Morpheus

A Vulnerability-Tolerant Secure Architecture

Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu Aweke, Salessawi Ferede
Yitbarek, Misiker Tadesse Aga, Austin Harris, Zhixing Xu, Baris Kasikci, Valeria Bertacco,
Sharad Malik, Mohit Tiwari, Todd Austin

Presented by Miles Dai
6.888, Fall 2020

Motivation

A vulnerability-agnostic secure system can be created by defending
against exploitation of undefined semantics.

e Control flow exploits are still prevalent!

* New threats use more execution-level information to bypass defenses
e A systematic approach is needed to future-proof processors

Intuition

* We can think of program execution as occurring on multiple levels

* Language level: we create some pointer to some memory

e Execution level: where is that memory located? How do | dereference the
pointer? What is the memory initialized to? Where is the stack?

* Moving target defenses: since benign programs are (mostly) agnostic
to execution-level details, what if we randomize them?

e Strengthen existing moving target defenses through layering defenses
and continuous randomization.
* Ensembles of Moving Target Defenses (EMTD)
e Churn

Threat Model

* A trusted but vulnerable victim processes untrusted inputs

* Trusted
* Physical system
* Boot sequence
e« Random number generator
* Morpheus hardware
e Loader and OS scheduler

 Attacker exploits memory errors to hijack control flow
* Currently does not protect against DoS and side-channel attacks

Discussion

What are some strengths and weaknesses of Morpheus?

Evaluation

Strengths
 Systematic approach to memory safety
* Low execution and adoption overhead

Weaknesses

* More discussion on tag propagation and attack detector logic:
implementation and area overheads

* Application to non-64-bit architectures might have reduced security
guarantees

Domain Tagging

* Memory falls into 4 Domains: code (C), code pointers (CP), data
pointers (DP), data (D)

* Compiler tags memory objects in two passes

* Microarchitectural support

* Each register gets two additional bits
* All tag information sits together in DRAM and are cached

* Pipeline propagates tags
 Domain tagging allows for moving target defenses (MTDs)

Pointer Displacement —MTD 1

* Present a Displaced Address Space (DAS) offset by up to 2°° to the
program

* Code and Data segments receive different offsets

DASp

2% Data

\
[dmm \ VAS
__________________ 2%.1

/ Code

Pointer Displacement Defense

)
/ Make a pointer go Make a pointer
out of bounds become dangling
Use pointer Use pointer
to write (or free) to read
VI.
“—————— Memory Safety
S
Ve 7 N~ N 1
L r 873 83 4
Modify a Modify Modify a Modify adata Output data
data pointer code ... code pointer ... variable ... variable
VIILA. VILA.
L Code Integntyj Code Pointer Integrity Data Integrity
s O 72 (
... to the attacker ... to the address of VA ... to the attacker Interpret the
specified code shellcode / gadget . specified value output data V.B.
Instfuction Set Address Space s,
Randomization | Randomization ke
\ Randomization
N3 87
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
Control-| I V“'-_ﬂ- by
flow Integrity Data-flow Integrity
ible Data /'
Code corruption Data-only Information
attack attack leak
|

Domain Encryption — MTD 2

* Code, code pointers, and data pointers are encrypted with distinct
keys. Variable-sized non-pointer data values are not encrypted.

* Data is encrypted/decrypted on the L1-L2 boundary; L2 and DRAM
only contain encrypted information

* Physical address is encrypted with corresponding key and XOR’ed with
value

L1S > L2S|Tag| ADDR | VALUE

| | Key Store (|

K- (18] > A . |Encrypted/
| K [DS] | »| Cipher |-»(f9—1*| Decrypted
| > XOR | VALUE

10

Domain Encryption Defense

)
Make a pointer go Make a pointer
out of bounds become dangling
Use pointer Use pointer
to write (or free) to read
VI.
- Memory Safety
S
s s 873 83 4
Modify a Modify Modify a Modify adata Output data
data pointer code ... code pointer ... variable ... variable
VIILA. VILA.
| L Code Integntyj Code Pointer Integrity Data Integrity
s Sl Sl
... to the attacker ... to the address of VA ... to the attacker Interpret the
specified code . shellcode / gadget " specified value output data V.B.
Instruction Set Address Space
Randomization Randomization Dpta Space
© o ‘!‘ o ° Randpmization
Vs <> ™S\
L 3
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
)
Control [/ zv = b
7 oniro ;flow eIy Data-flow Integrity

attack

11

Churn

e Creates new offset for data and code segments
* Re-encrypts all encrypted data with new keys

 Steps: Pipeline flush, key generation, register updates, memory update
using threshold register

I Churn Period I

Program
Flush
P

T
| Reg |

—>

stale |

Domain Updates

clean

—-DO—O ® >

Churn
Threshold w
Keys
Reg

12

Attack Detector

* Domain tagging allows for policy enforcement

* Program can be ABORTed or suspicious behavior can trigger CHURN

<OP> Check Condition Rule

. Execute Insn.tag != C Only execute C

ooﬁ ANY R1/R2.tag == C No C in the pipeline

R JAL(R) Rl.tag != CP Jump target must be CP

< LD/ST Rl.tag!= DP Address must be a DP
COMPARE Rl.tag != R2.tag No inter-domain compares
ANY (not JAL(R)) Rl.tag==CP CP arithmetic suspicious

é ANY (not LD/ST) R2.tag == DP DP arithmetic suspicious,

T except add/sub D

© AN Overflow Occurs Overflows are undefined
SHIFT Shift > RegWidth Invalid shift is undefined

13

Attack Detector Defense

4 L
Make a pointer go Make a pointer
out of bounds become dangling
Use pointer Use pointer
to write (or free) to read i
Memory Safety

ya Y
{ 1 1
Modify a Modify adata Output data
data pointer variable ... variable
VILA.
\/ Data Integrity
... to the address of ... to the attacker Interpret the
specified code . shellcode / gadget specified value output data V.B.
Irlstryiction Set Data Space
gl Randomization
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
. VILB.
Data-flow Integrity

Execute available
gadgets / functions

@ 6 6 o 6 6

—— aljle Data /'
Instruction Set Randgmization

14

Evaluation — EMTD Effectiveness

 Stacking defenses (ensemble) has clear benefits

e Attack probe time increases with more defenses applied
* E =encryption, P = pointer displacement

- B AnC Address De-randomization

EP _} 0.01s O High bit probes
@ Code search
—_ O Blind code search
EP - | 98.65
Ep | 5
£p [
0 50 100 150 200 250

Average Attack Probe Time (s)

15

Performance Impact of Churn

* Large data segments, more pointers, and large codebases cause more
work for the churn unit

e For long churn periods (200 ms), churn very slightly improves
performance as it acts as a prefetcher

19.4ms

—&—SPEC'06 Worst-Case (403.gcc)

w
a
X

(] 35% i 0O50ms O25ms @10ms @ Cont.
--®--SPEC'06 Average E
§ 30% MiBench Worst-Case (dijkstra) || 3 £ 30%
) --#-MiBench Average 5 g
g 25% ‘-:_: g 25%
= 20% s S 20%
7 20% 5 5 2%
2 E 2 150
S 15% g S 15%
o e o
3 10% g g 10%
(a9}
s>t 1 e 5%

0% e e msbmsssssss @=======cf O =" L e . 0%
No 200ms 100ms 50ms 25ms 10ms Cont.

(1255x) (2510x) (5020x) (10040x) (25100x) (90320x)
Churn Period

16

Evaluation — Adoptability

Based on the criteria outlined in the SoK paper?:
* Performance overhead

e Compatibility
e Software toolchain based on LLVM compiler extensions

e Displacement preserves physical memory alignment
e Extensive hardware modifications needed

* Robustness
* More robust than many existing solutions to currently unknown attacks

* Dependencies
e Toolchain does not appear to be publicly available currently

1SoK: Eternal War in Memory. Laszlo Szekeres et al.

17

Comparison with Existing Solutions

* Displacement (e.g. ASLR)
* |nsufficient randomness
* Single address leakage discloses all code and data locations

* Encryption

* Morpheus generally has lower overhead with HW support and stronger
encryption

e Software-based MTD (e.g. Shuffler)

* Morpheus shows lower overhead and more entropy

e Tagged Architectures

* Full labeling of code is hard and other hardware-based tags lead to high false-
positives

18

Discussion Questions - Security

* Does the fact that pointers are all linearly displaced by a constant
amount (rather than being truly shuffled) make this scheme vulnerable

to attack?

* |s it possible to avoid triggering churn by exfiltrating data through side
channels?

* How could Morpheus be extended to consider DoS attacks in its threat
model?

19

Discussion Questions - Applications

 How does "data" become code safely? (In the sense of a downloaded
program being executed for the first time, or really anything being
loaded from disk, or JIT programs)

* Are there legitimate uses of reading pointers as data that Morpheus
will make impossible? E.g. debugging with stack traces will be very
difficult though potentially possible.

20

Discussion Questions - Performance

e Can continuous churn cause performance issues or battery life
reduction (denial of service rather than control flow attack)? Is it just
exchanging one attack for another?

* Are there legitimate programs that Morpheus hinders?

21

