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Motivation

A vulnerability-agnostic secure system can be created by defending
against exploitation of undefined semantics.

e Control flow exploits are still prevalent!

* New threats use more execution-level information to bypass defenses
e A systematic approach is needed to future-proof processors




Intuition

* We can think of program execution as occurring on multiple levels

* Language level: we create some pointer to some memory

e Execution level: where is that memory located? How do | dereference the
pointer? What is the memory initialized to? Where is the stack?

* Moving target defenses: since benign programs are (mostly) agnostic
to execution-level details, what if we randomize them?

e Strengthen existing moving target defenses through layering defenses
and continuous randomization.
* Ensembles of Moving Target Defenses (EMTD)
e Churn




Threat Model

* A trusted but vulnerable victim processes untrusted inputs

* Trusted
* Physical system
* Boot sequence
e« Random number generator
* Morpheus hardware
e Loader and OS scheduler

 Attacker exploits memory errors to hijack control flow
* Currently does not protect against DoS and side-channel attacks




Discussion

What are some strengths and weaknesses of Morpheus?



Evaluation

Strengths
 Systematic approach to memory safety
* Low execution and adoption overhead

Weaknesses

* More discussion on tag propagation and attack detector logic:
implementation and area overheads

* Application to non-64-bit architectures might have reduced security
guarantees




Domain Tagging

* Memory falls into 4 Domains: code (C), code pointers (CP), data
pointers (DP), data (D)

* Compiler tags memory objects in two passes

* Microarchitectural support

* Each register gets two additional bits
* All tag information sits together in DRAM and are cached

* Pipeline propagates tags
 Domain tagging allows for moving target defenses (MTDs)




Pointer Displacement —MTD 1

* Present a Displaced Address Space (DAS) offset by up to 2°° to the
program

* Code and Data segments receive different offsets
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Pointer Displacement Defense
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Domain Encryption — MTD 2

* Code, code pointers, and data pointers are encrypted with distinct
keys. Variable-sized non-pointer data values are not encrypted.

* Data is encrypted/decrypted on the L1-L2 boundary; L2 and DRAM
only contain encrypted information

* Physical address is encrypted with corresponding key and XOR’ed with
value
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Domain Encryption Defense
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Churn

e Creates new offset for data and code segments
* Re-encrypts all encrypted data with new keys

 Steps: Pipeline flush, key generation, register updates, memory update
using threshold register

I Churn Period I

Program
Flush
P

T
| Reg |

—>

stale |

Domain Updates

clean

—-DO—O ® >

Churn
Threshold w
Keys
Reg

12




Attack Detector

* Domain tagging allows for policy enforcement

* Program can be ABORTed or suspicious behavior can trigger CHURN

<OP> Check Condition  Rule

. Execute Insn.tag != C Only execute C

ooﬁ ANY R1/R2.tag == C No C in the pipeline

R JAL(R) Rl.tag != CP Jump target must be CP

< LD/ST Rl.tag!= DP Address must be a DP
COMPARE Rl.tag != R2.tag No inter-domain compares
ANY (not JAL(R))  Rl.tag==CP CP arithmetic suspicious

é ANY (not LD/ST)  R2.tag == DP DP arithmetic suspicious,

T except add/sub D

© AN Overflow Occurs Overflows are undefined
SHIFT Shift > RegWidth  Invalid shift is undefined
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Attack Detector Defense
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Evaluation — EMTD Effectiveness

 Stacking defenses (ensemble) has clear benefits

e Attack probe time increases with more defenses applied
* E =encryption, P = pointer displacement
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Performance Impact of Churn

* Large data segments, more pointers, and large codebases cause more
work for the churn unit

e For long churn periods (200 ms), churn very slightly improves
performance as it acts as a prefetcher
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Evaluation — Adoptability

Based on the criteria outlined in the SoK paper?:
* Performance overhead

e Compatibility
e Software toolchain based on LLVM compiler extensions

e Displacement preserves physical memory alignment
e Extensive hardware modifications needed

* Robustness
* More robust than many existing solutions to currently unknown attacks

* Dependencies
e Toolchain does not appear to be publicly available currently

1SoK: Eternal War in Memory. Laszlo Szekeres et al.
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Comparison with Existing Solutions

* Displacement (e.g. ASLR)
* |nsufficient randomness
* Single address leakage discloses all code and data locations

* Encryption

* Morpheus generally has lower overhead with HW support and stronger
encryption

e Software-based MTD (e.g. Shuffler)

* Morpheus shows lower overhead and more entropy

e Tagged Architectures

* Full labeling of code is hard and other hardware-based tags lead to high false-
positives
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Discussion Questions - Security

* Does the fact that pointers are all linearly displaced by a constant
amount (rather than being truly shuffled) make this scheme vulnerable

to attack?

* |s it possible to avoid triggering churn by exfiltrating data through side
channels?

* How could Morpheus be extended to consider DoS attacks in its threat
model?
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Discussion Questions - Applications

 How does "data" become code safely? (In the sense of a downloaded
program being executed for the first time, or really anything being
loaded from disk, or JIT programs)

* Are there legitimate uses of reading pointers as data that Morpheus
will make impossible? E.g. debugging with stack traces will be very
difficult though potentially possible.
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Discussion Questions - Performance

e Can continuous churn cause performance issues or battery life
reduction (denial of service rather than control flow attack)? Is it just
exchanging one attack for another?

* Are there legitimate programs that Morpheus hinders?
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