
Keystone
An Open Framework for Architecting Trusted Execution Environments

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović , Dawn Song

Presented by Miles Dai
6.888, Fall 2020



Motivation

Trusted Execution Environments are rigid and uncustomizable.

Existing solutions inherit the underlying design limitations:
• Intel SGX: large software stack
• AMD SEV: large TCB
• ARM TrustZone: not enough domains

2



Overview

3



Overview – Trusted Hardware

4

Hardware-restricted physical 
memory access (PMP)

Source of randomness

Root of trust



Overview – Security Monitor

5

Enforce memory isolation

Implements enclave lifecycle

Interrupts and Exceptions

TEE Primitives



Overview – Run7me

6

Virtual memory management

CommunicaDon outside the 
enclave (syscalls, IPC, etc.)

MulDthreading



Threat Model

4 IdenJfied ALacker Models
• Physical
• SoNware
• Side-channel (cache, Jming, control)
• Denial-of-Service

What’s Trusted?
• Trusted PMP spec and hardware implementaJon
• Trust SM, RT, and eapps (aNer verificaJon)

7



Threat Model

What’s not covered (natively)?
• Denial-of-Service: The OS can DoS enclaves
• Speculative Execution
• Timing SC*
• Off-chip component SC*
• Non-interference for SM API (SBI)

*Keystone offloads protections for “non-traditional” attacks to RT and 
SM implementation as well as hardware protections.

8



Discussion
What are some strengths and weaknesses of Keystone?

9



Strengths

• Enclave feature and size flexibility
• Defends against entire classes of attacks
• Open source
• Portability: many design features are hardware-agnostic
• Compartmentalization
• The SM is minimal enough to be formally verified
• Smaller runtimes may be easier to implement correctly than one large kernel

10



Weaknesses

• Limited PMP registers (RISC-V currently supports 16)
• TCB comparison with LoC is a bit sketchy
• Kernels all the way down…
• There are many assump@ons made about correct implementa@on and design 

of the RT
• “We assume that the SM, RT, and eapp are bug-free”
• In prac@ce, would the RTs eventually become bloated and simply evolve into 

small kernels?

• CommunicaJon into and out of the container takes a big performance 
hit

11



Physical Memory Protec7on (PMP)

12



Physical Memory Protec7on (PMP)

13



System Initialization

14

pmp0
pmp1
pmp2

pmpN

…Pr
io

rit
y

DRAM

U/S Accessible

Not Accessible



System Ini7aliza7on – SM Boot

15

pmp0
pmp1
pmp2

pmpN

…

SM

000

Pr
io

rit
y

DRAM

SM
Boot

U/S Accessible

Not Accessible
After the SM boots, control is transferred to the OS. How 
does the OS boot change the PMP configurations?



System Ini7aliza7on – OS Boot

16

OS

pmp0
pmp1
pmp2

pmpN

…

SM

000

111

Pr
io

rit
y

DRAM

SM
Boot

OS
Boot

By default, the OS can access all memory, BUT notice that 
pmp0 takes precedence and prevents the OS from accessing 
the SM region.

U/S Accessible

Not Accessible



Enclave Lifecycle

17

Creation

• Measure enclave 
memory

• Validates OS-
initialized page table

Execu-on

• Starts execu=on at a 
predefined enclave 
entry point

Destruc-on

• Clear enclave 
memory region, 
return memory to OS

• SM cleans and frees 
all enclave resources



Enclave Crea7on

18

pmp0
pmp1
pmp2

pmpN

…

SM

000

111

Pr
io

rit
y

DRAM

000

Enclave 1

000

Enclave 2

U/S Accessible

Not Accessible



Enclave Entry

19

pmp0
pmp1
pmp2

pmpN

…

SM

000

111

Pr
io

rit
y

DRAM

000

Enclave 1

000

Enclave 2

U/S Accessible

Not Accessible Discussion Question: What actions should be taken to enter Enclave 2?



Enclave Entry

20

pmp0
pmp1
pmp2

pmpN

…

SM

000

000

Pr
io

rit
y

DRAM

000

Enclave 1

111

Enclave 2

U/S Accessible

Not Accessible
1. Access to Enclave 2 memory is granted
2. Access to memory outside Enclave 2 is restricted
3. Access is permiBed for an untrusted shared buffer if requested by the OS



Enclave Entry with Untrusted Shared Buffer

21

pmp0
pmp1
pmp2

pmpN

…

SM

000

111

Pr
io

rit
y

DRAM

000

Enclave 1

111

Enclave 2

U/S Accessible

Not Accessible pmpN is used to allow access to an untrusted shared buffer for 
communicaHon across the enclave boundary.

Shared 
Buffer



Security Monitor

Responsibilities:
• Setting PMP registers
• Validate enclave memory allocation and OS-provided page table
• Measures enclave in virtual memory
• Synchronizes PMP bits across cores during enclave creation

What the SM does NOT do:
• Memory allocation
• Page table setup

22



Security Monitor – TEE Primi7ves

• Secure Boot
• Secure randomness
• Remote ALestaJon
• Pla_orm-specific extensions (e.g. protecJons from physical aLackers)
• Secure On-Chip Memory
• Cache Par@@oning
• Dynamic Resizing

23



Run7me

• Supervisor capability allows for kernel-like behavior
• Memory Management
• Virtual address space is statically mapped by default
• RT extensions can add flexibility (e.g. support for unmapped physical memory, 

page swapping, page encryption/integrity protection)

• Interface with non-enclave memory: edge calls
• Multi-threading (theoretically)

24



Security Analysis – Protection of the Enclave

• Direct enclave memory access is protected by PMP.
• Mapping aLacks: Page tables are located within the enclave and are 

managed by the (trusted) RT.
• Syscall tampering: RT modules can defend against Iago aLacks
• Side Channels: enclaves share no state with the host OS. 

25



Security Analysis – Protec7on of the OS

• RTs can now attack the OS since they all operate in S-Mode!
• RTs cannot access memory or modify page tables outside the enclave.
• SM performs a complete context switch
• Machine timer prevents DoS attack from an enclave

26



Security Analysis – Protection of the SM

• PMP does the heavy lifting again: access to the SM memory is disabled 
by the bootloader
• The SBI must be narrow
• A minimal SM allows for formal verification

27



Performance

• Enclave-management is 
dominated by iniJal validaJon 
and measurement.
• MulJ-core PMP 

synchronizaJon during enclave 
creaJon may not be scalable.
• Moving data across the 

boundary is slow

28



Discussion Questions – Enclave Design

• If everything is geang simplified, the aLack surface is smaller, etc. the 
original complexity needs to go somewhere? Where is it?
• Why did Intel SGX and AMD TrustZone decide to go with a staJc 

enclave design when a flexible and adjustable design such as Keystone 
is possible?
• It seems as though we've given up on managing virtual memory 

outside of the enclave - is there any hope leN for alternaJve soluJons?

29



Discussion Questions - Application

• Is this practical given that enclave applications have to be Keystone-
native, have RT support, or be partitioned applications?
• Does Keystone actually fill a necessary gap in what is currently 

available? Are there a significant number of programs that really need 
features that aren't available with plain SGX?
• Are there any security vulnerabilities introduced if a non-expert 

enclave programmer doesn't specify the TEE design correctly?
• Is there a motivation for a manufacturer like Intel to move to such an 

open source framework? 

30


