
Notary: A Device for Secure 
Transaction Approval
Athalye et al., presented by Jack Cook



Overview ● Goals and Big Ideas

● Threat Model

● Strengths

● Weaknesses

● Evaluation

● Attack Defenses

● Discussion Questions



Notary’s Goals

● Verify a wide variety of secure transactions, such as BTC transactions, DNS 
updates, and more

● Provide secure task switching between multiple agents running on a single device

● Defend against security vulnerabilities that have plagued multiple existing 
hardware wallets



● Mobile apps (e.g. Bitcoin wallets, 2FA apps) are susceptible to process isolation 
issues, and smartphones have had bugs that can give adversaries root access

● Hardware wallets (e.g. Ledger, KeepKey, Trezor) have had OS bugs and exploitable 
side channels

○ System call vulnerabilities, memory protection errors, USB software bugs

Existing Solutions



Big Ideas

● Separating applications and the kernel into three components significantly 
reduces the attack surface

● Reset-based switching clears the device’s microarchitectural state before 
executing code from a new agent

● A “trustworthy I/O path” between agent code and the user prevents adversarial 
tampering

● Deterministic start ensures that agents can’t interfere with each other



Threat Model

● Notary defends against 
adversaries that want to 
approve an operation against 
the wishes of the device’s owner

● It employs multiple defenses in 
order to do this, in a way that 
goes beyond existing hardware 
wallets



Strengths

● Notary solves a very real problem: the paper listed several motivations for wanting 
to verify important transactions

● Reset-based task switching is a simple but powerful concept, and allows multiple 
agents to be used on the same device

● Robust threat model: tainted kernel, malicious agents -- thwarted by, among other 
things, very strong isolation between processes



Weaknesses

● The “trustworthy I/O path” is susceptible to abuse, and weakens the practicality of 
the device

○ What happens if reviewers make an honest mistake?

○ What happens if the company reviewing new agents goes under?

● The paper uses LOC as a proxy for complexity, which can be misleading



● Notary has robust defenses against issues that have affected other hardware 
security wallets

● Notary has a verifiable deterministic start, which ensures security

● New agents are easy to develop for Notary

● Reset-based agent switching is fast and practical

● Notary is only slightly more expensive to produce than existing hardware wallets

Evaluation



Poll

● What types of attacks does Notary’s design defend against?
○ Rowhammer
○ Power side channels
○ Microarchitectural side channels
○ Kernel vulnerabilities
○ USB software bugs
○ All of the above



Poll

● What types of attacks does Notary’s design defend against?
○ Rowhammer
○ Power side channels
○ Microarchitectural side channels
○ Kernel vulnerabilities
○ USB software bugs
○ All of the above



● Putting USB communication in its 
own domain blunts potential effects 
of USB software bugs

● Keeping the kernel in a separate 
domain also protects agents from 
kernel vulnerabilities

● Having multiple SoCs additionally 
defends against Rowhammer-type 
attacks

Physical Domain 
Separation





Non-microarchitectural 
side channels

“Similarly, except for microarchitectural 
side channels, Notary’s threat model does 
not include arbitrary side channels [76] 
such as electromagnetic radiation [12], 
power analysis [44], and acoustic 
analysis [30].



Reset-based Task 
Switching

● To defend against microarchitectural 
side channels, Notary employed 
reset-based task switching

● While switching between separate 
agents, the microarchitectural state 
is reset to a deterministic default 
state



Reset-based Task Switching

● Goal: Completely clear internal state before executing code from a new agent

● Reset pin doesn’t guarantee complete reset — registers may be left untouched

● Power cycling can leave state in SRAM for minutes, which can be exploited 
through cold boot attacks



Reset-based Task Switching

● Solution: Use a software-assisted 
deterministic start

○ Code runs on CPU as the system 
resets

○ Clears all architectural state, 
microarchitectural state, RAM state, 
and peripheral state



● Is it acceptable to list power channels outside of the threat model? If my wallet is 
plugged into an arbitrary malicious usb port, is that port supplying power, which 
can then be monitored?

● Is there anything a malicious agent binary can do? Denial of service? Spoof being 
another program and confuse the user?

● Are replay attacks possible with the untrusted USB interface?

Discussion Questions (Security)



● How complicated does the agent CPU need to be? To simplify reasoning about the 
reset process, could we just use a simpler CPU rather than a RISC-V chip (such as 
an ATMega device)?

● Do the limits on agent storage/IO affect the expressiveness of potential agent 
code? For instance, are there any agents currently deployed on other HW key 
platforms which cannot be ported to Notary?

● Could you have hardware that ships with this style of wallet already built-in?

Discussion Questions (Practicality)



● How does the kernel know when to switch applications?

● Can agents have any internal storage? How would they access and update it?

● Is there any good way to validate during registration that a public key is coming 
from a correct agent and not a malicious one, in a way securing the registration 
process as well -- possibly with a root-of-trust signature from the manufacturer?

Discussion Questions (Agents)


