
MI6 Secure Enclaves
... in a Speculative Out-of-Order 

Processor

Damian Barabonkov



Overview
● Goals of MI6
● Big Ideas
● Paper Feedback
● Motivation of MI6
● Threat Model
● Implementation
● Performance Analysis
● Discussion Questions



Goals of MI6
● Provide a processor specification capable of speculative and out-of-order 

execution

AND

● Protect process isolation against microarchitectural side channels



Big Ideas
● Secure Enclave 

○ With protection domains

● Trusted Security Monitor
○ Mediates enclave entry/exit
○ Verifies resource allocation

● Hardware Modifications
○ LLC set-partitioning
○ Separate memory pipelines per core to avoid data leak from resource contention
○ Speculation guard for security monitor
○ purge hardware instruction



Paper Feedback (Positive)
● Explains how cache queues (MSHR) work for uninformed reader

○ Upgrade Queue (UQ)
○ Downgrade Queue (DQ)
○ Downgrade-L1 Logic

● Provides proof-of-concept implementation on FPGA 

What do you think?



Paper Feedback (Needs Improvement)
● Was confused whether MI6 enclave was separate piece of secure 

hardware such as SGX and Apple enclave
● Definition of “protection domain” is relatively short for how important a 

concept it is to the paper

What do you think?



Motivation of MI6
● Attacks such as Spectre and Meltdown use microarchitectural side 

channels to leak data
● Breaking process isolation posses massive security threats
● Eliminating microarchitectural side channels is large value add

○ Minimal/acceptable performance loss
○ Software and hardware utilized to provide targeted solution



Motivation of MI6 (Example Side Channel)

Attacker would:

● prepare branch 
misprediction

● access a secret value in 
array1

● transmit the secret via a 
cache side channel 
through array2 Credit: Mengjia Lec 6



Motivation of MI6 (Current Status of Tech)
● No production processor has any strong defences against 

microarchitectural side-channel data leaks

● Precursor research Sanctum presents security monitor
○ Memory/cache hierarchy unrealistic
○ Does not support complex processor microarchitecture



MI6 
Solves all of these 
shortcomings



Threat Model
Attacker reach: 

● Compromise any operating system and hypervisor present
● Launch malicious enclaves
● Has complete knowledge of microarchitecture design

Attacker can:

● Analyse passively observed data (page fault addresses)
● Launch active attacks (memory probing)
● Exploit speculative state (branch prediction) 



Not in Threat Model
● Attacker does not have physical present to hardware
● Attacks that rely on sensor data are considered physical
● No Denial-of-Service protection
● No protection against hardware bugs



Poll Question
What breaks timing independence 

when using network card (NIC)?
(Select all that apply)

1) Processor LLC Cache
2) Hardware mapped memory
3) NIC Queue Latency
4) Security Monitor verifying NIC 

resources 
5) NIC Queue Size



Implementation
Note: Enclave is not a separate, physical piece of hardware on processor. 
Simply a terminology for a process isolated from rest.

Main Implementation Points:

● LLC partitioned cache sets per core
● Security monitor ensures validity and isolation of hardware resources
● Dedicated cache pipeline queues per core (MSHR partitioning)
● DRAM controller constant latency
● purge instruction to clear enclave state before context switch



Implementation (LLC set partitioning)
● Each core can run a single enclave 

at a time
● Each enclave owns predetermined 

sets of LLC

Prevents cache line contention between 
enclaves

Eliminates cache timing side-channels



Implementation (Security Monitor)
● Trusted software

○ Can use hardware to authenticate its own integrity

● Resides in highest level of security permission
○ Interposes scheduling and physical resource allocation decisions 

made by (possibly untrusted) OS
○ Asserts that one enclave’s resources do not overlap with another’s
○ Scrubs resources before they are available for reallocation
○ Facilitates messaging between enclaves

● Speculative execution disabled to prevent hijacking and 
misuse



Implementation (Security Monitor cont.)
When is it invoked?

● Upon enclave creating/destruction
● When an enclave is scheduled in/out
● When memory is granted to an enclave

Also

● When an enclave performs an OS system call
● When an enclave needs to communicate with another



Implementation (Security Monitor cont.)
How does the Security Monitor handle communication?

● Implements primitive to share 64B messages between 
enclaves

● Implements privileged memcopy between buffers of 
equal size of two enclaves

● Responds to “read/write” of OS buffer using memcopy

Comm timings are padded to a constant latency (zero leakage) 
or a fixed set of latencies (limited leakage).



Implementation (MSHR partitioning)
● Each core will have dedicated MSHR and upgrade queue for memory 

requests to cache
● Downgrade queue takes 1 cycle per MSHR index, therefore never blocks

Prevents contention for cache accessing among enclaves

Credit: MI6 
paper, pg 48



Implementation (DRAM constant latency)
● Memory accesses to DRAM are aggregated from all cores into DRAM 

controller
● Controller usually reorders accesses to group ones that target same 

memory banks

Simple Solution:

● Each access to DRAM should take constant time, regardless of grouping
● Eliminates controller timing-based side-channels



Implementation (purge instruction)
Problem

● Upon context switch, swapping an enclave out of a core may leave residual 
side-channel state
○ Branch prediction trained
○ Cache buffer queues may be non-empty 

Solution

● purge instruction clears all side-channel state before enclave leaves
● L1 and TLB caches flushed
● Note: L2 does not need to be flushed since enclaves do not share cache sets



Performance Analysis
● Implemented on FPGA emulator (AWS F1 FPGAs)
● Tiered performance analysis
● 16.4% average slowdown for protected programs

Measure performance hits for every MI6 overhead variable

○ BASE ー baseline
○ FLUSH ー flushes per-core microarchitectural states at every context switch
○ PART ー set-partition LCC of BASE processor
○ MISS ー changes in organization of LLC MSHRs of BASE processor
○ ARB ー increase latency of LLC pipeline for BASE processor to simulate round-robin arbiter
○ NONSPEC ー executes memory instructions non-speculatively on BASE processor
○ F+P+M+A ー FLUSH + PART + MISS + ARB



Performance Analysis (cont.)

LLC misses in 
BASE and PART

Performance 
Overhead of MI6



Discussion Questions
1. This method for securing side-channels is patchwork approach, targeting 

specific weak areas of architecture. Is this approach fool proof and 
enough?

2. Can contention in the security monitor itself due to simultaneous 
requests from multiple different enclaves leak information?

3. When is it simply cheaper/easier to run secure software on a dedicated 
CPU vs. sharing a CPU and using secure enclaves?


