
MicroScope: Enabling
Microarchitectural Replay Attacks

Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery,
Josep Torrellas, and Christopher W. Fletcher

Presented by Mengjia Yan
MIT 6.888 Fall 2020

Why this paper?

We have read a couple of attack papers, e.g., Spectre/Meltdown,
Prime+Probe.
Why read this paper? What is new here at a high level?

Threat Model: Trusted Computing with SGX
• OS/Hypervisor are untrusted

• OS/Hypervisor cannot introspect/tamper enclave
• Unfortunately, OS/Hypervisor still manages demand paging

Hardware

Hypervisor

Operating System

App App App

Attack Surface With Enclaves

Attack Surface

Attacker (OS) can:

• Manage page tables

• Evict TLB entries

• Evict page walk cache entries

• Monitor side channels

Recap: Address Translation
Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB
4KB

VA PA

Page Table per process

System software
handles “page fault”

4KB

4KB

4

Background: Page Fault

• Page fault: access to a page that is
• Unmapped
• Invalid
• Wrong access rights

• Exception is generated → Run page fault handler
• Page fault handler = Operating system (untrusted)

Controlled Side Channels

• OS can monitor enclaves access pattern at the granularity of page
• After enclave start, remove access from all process pages (mark page not

present)
• Access will cause a page fault
• Upon receiving a fault, the handler:

• Logs the requested page
• Enables access to the page
• Removes access to the previous page

Controlled-Channel Attacks: Deterministic Side Channels for Untrusted Operating Systems; Xu et al. S&P’15

if (secret = 1)
access page A

else
access page B

Microscope Overview

Motivation: Leakage over side channels
Attacker:
for ..

t1 = time()
use resource

t2 = time()

Victim:
if (secret)
use resource

else
don’t use resource

• Need repeated measurements to be confident à Denoise

• However, many applications run only once à Attacker gets 1 measurement

• Can attackers really extract secrets?

Overview: Microarchitectural Replay Attacks

• Attacker leverages speculative execution
• To repeatedly replay a snippet of victim code
• That runs only once

ld addr // “replay handle”
…

Victim:

ld secret // secret the attacker tries to leak

Memory operation that will cause
a squash and re-execute

}Primitive to denoise arbitrary
side channels

Contribution: Microarchitectural Replay
Attacks

Issue Replay
Handle

Long Latency
Event

Time

ld addr:

Contribution: Microarchitectural Replay
Attacks

Issue Replay
Handle Long Latency Event

Speculative
Execution of Secret

ld secret:

Time

ld addr:

Contribution: Microarchitectural Replay
Attacks

Issue Replay
Handle Long Latency Event Squash

Event

Squash

Clear
State

Speculative Execution of Secret

Time

ld addr:

ld secret:

Contribution: Microarchitectural Replay
Attacks

Issue Replay
Handle Long Latency Event Squash

Event
Clear
State

Replay!!

Cause Shared Resource Contention & Monitor

Speculative Execution of Secret Squash

ld addr:

ld secret:

Strengths

• Opens large new attack surface (for noisy side channels)

• Exploits vulnerabilities of correct speculation
• Dynamic instructions can be replayed through controlled squashes
• Different from Spectre/Meltdown that exploits incorrect speculation

• Demonstrate attacks on notoriously noisy side channels
• Make impractical attacks possible

Weaknesses

• Is it really practical?
• Attacker side:

• Malicious OS
• Control TLB/page mapping

• Victim side:
• The replay handler and the transmitter need to be in the ROB simultaneously
• The replay handler and the transmitter needs to access different pages

Page Tables Background

pmd_t
pte_tPGD

PUD
PMD

PTE

CR3

47 … 39 38 … 30 29 … 21 20 … 12 11 … 0

9-bits 9-bits 9-bits 9-bits Page Offset

+
+

+
+

Virtual address

Virtual Address

TLB Entry

pgd_t
pud_t

• Page tables stored in memory
• On a TLB Miss à “page walk” = memory accesses

• Each step of page walk = cache hit/miss.
• Page walk cache (PWC): hardware cache of translations

• If Present bit in pte_t is cleared à Page Fault, invoke OS

Attack Examples

1. //public address
2. handle(pub_addr);
3. ...
4. transmit(secret);
5. ...

Victim Code
1. for i in ...
2. handle(pub_addrA);
3. ...
4. transmit(secret[i]);
5. ...
6. memOp(pub_addrB);
7. ...

Loop Victim Code:

Terminology

1. //public address
2. handle(pub_addr);
3. ...
4. transmit(secret);
5. ...

Victim Code
Replay handle:
• Load to a public address (known to OS)

Transmitter:
• Any instruction(s) whose execution reveals secret through some side channel
• Occurs < ROB length from Replay Handle

Timeline of a MicroScope Attack - Setup

Attack
Setup

VictimAttacker

Time

Timeline of a MicroScope Attack - Setup

Attack
Setup

Clear PTE
Present Bit of Replay Handle

VictimAttacker

Time

Timeline of a MicroScope Attack - Setup

Attack
Setup

Flush Replay Handle
Page Table Entries

VictimAttacker

Clear PTE
Present Bit of Replay Handle

Time

Timeline of a MicroScope Attack - Setup

Attack
Setup

Flush Replay Handle
TLB Entry

VictimAttacker

Flush Replay Handle
Page Table Entries

Clear PTE
Present Bit of Replay Handle

Time

Timeline of a MicroScope Attack

Attacker Victim

Attack
Setup

Issue Replay
Handle

Time

handle(pub_addr):

Timeline of a MicroScope Attack

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

VictimAttacker

Time

handle(pub_addr):

Timeline of a MicroScope Attack

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

Speculative Execution
of Transmitter

VictimAttacker

L2 TLB
Miss

Time

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

Speculative Execution of
Transmitter

VictimAttacker

Time

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

Speculative Execution of Transmitter

VictimAttacker

Time

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

VictimAttacker

Tune speculative execution duration with:
Cache Hit or Miss

Speculative Execution of Transmitter

Time

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

Speculative Execution of Transmitter

Page
Fault

VictimAttacker

Time

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Squash

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

Speculative Execution of Transmitter

Page
Fault

VictimAttacker

Time

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Squash

OS
Invocation

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

Speculative Execution of Transmitter

Time
Page
Fault

VictimAttacker

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Squash

OS
Invocation

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

Speculative Execution of Transmitter

Page
Fault

VictimAttacker

Page Fault
Handler

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Squash

OS
Invocation

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

Speculative Execution of Transmitter

Page
Fault

VictimAttacker

Flush Replay Handle
Page Table Entries

handle(pub_addr):

transmit(secret):

Page Fault
Handler

Timeline of a MicroScope Attack

Squash

OS
Invocation

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

Speculative Execution of Transmitter

Page
Fault

VictimAttacker

Replay!!

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

OS
Invocation

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

SquashSpeculative Execution of Transmitter

Page
Fault

VictimAttacker

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

OS
Invocation

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

SquashSpeculative Execution of Transmitter

Page
Fault

VictimAttacker

handle(pub_addr):

transmit(secret):

Timeline of a MicroScope Attack

Victim Attacker Monitor/Contention thread

Cause Shared Resource Contention & Monitor

Replay!!Squash

OS
Invocation

Attack
Setup

Issue Replay
Handle

L1 TLB
Miss

L2 TLB
Miss

PWC
Miss

PGD
Walk

PUD
Walk

PMD
Walk

PTE
Walk

Speculative Execution of Transmitter

Page
Fault

Attacker

handle(pub_addr):

transmit(secret):

Changing each can result in
different attacks!!

Strategy

Measure

Secret

Attacker

Replay Handle

W
in

do
w

Victim

Replay
ed

Code

Trigger
Replay?

Side
Channels?

1

2

3

4

Generalize Microarchitectural Replay Attacks

à Page fault-inducing load
à Leaky instruction
à uarch structures
à Page fault until denoise

1

2

3

4

This work:
Replay Handle
Replayed Code
Side Channel
Attacker strategy

Countermeasures

• Fence after pipeline squash
• Defenses against Spectre/Meltdown style of attacks
• Rewrite victim code to make replay handler and target code reside in

the same page
• etc

Discussion Questions

Discussion Questions on Countermeasures

• What is required to prevent this in hardware? Would a form of page fault counter be appropriate,
where if a specific instruction page faulted some number of times in a row, the application
terminates? Or is this a common scenario in a real process, that a single page may fault
repeatedly?

• Would something like FaCT for the SGX application help prevent a significant subset of the
available side channels? Or really any other way to make sure that the instruction trace is always
constant...

• Are the weaknesses of SGX things that can be patched over as new attacks are demonstrated or is
there a more fundamental problem with an untrusted OS? More out of curiosity, but are there
adversaries out there trying to exploit these kinds of vulnerabilities right now, and if so how and
in what context?

Discussion Questions on Countermeasures

• When referring to page fault protection schemes, why can’t we control how the present bit is set?
A key component of this attack is the attacker’s ability to clear the Present bit so would it not be
possible to focus on this aspect?

• The paper mentioned that T-SGX terminates the program after N=10 consecutive failed page
faults as a potential defense to this type of attack. Was 10 chosen arbitrarily? How did they
guarantee that this wouldn't interfere with existing programs? If they set it to a smaller number in
order to prevent replay attacks, how would they ensure it would continue to let existing programs
work?

• How difficult is it to manipulate where replay handles occur? Can user code force secrets to be
contained within a single page? Can user code avoid speculatively affecting side channels by
adding data dependency across pages?

