
Morpheus
A Vulnerability-Tolerant Secure Architecture

Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu Aweke, Salessawi Ferede
Yitbarek, Misiker Tadesse Aga, Aus@n Harris, Zhixing Xu, Baris Kasikci, Valeria Bertacco, 
Sharad Malik, Mohit Tiwari, Todd Aus@n

Presented by Miles Dai
6.888, Fall 2020



Motivation

A vulnerability-agnostic secure system can be created by defending 
against exploitation of undefined semantics.

• Control flow exploits are still prevalent!
• New threats use more execution-level information to bypass defenses
• A systematic approach is needed to future-proof processors

2



Intuition

• We can think of program execution as occurring on multiple levels
• Language level: we create some pointer to some memory
• Execution level: where is that memory located? How do I dereference the 

pointer? What is the memory initialized to? Where is the stack?

• Moving target defenses: since benign programs are (mostly) agnostic 
to execution-level details, what if we randomize them?
• Strengthen existing moving target defenses through layering defenses

and continuous randomization.
• Ensembles of Moving Target Defenses (EMTD)
• Churn

3



Threat Model

• A trusted but vulnerable vicHm processes untrusted inputs
• Trusted
• Physical system
• Boot sequence
• Random number generator
• Morpheus hardware
• Loader and OS scheduler

• AJacker exploits memory errors to hijack control flow
• Currently does not protect against DoS and side-channel aJacks

4



Discussion
What are some strengths and weaknesses of Morpheus?

5



Evaluation

Strengths
• SystemaHc approach to memory safety
• Low execuHon and adopHon overhead

Weaknesses
• More discussion on tag propagaHon and aJack detector logic: 

implementaHon and area overheads
• ApplicaHon to non-64-bit architectures might have reduced security 

guarantees

6



Domain Tagging

• Memory falls into 4 Domains: code (C), code pointers (CP), data 
pointers (DP), data (D)
• Compiler tags memory objects in two passes
• Microarchitectural support
• Each register gets two additional bits
• All tag information sits together in DRAM and are cached
• Pipeline propagates tags

• Domain tagging allows for moving target defenses (MTDs)

7



Pointer Displacement – MTD 1

• Present a Displaced Address Space (DAS) offset by up to 260 to the 
program
• Code and Data segments receive different offsets

8



Pointer Displacement Defense

9



Domain Encryp=on – MTD 2

• Code, code pointers, and data pointers are encrypted with distinct 
keys. Variable-sized non-pointer data values are not encrypted.
• Data is encrypted/decrypted on the L1-L2 boundary; L2 and DRAM 

only contain encrypted information
• Physical address is encrypted with corresponding key and XOR’ed with 

value

10



Domain Encryption Defense

11



Churn

• Creates new offset for data and code segments
• Re-encrypts all encrypted data with new keys
• Steps: Pipeline flush, key generaHon, register updates, memory update 

using threshold register

12



AAack Detector

• Domain tagging allows for policy enforcement
• Program can be ABORTed or suspicious behavior can trigger CHURN

13



Attack Detector Defense

14



Evaluation – EMTD Effectiveness

• Stacking defenses (ensemble) has clear benefits
• AJack probe Hme increases with more defenses applied
• E = encrypQon, P = pointer displacement

15



Performance Impact of Churn

• Large data segments, more pointers, and large codebases cause more 
work for the churn unit
• For long churn periods (200 ms), churn very slightly improves 

performance as it acts as a prefetcher

16



Evaluation – Adoptability

Based on the criteria outlined in the SoK paper1:
• Performance overhead
• Compatibility

• Software toolchain based on LLVM compiler extensions
• Displacement preserves physical memory alignment
• Extensive hardware modifications needed

• Robustness
• More robust than many existing solutions to currently unknown attacks

• Dependencies
• Toolchain does not appear to be publicly available currently

1 SoK: Eternal War in Memory. Laszlo Szekeres et al.

17



Comparison with Exis=ng Solu=ons

• Displacement (e.g. ASLR)
• Insufficient randomness
• Single address leakage discloses all code and data locaQons

• EncrypHon
• Morpheus generally has lower overhead with HW support and stronger 

encrypQon
• Socware-based MTD (e.g. Shuffler)
• Morpheus shows lower overhead and more entropy

• Tagged Architectures
• Full labeling of code is hard and other hardware-based tags lead to high false-

posiQves

18



Discussion Questions - Security

• Does the fact that pointers are all linearly displaced by a constant 
amount (rather than being truly shuffled) make this scheme vulnerable 
to attack?
• Is it possible to avoid triggering churn by exfiltrating data through side 

channels?
• How could Morpheus be extended to consider DoS attacks in its threat 

model?

19



Discussion Questions - Applications

• How does "data" become code safely? (In the sense of a downloaded 
program being executed for the first time, or really anything being 
loaded from disk, or JIT programs)
• Are there legitimate uses of reading pointers as data that Morpheus 

will make impossible? E.g. debugging with stack traces will be very 
difficult though potentially possible.

20



Discussion Ques=ons - Performance

• Can conHnuous churn cause performance issues or baJery life 
reducHon (denial of service rather than control flow aJack)? Is it just 
exchanging one aJack for another?
• Are there legiHmate programs that Morpheus hinders?

21


