Data Oblivious ISA Extensions
for Side Channel-Resistant and
High Performance Computing

Jiyong Yu, Lucas Hstung, Mohamad El Hajj, Christopher W. Fletcher

Presented by Brandon John

Motivation

® Rise of Side Channel attacks

& Current SW workarounds for data-oblivious operation:
& Constant time: cmov instead of branches
& Cache side channels: Loop over entire memory to retrieve one value

& Both are slow and in many cases not actually guaranteed to be safe!

& Solution: Need contract in ISA as to how microarchitecture acts when
handling secure data

Threat Model

& Adversary 1s software running as supervisor or usetr.
& Assume shielding such as SGX enclave
& Non goals:

&Power/EM side channels

&Integrity

& Availability

Overview

& Dynamic sensitive data tracking ¢ Oblivious Memory Extension
& Labels all registers and memory as Confidential or Public & Scratchpad area for fast
; : , memory access
& All mstructions: Operands are either or a . :
; _ ¢ Invisible to everything but the
& Confidential + ; secure process

¢ Operate in constant time

¢ Side effects must be hidden

¢ Output marked confidential
& Confidential +

¢ Label violation / Label fault
¢ Public + /

¢ Performance optimizations allowed

Thoughts?

My Thoughts

& Side channel resistance achieved without & All DRAM accesses are doubled due to need
significant slowdown for the general case ':10 store the 1 bit label separately from the
ata
& Still allows: Super scalar, speculative, out of ; _ .
order execution ¢ “Our slowdown [2.17x] relative to insecure 1s
R caused by the compiler not optimizing code
& Secrecy propagation inspired by GLIFT around ocld instructions”
& Minor area cost (<5%) ¢ Unclear how much of slowdown is due to

optimization issues
¢ 1.7x to 8.8x speedup compared to current

G S e S ¢ That said, still clearly faster than bitslice

¢ The proofs were entirely beyond my
comprehension

Current Data-Oblivious Code Issues

¢ Branch, Jump, Memory speculation
¢ Can reveal aliased resources

& Sub-address optimizations

¢ Can’t rely on whole cache line to be
treated uniformly

¢ Is there even a guarantee in the ISA that
cache lines are 64 bytes?

¢ Input-dependent math

& Multiply/Divide non constant-time

® Microcode

¢ No guarantee that any operations
(cmov, etc.) are constant-time

¢ Other data-dependent optimizations

& Compression + speculation are allowed by
the ISA

Classification

oseal

Marks register as
confidential

ounseal

Marks register as public.

Serializing!

ISA Adjustments

Safe Alternatives

oadd, oaddi, etc.
Functions like add, addi

Must be implemented data-
obliviously

Output label: confidential if
either input is confidential

o EdiSORSTE

Can operate on confidential
data

Address must be public

Oblivious Memory

eEldrE oEsiefch

Load/Store at a confidential
address

Requires extra local memory

Implemented here as a
portion of cache

Must load/store entire range
on context switch

Implementation: Oblivious Memory Partition

Software Hardware
& 0SZ: Oblivious memory partition size ¢ New instructions
¢ Not defined in ISA, can vary between & ocpuid: Gives size of OMP (0S2)
implementations

& ocld/ocst: load/store from OMP
& Software interface to place memory in OMP

¢ obl alloc(), obl free(), .
obl read(), obl write() ¢ Guarded with SGX/other enclave

mechanisms

¢ Needs OSZ bytes of “fast” memory

¢ Allows for arbitrary size storage,

: : ¢ Can implement by partitioning the cache
¢ will automatically use memory scan to read

values if obl_alloc() doesn’t fit in the & Allocate N ways to the OMP when in
OMP appropriate modes

Implementation: Labels

Label Storage Label Checks
¢ Each word needs 1 bit for public vs ¢ All execution units wrapped in a label station.
confidential. & Checks for operand public/confidential bit

¢ In processor: Can expand size of storage & Raises label violation/label fault as needed

¢ Pipelines © Disables hardware optimizations on

& Register File confidential inputs

o @ache & Propagates label based on operatnds
® DRAM: Must somehow store this extra bit ¢ Disabling data-dependent optimizations:

¢ Arnthmetic: Counter for known max duration,

¢ Current implementation takes 2x DRAM _
don’t release data until then

accesses to retrieve a single cache line

Results

Area (um?) Performance
131010)\%| BOOM+ | Overhead ¢ OISA + Oblivious Memory Partition:
OISA & Small data size: 8.8x than OISA
363,900 388,658 6.80% ¢ Large data size: 1.7x than OISA
384,232 391,291 1.84% o OIRA v heeame
Total 748,132 | 779,949 | 4.25% e e S o A sl
& Note that their PRNG is 30% of the total ¢ Large data size: 40.4x [oachisecne

overhead. A TRNG would be much smaller
in actual hardware.

Discussion Questions

® Could an ISA contract similar to this OISA help with power side
channel prevention?

& Can we take advantage of persistent state to reduce required taint
tracking?

& (operation X always uses private data) -> (don’t dynamically track taint
here, assume its always tainted)

& Would only enabling dynamic tracking while in SGX mode be valid?

Discussion Questions

& What can be done to improve the labeling system?

& Specifically, can we avoid the double RAM read requirement?

® What parts of the inclusion of the OISA slow down normal (not-
secret) workloads? How much of a problem 1is this?

Discussion Questions

& Can label faults be exploited to cause denial of service
attacks?

® How does a microarchitecture implementing an OISA prove it
meets the required functionality? Is there an expectation for
OISA chips to be formally verified?

Discussion Questions

& Would the Oblivious Memory Partition be useful on its
own for performance, without the rest of the OISA being
implemented?

