’09

6.888 Fall 2020 24

- Harder to program and inefficient
+ Verifiable system

Evaluation

+ Security
- Area overhead/Power consumption
- Performance overhead
- Programmability

Appropriate use cases:
• When critical or sensitive operations need to be performed, a co-processor

augmented with these abilities could be an attractive option.

6.888 Fall 2020 25

Discussion Questions

Discussion Questions on Taint Tracking

• Who designates an input as untrusted/trusted? Where in the
architecture/implementation does an input first get marked as
untrustworthy?

• Can/should there be a method of promoting data from untrusted to
trusted? (from High to Low)

• How does the GLIFT method handle optimizations such as out-of-order
execution, speculation etc? Will the proposed architecture be able to
detect covert and side channel attacks such as Meltdown and Spectre?

6.888 Fall 2020 27

Example MLS System
Example Satellite Application. [Tzvetan Metodi, Aerospace Corp.]

Kernel and
Diagnostics Crypto

Command
Telemetry
Interface

Time
Keeping

I/O
Secret

Mission
Secret

Mission
Unclass.

Interrupt Handlers (Sensitive)

Non-sensitive

Sensitive

Note: Since this is not a real schedule, the processes are not in any sensible execution order

Execution Time
Primary Execution Schedule

Interrupt Handlers (Non-sensitive)

Example: Satellite System

Untrusted & Unclassified

Untrusted & Secret

Trusted & Unclassified

Trusted & Secret

Kernel, Interrupt Handlers (Unclassified), Time Keeping Programs

Diagnostics, Telemetry Interfaces Custom code on Secret data

Libraries (e.g. encryption) that operate on Secret data

Discussion Questions on Use Cases
• One specific use case: What if we needed to load in a new firmware blob to compute a new

function. Could we send it in encrypted and have a way of validating and then trusting it?

• In the end, it seems the ISA is the secure step, and the trust bits are just useful in validating the
design. (Does the restricted ISA make program secure against side channels?)

• This kind of processor would be a pain to program. If most applications on it are small, important
kernels, such as AES, would it not be better to produce a specially tuned ASIC/IP core?

• Are there any programs or algorithms that are rendered impossible (or extremely difficult) to
write as a result of the limitations that they've placed on loops?

6.888 Fall 2020 30

Discussion Questions on Future Work

• Rather than implementing a CPU with this restricted ISA, since this is used only for edge case
computation, could an FPGA-based enclave in a traditional CPU be used with this ISA instead as a
cost-effective implementation?

• Rather than apply the concept of gate level flow tracking to the ISA, I envision further work that
could apply the same concepts to FPGA tooling.

6.888 Fall 2020 31

Great idea.
Read “HyperFlow: A Processor Architecture for Nonmalleable, Timing-

Safe Information Flow Security”; Ferraiuolo et al. CCS’18

Discussion Questions on Side Channels

• How does the GLIFT detect a side channel/covert channel? What is the “sink” of taint tracking
in such cases?

• If we do not plan to use GLIFT to track side channel leakage, do we need to ISA restriction on
indirect loads? (not indirect stores)

• How GLIFT different from static taint analysis and traditional dynamic taint analysis?

32

Memory

CPU A CPU B

