
Glamdring: Automatic Application
Partitioning for Intel SGX

Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O'Keeffe, Pierre-Louis Aublin,
and Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rudiger Kapitza, Christof

Fetzer, Peter Pietzuch

Presented by Mengjia Yan
MIT 6.888 Fall 2020

Based on slides from Divya Muthukumaran

Background On Intel SGX, Enclave

• On commodity processors starting with Skylake
• 18 CPU instructions to manage enclave lifecycle
• ECREATE, EENTER, EEXIT, EADD, EEXTEND, EINIT, etc.

2

Guest OS

App 1

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

Enclave 1

App 2

Enclave 2

Guest OS

App 3

Enclave 3

Processor Reserved
Memory (PRM)

Performance issues.

PRM size is 128MB in SGX V1.0
All enclaves loaded at the same
time cannot exceed said ~90MB

Programming Intel SGX

• Platform software (PSW)
• SGX runtime, contains drivers, services, DLLs and privileged enclaves
• Required to use Intel SGX

• Software Development Kit (SDK) for Linux and Windows
• SGX libraries: Intel-custom libc and crypto libraries, sgx-specific libs
• Tools

• sgx_edger8r: takes an EDL file and generates glue (C code and headers)
• sgs_sign to sign code with dev key

• Developer guide
• https://download.01.org/intel-sgx/sgx-linux/2.11/docs/Intel_SGX_Developer_Guide.pdf

3

https://download.01.org/intel-sgx/sgx-linux/2.11/docs/Intel_SGX_Developer_Guide.pdf

An Example EDL File

4

A part of the EDL file from SGX-SQLite

Threat Model

• Following SGX threat model
• Attacker can be privileged software that can access or modify data in memory

or disk
• Confidentiality:

• SGX encrypt data in DRAM
• MMU disable accesses to PRM outside of enclave

• Integrity:
• SGX computes and verifies hash of data in PRM

• New attack vectors in this paper
• Iago attacks: need to validate return value from the untrusted world

• Not considered
• Denial of service attacks
• Side channel attacks

5

Challenges of Developing Enclave Apps

1. How to partition applications into trusted and untrusted
components
• The trusted component (inside enclave) can not use syscalls and certain

instructions

2. How to validate untrusted inputs (the OS cannot be trusted)

6

Enclave Application Lifecycle

Trusted function

Ocall

Return

Start Enclave

Ecall

1

2

3

5

4

Higher Privileged Code (OS, VMM)

Untrusted Code Enclave

7

Enclave Application Lifecycle

Trusted function

Return

Start Enclave

Ecall

1

2

3

4 Ocall

5

Untrusted Code Enclave

Higher Privileged Code (OS, VMM)

8

Enclave crossings through ecalls and ocalls
incur a performance penalty

Glamdring Overview

Writing enclave applications to trade-off among

• Modification of applications (porting overhead)

• Interface complexity

• TCB size

• Performance

9

Library OS Inside Enclaves

Standard
Libraries

Library OS

Host OS

Minimal system calls

Pros
• Run unmodified applications
• Fixed shielded interface

Cons
• TCB is millions LoC!
• Performance overhead
Haven [OSDI’14]

10

Standard Library Inside Enclaves

Standard
Libraries

Library OS

Host OS

System calls

Enhanced C
Library

Host OS

Pros
• Smaller TCB than Haven
• Fixed shielded interface

Cons
• TCB = 0.6x–2x of

application size
• Recompilation needed

SCONE [OSDI’16]

11

Minimum TCB Inside Enclaves

Standard
Libraries

Library OS

Host OS

System calls

Enhanced C
Library

Host OS
12

Application
(Sensitive)

Application
(Untrusted)

Interface

Standard Libraries

Host OS

Strengths and Weakness

• Writing enclave applications to trade-off among

• Modification of applications (porting overhead)

• Interface complexity

• TCB size

• Performance

13

Security

Iago Attacks and COIN attacks

• Iago attacks: carefully chosen sequence of integer return values to Linux
system calls à application executes astray

• COIN attacks: trigger ECALLs in an unexpected order and force incorrect
return values of OCALLs à information leakage, control flow hijacking, etc.

14

Iago Attacks: Why the System Call API is a Bad Untrusted RPC Interface; Checkoway et al. ASPLOS’13
COIN Attacks: On Insecurity of Enclave Untrusted Interfaces in SGX; Khandaker et al. ASPLOS’20

Trusted function

Return

Start Enclave

Ecall

1

2

3

4 Ocall

5

Untrusted Code Enclave

Higher Privileged Code (OS, VMM)

Example

15

Example heap information leak from mbedTLSSGX.

Glamdring Partitioning Framework

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

1

2

3

4

16

1. Identify Security-Sensitive Code

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

1

Static Analysis conservatively identifies subset of code
dependent on programmer annotated security-sensitive data

17

Client

cmd

cmd

Annotation of Security-Sensitive Data

What to Annotate
• Indicate where security-sensitive

data enters or leaves the program
• Sensitive data can be encrypted

and signed until first use

Dispatch(cmd)

Get() Update()

read()

If (cmd
==“GET”)

18

Static Analysis Goals

19

Big question on alias analysis:
Static pointer analysis for C program can be very imprecise

à Be conservative à increase TCB size

• Enforcing Confidentiality: Identify all functions that depend on
sensitive data.
• Enforcing Integrity: Identify all functions on which the value of

sensitive data depends
• Why Static Analysis?
• Static Analysis is conservative, independent of the input to the

program

Program Dependence Graph

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

Format()

cmd = read(..)…

Format()

…

20

Forwards Dataflow Analysis

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

#prama glamdring sensitive data(cmd)Format()

cmd = read(..)…

Format()

…

Confidentiality Using Graph Reachability identify all nodes
with transitive control/data dependency on annotated node

21

Backward Dataflow Analysis

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

#prama glamdring sensitive data(cmd)Format()

cmd = read(..)…

Format()

…

Integrity Using Graph Reachability identify all nodes that
are transitive control/data dependent on annotated node

22

Security Sensitive Code

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)Write(res)

Rest of the
program

Format()

cmd = read(..)…

Format()

…

Union of nodes found with forwards and backwards analyses

23

2. Producing a Partitioned Application

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

2

Automatically move code into enclave and outside
codebases; Generate interface specification for SDK

24

Source-Source Transformation

25

void ecall Dispatch(…){
…
}

void
…
}

Get(…) {

void Put(…) {
…
}

Outside

Enclave

void Read(…) {
ecall Dispatch();

}
Partition Spec

*

*

* Enclave Functions:
Dispatch,
Get,
Update
Enclave Allocations:
malloc@241

Enclave Allocated Globals
hash_items

Sound intuitive and easy at high level.
Many corner cases about data

accessed/modified in functions in two worlds.

3. Upholding Static Analysis Invariants

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation

3

Ensure that invariants on program state used by the
static analysis are enforced at runtime

26

4. Improving Performance After Partitioning

Static Analysis

Forward
Analysis

Backward
Analysis

Partition
specification

Source-Source
Transformation

Instrumentation of
Runtime Invariants

Enclave
Code

Outside
Code

Interface
Spec

Invariants

Application CodeAnnotation

Enclave
Boundary
Relocation
4

Runtime Profiling

Use results of runtime profiling to remove expensive
functions from enclave interface

27

Performance of Partitioned Applications

Expensive Interface Functions
Some of the interface functions may be ‘hotspots’ called too frequently

Get() Update()

If (cmd
==“GET”)

SomeFunc()
2000

Dispatch(cmd)

50

1000

500500

Runtime profiling can
help identify hotspots

28

Enclave Boundary Relocation

Adding Functions to Enclave
Move additional functions into enclave to create a new interface that
avoid ‘hotspots’

Dispatch(cmd)

Get() Update()

If (cmd
==“GET”)

SomeFunc()
2000

50

1000

500500

29

Security Evaluation – TCB size

Applications Code Size
(kLoC) TCB size

Memcached 31 12 (40%)

DigitalBitbox 23 8 (38%)

LibreSSL 176 38 (22%)

TCB is less than 40% of the application size
30

La
te
nc
y

0

0.75

1.5

2.25

300

Throughput

0 150 450 600

Enclave transitions dominate the cost of request handling;
batching requests into multi-get gets 210k req/sec

Native SCONE Graphene Glamdring

3

Throughput vs Latency

31

Discussion Questions on Security

• Is the possibility of side channel attacks increased with this method?

• How much does Glamdring truly reduce your TCB? Are you not just
adding Glamdring's source as a TCB itself?

• The paper assumes that reducing the size of the TCB will lead to
increased security, because otherwise small amounts of malicious
code could enter the enclave undetected. Isn't the inverse true? With
this new methodology, small amounts of secure code could be left
out of the enclave by accident.

32

Discussion Questions on Performance/Practicality

• What are the costs to other applications interacting with glamdring?
How expensive is the requirement that they encrypt/decrypt all calls.

• If the application changes anything, does the developer need to re-
annotate from scratch?

• Is it fair to burden developers with the requirement to sift through
the code and mark things that are security-sensitive? Could this
requirement introduce subtle security bugs by omission?

• Are there any particular programs which would greatly benefit from
such a partitioning scheme?

33

