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Content

# Design of a combinational ALU starting with
primitive gates And, Or and Not

# Combinational circuits as acyclic wiring
diagrams of primitive gates
# Introduction to BSV

= Intro to types — enum, typedefs, numeric types,
int#(32) vs integer, bool vs bit#(1), vectors

= Simple operations: concatenation, conditionals, loops
= Functions

= Static elaboration and a structural interpretation of
the textual code
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Combinational circuits are
acyclic interconnections of
gates

# And, Or, Not
# Nand, Nor, Xor
® .
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Arithmetic-Logic Unit (ALU)

Op
- Add, Sub, ...
- And, Or, Xor, Not, ...

A —| - GT, LT, EQ, Zero, ...
Result
B Comp?

ALU performs all the arithmetic
and logical functions

Each individual function can be described
as a combinational circuit
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Full Adder: A one-bit adder

. function fa(a,

b, C_in) ;
S (a » b)” c in;
c out = (a & b) | (c_ in & (a ~ b));
return {c out,s};
endfunction
ALQD 0 o
Structural code - B 1 S
only specifies ol 4
interconnection Cin
between boxes i 0
| 1
Not quite correct - Cout
needs type annotations 1
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Full Adder: A one-bit adder

corrected
function Bit# (2)

Bit# (1) s =

Bit# (1)

return {c out,s}
endfunction

C.-out-i=

“Bit# (1) a” type
declaration says that
a is one bit wide

fa(Bit# (1)

2y

(a » b)” c in;

(@ &b

’

Bit# (1)

(c_in &

b,

Bit# (1) c_in);

(@ 2b)-)

{c out, s} represents
bit concatenation

DD
B11~ S
Cin

Cout

How big is {c out,s}?
2 bits
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Types

# A type is a grouping of values:

= Integer: 1, 2, 3,

s Bool: True, False

= Bit: 0,1
A pair of Integers: Tuple2# (Integer, Integer)
= A function fname from Integers to Integers:

function Integer fname

# Every expression and variable in a BSV program
has a type; sometimes it is specified explicitly
and sometimes it is deduced by the compiler

4 Thus we say an expression has a type or belongs

to a type
The type of each expression is unique

http://csg.csail.mit.edu/6.s195/CDAC

(Integer argqg)
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Parameterized types: #

# A type declaration itself can be
parameterized by other types

# Parameters are indicated by using the
syntax ‘#’
= For example Bit# (n) represents n bits and
can be instantiated by specifying a value of n
Bit# (1), Bit#(32), Bit#(8),
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~Type synonyms

typedef bit [7:0] Byte;
> The same

typedef Bit# (8) Byte;

typedef Bit# (32) Word;

typedef Tuple2# (a,a) Pair# (type a);
typedef Int#(n) MyInt# (type n);
The same

typedef Int# (n) MyInt# (numeric type n);
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Type declaration versus
deduction

# The programmer writes down types of some
expressions in a program and the compiler
deduces the types of the rest of expressions

# If the type deduction cannot be performed or

the type declarations are inconsistent then the
compiler complains

function Bit# (2) fa(Bit# (1) a, Bit#(l) b,
Bit# (1) c in);
Bit#(1l) s = (a ~ b)" c in;
Bit#(2)+erout-=r{a & b) | l(e-in-&(a-"-b));
return {c out,s};
endfunction type error

Type checking prevents lots of silly mistakes
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2-bit Ripple-Carry Adder

val
x[011 ly[OJ X[l]l ly[l]
fa can be used as a
c[1] black-box long as we
c[0]— fa fa [—c[2] understand its type
signature
Iso] Is[1]
function Bit#(3) add(Bit#(2) x, Bit#(2) vy,
Bit# (1) c0);
Bit#(2) s = 0; Bit#(3) c=0; c[0] = cO0;
let csO = fa(x[0], y[0], c[0]);
cl[1] cs0[1]; s[0] = cs0[0];
let csl = fa(x[1], yI[1], c[1]);
[2] csl(1l]; s[l] = cs1(07];

return {c[2

endfunction
December 30, 2013
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The “let” syntax avoids having
to write down types explicitly
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“let” syntax

@ The "“let” syntax: avoids having to write down
types explicitly
m let csO
m Bits#(2)

http://csg.csail.mit.edu/6.s195/CDAC

= fa(x[0], y[0l, c[0]); '> The same
cs0 = fa(x[0], y[0], c[0]1);
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Selecting a wire: x[i]

‘ assume X is 4 bits wide

# Constant Selector: e.g., x[2]

R
e
—
R

[2]

X0 —

— X1 —

X3 —

selector: x[i]

li

—

[i]

xO-———>\L\i

X1l —
X2 —
X3 —
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X2 ——

no hardware;
x[2]is just
the name of
awire

4-way mux
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A 2-way multiplexer

A
A AND
' B Jomp—
S B || AND
S
(s==0)?A:B Gate-level implementation

S

Conditional expressions are also synthesized
using muxes
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A 4-way multiplexer

val
A —
case {sl,s0} matches —
0: A; B 4’/{
1: By S, L,
2: C;
3: D; C — /(50
endcase D

1,
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An w-bit Ripple-Carry Adder

function Bit# (w+l) addN(Bit# (w) x, Bit# (w) vy,
Bit# (1) cO0);
Bit# (w) s; Bit# (w+l) c=0; c[0] = cO0;
for (Integer i=0; i<w; 1i=i+1)

begin -
let cs = fa(x[il,ylil,clil); Not quite correct
cl[i+l] = cs[l]; s[i] = cs[0];

end

Unfold the loop to get

return {clw],s}; the wiring diagram

endfunction
X[Oll ly[O] X[1]l ly[l] X[W-l]l lY[W-l]
1 2 -1
c[o]—| fa [ <l fa e C[W—l fa ctw]
| s[0] s[1] s[w-1]
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Instantiating the parametric Adder

function Bit# (w+l) addN(Bit#(w) x, Bit#(w) vy,
Bit# (1) cO0);

Define add32, add3 .. using addN

// concrete instances of addN!
function Bit# (33) add32 (Bit#(32) x, Bit#(32) vy,
Bit# (1) c0) = addN(x,y,cO0);

function Bit# (4) add3 (Bit#(3) x, Bit#(3) vy,
Bit# (1) c0) = addN(x,y,c0);
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valueOf (w) versus w

# Each expression has a type and a value and
these come from two entirely disjoint worlds

#® win Bit# (w) resides in the types world

# Sometimes we need to use values from the
types world into actual computation. The
function valueOf allows us to do that
= Thus

i<w is not type correct
i<valueOf (w)is type correct
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TAdd# (w, 1) versus w+l

# Sometimes we need to perform operations in
the types world that are very similar to the
operations in the value world

= Examples: Add, Mul, Log

# We define a few special operators in the types
world for such operations
= Examples: TAdd# (m,n), TMul# (m,n), ..
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A w-bit Ripple-Carry Adder

corrected

function Bit# (TAdd# (w,1))) addN (Bit# (w) x, Bit# (w)
Bit# (1) c0);
Bit# (w) s; Bit# (TAdd# (w,] c[0] = c0;

let valw

types world
for (Integer i=0; i<valw; i=i+1)

Yr

equivalent of w+l1

begin
let cs = fa(x[i],yI[i],cl[i] LﬁTH@(JType
clitl] = cs[l]; s[i] = cs[0]; into the value
end world

return {cl[valw],s};
endfunction

Structural interpretation of a loop — unfold it to
generate an acyclic graph
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Static Elaboration phase

A
# When BSV programs are compiled, first type
checking is done and then the compiler gets
rid of many constructs which have no direct
hardware meaning, like Integers, loops
for (Integer i=0; i<valw; 1i=i+l) begin
let cs = fa(x[i],y[i],c[i]);
c[i+l] = cs[l]; s[i] = csl[0];
end
csO0 = fa(x[0], yI[O], [01); [1]=cs0[1]; s[0]=csO[0];
csl = fa(x[1], yI[1], [11); [2]=cs1[1]; s[1l]=csl[0];
csw = fa(x[valw-1], ylvalw-1], cl[valw-1]);
cl[valw] = csw[l]; s[valw-1l] = csw[0O];
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Integer Versus Int# (32)

# In mathematics integers are unbounded but in
computer systems integers always have a
fixed size

# BSV allows us to express both types of
integers, though unbounded integers are used
only as a programming convenience

for (Integer i=0; i<valw; i=i+1)

begin
let cs = fa(x[i],y[i],cli]);
cl[i+l] = cs[l]; s[i] = cs[0];
end
December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC
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Shift operators
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Logical right shift by 2

abeq

| L2 J

00
|
0OOab

# Fixed size shift operation is cheap in hardware
- just wire the circuit appropriately

# Rotate, sign-extended shifts - all are equally
easy
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Conditional operation:
shift versus no-shift

P

s N 7

# We need a mux to select the appropriate wires: if
s is one the mux will select the wires on the left
otherwise it would select wires on the right

(s==0)?{a,b,c,d}:{0,0,a,b};

December 30, 2013
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log n steps of fixed-length shifts
of size 1, 2, 4, ...
= Shift 3 can be performed by doinga S+
shift 2 and shift 1
# We need a mux to omit a
particular size shift

# Shift circuit can be expressed as
log n nested conditional
expressions

Logical right shift by n

4 Shift n can be broken down in

0
o
|
“—o
)/I._o / ::O_..
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A digression on types

# Suppose we have a variable c whose values
can represent three different colors
= We can declare the type of c to be Bit#(2) and say
that 00 represents Red, 01 Blue and 10 Green

# A better way is to create a new type called
Color as follows:

typedef enum {Red, Blue, Green}

Color deriving (Bits, Eq);

Types prevent
us from mixing
bits that
represent
color from raw
bits

December 30, 2013

/

The compiler will automatically assign some bit
representation to the three colors and also provide a
function to test if the two colors are equal. If you do
not use “deriving” then you will have to specify the
representation and equality
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Enumerated types

typedef enum {Red, Blue, Green}
Color deriving (Bits, Eq);

typedef enum {Eg, Neqg, Le, Lt, Ge, Gt, AT, NT}
BrFunc deriving(Bits, Eq);

typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu,
LShift, RShift, Sra}
AluFunc deriving(Bits, Eq);

Each enumerated type defines a new type
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Combinational ALU

A
function Data alu(Data a, Data b, AluFunc func);
Pafa: res. = case(func) Given an implementation of
Add @ (a + D)y the primitive operations like
Sub : (a - Db)s addN, Shift, etc. the ALU
And : (a & b); can be implemented simply
or : (a | b); by introducing a mux
Xor : (a ~ b); controlled by op to select the
Nor : ~(a | b); appropriate circuit
S1t : zeroExtend( pack( signedLT(a, b) ) );
Sltu : zerokExtend( pack( a < b ) );
LShift: (a << b[4:0]);
RShift: (a >> b[4:0]);
Sra : signedShiftRight(a, b[4:0]);
endcase;
return res;
endfunction
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Comparison operators

Bool brTaken = case (brFunc)
Eg : (a == Db);
Neqg : (a != b);

Le : signedLE(a, 0);
Lt : signedLT(a, 0);
Ge : signedGE(a, 0);
Gt : signedGT(a, 0);
AT : True;
NT : False;

endcase;

return brTaken;

endfunction
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function Bool aluBr (Data a, Data b, BrFunc brFunc);
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ALU including Comparison
operators

Eq LShift| - | Add

\? J]i,— func
mux /
L brFunc
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