Constructive Computer Architecture

Combinational circuits

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer, Muralidaran
Vijayaraghavan

Staff and students in 6.375 (Spring 2013), 6.5195 (Fall
2012, 2013), 6.5078 (Spring 2012)

= Andy Wright, Asif Khan, Richard Ruhler, Sang Woo Jun,
Abhinav Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External
= Prof Amey Karkare & students at IIT Kanpur
= Prof Jihong Kim & students at Seoul Nation University
= Prof Derek Chiou, University of Texas at Austin
= Prof Yoav Etsion & students at Technion

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC LO1-2

Content

Design of a combinational ALU starting with
primitive gates And, Or and Not

Combinational circuits as acyclic wiring
diagrams of primitive gates
Introduction to BSV

= Intro to types — enum, typedefs, numeric types,
int#(32) vs integer, bool vs bit#(1), vectors

= Simple operations: concatenation, conditionals, loops
= Functions

= Static elaboration and a structural interpretation of
the textual code

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-3

Combinational circuits are
acyclic interconnections of
gates

And, Or, Not
Nand, Nor, Xor
® .

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC LO1-4

December 30, 2013

Arithmetic-Logic Unit (ALU)

Op
- Add, Sub, ...
- And, Or, Xor, Not, ...

A —| - GT, LT, EQ, Zero, ...
Result
B Comp?

ALU performs all the arithmetic
and logical functions

Each individual function can be described
as a combinational circuit

http://csg.csail.mit.edu/6.s195/CDAC

LO01-5

Full Adder: A one-bit adder

. function fa(a,

b, C_in) ;
S (a » b)” c in;
c out = (a & b) | (c_ in & (a ~ b));
return {c out,s};
endfunction
ALQD 0 o
Structural code - B 1 S
only specifies ol 4
interconnection Cin
between boxes i 0
| 1
Not quite correct - Cout
needs type annotations 1

December 30, 2013

http://csg.csail.mit.edu/6.s195/CDAC

L01-6

Full Adder: A one-bit adder

corrected
function Bit# (2)

Bit# (1) s =

Bit# (1)

return {c out,s}
endfunction

C.-out-i=

“Bit# (1) a” type
declaration says that
a is one bit wide

fa(Bit# (1)

2y

(a » b)” c in;

(@ &b

’

Bit# (1)

(c_in &

b,

Bit# (1) c_in);

(@ 2b)-)

{c out, s} represents
bit concatenation

DD
B11~ S
Cin

Cout

How big is {c out,s}?
2 bits

http://csg.csail.mit.edu/6.s195/CDAC

December 30, 2013 LO1-7

Types

A type is a grouping of values:

= Integer: 1, 2, 3,

s Bool: True, False

= Bit: 0,1
A pair of Integers: Tuple2# (Integer, Integer)
= A function fname from Integers to Integers:

function Integer fname

Every expression and variable in a BSV program
has a type; sometimes it is specified explicitly
and sometimes it is deduced by the compiler

4 Thus we say an expression has a type or belongs

to a type
The type of each expression is unique

http://csg.csail.mit.edu/6.s195/CDAC

(Integer argqg)

December 30, 2013 L01-8

Parameterized types: #

A type declaration itself can be
parameterized by other types

Parameters are indicated by using the
syntax ‘#’
= For example Bit# (n) represents n bits and
can be instantiated by specifying a value of n
Bit# (1), Bit#(32), Bit#(8),

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-9

~Type synonyms

typedef bit [7:0] Byte;
> The same

typedef Bit# (8) Byte;

typedef Bit# (32) Word;

typedef Tuple2# (a,a) Pair# (type a);
typedef Int#(n) MyInt# (type n);
The same

typedef Int# (n) MyInt# (numeric type n);

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-10

Type declaration versus
deduction

The programmer writes down types of some
expressions in a program and the compiler
deduces the types of the rest of expressions

If the type deduction cannot be performed or

the type declarations are inconsistent then the
compiler complains

function Bit# (2) fa(Bit# (1) a, Bit#(l) b,
Bit# (1) c in);
Bit#(1l) s = (a ~ b)" c in;
Bit#(2)+erout-=r{a & b) | l(e-in-&(a-"-b));
return {c out,s};
endfunction type error

Type checking prevents lots of silly mistakes

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC

L01-11

2-bit Ripple-Carry Adder

val
x[011 ly[OJ X[l]l ly[l]
fa can be used as a
c[1] black-box long as we
c[0]— fa fa [—c[2] understand its type
signature
Iso] Is[1]
function Bit#(3) add(Bit#(2) x, Bit#(2) vy,
Bit# (1) c0);
Bit#(2) s = 0; Bit#(3) c=0; c[0] = cO0;
let csO = fa(x[0], y[0], c[0]);
cl[1] cs0[1]; s[0] = cs0[0];
let csl = fa(x[1], yI[1], c[1]);
[2] csl(1l]; s[l] = cs1(07];

return {c[2

endfunction
December 30, 2013

http://csg.csail.mit.edu/6.s195/CDAC

The “let” syntax avoids having
to write down types explicitly

L01-12

December 30, 2013

“let” syntax

@ The "“let” syntax: avoids having to write down
types explicitly
m let csO
m Bits#(2)

http://csg.csail.mit.edu/6.s195/CDAC

= fa(x[0], y[0l, c[0]); '> The same
cs0 = fa(x[0], y[0], c[0]1);

L01-13

December 30, 2013

Selecting a wire: x[i]

‘ assume X is 4 bits wide

Constant Selector: e.g., x[2]

R
e
—
R

[2]

X0 —

— X1 —

X3 —

selector: x[i]

li

—

[i]

xO-———>\L\i

X1l —
X2 —
X3 —

http://csg.csail.mit.edu/6.s195/CDAC

X2 ——

no hardware;
x[2]is just
the name of
awire

4-way mux

L01-14

A 2-way multiplexer

A
A AND
' B Jomp—
S B || AND
S
(s==0)?A:B Gate-level implementation

S

Conditional expressions are also synthesized
using muxes

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-15

A 4-way multiplexer

val
A —
case {sl,s0} matches —
0: A; B 4’/{
1: By S, L,
2: C;
3: D; C — /(50
endcase D

1,

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-16

An w-bit Ripple-Carry Adder

function Bit# (w+l) addN(Bit# (w) x, Bit# (w) vy,
Bit# (1) cO0);
Bit# (w) s; Bit# (w+l) c=0; c[0] = cO0;
for (Integer i=0; i<w; 1i=i+1)

begin -
let cs = fa(x[il,ylil,clil); Not quite correct
cl[i+l] = cs[l]; s[i] = cs[0];

end

Unfold the loop to get

return {clw],s}; the wiring diagram

endfunction
X[Oll ly[O] X[1]l ly[l] X[W-l]l lY[W-l]
1 2 -1
c[o]—| fa [<l fa e C[W—l fa ctw]
| s[0] s[1] s[w-1]
December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-17

Instantiating the parametric Adder

function Bit# (w+l) addN(Bit#(w) x, Bit#(w) vy,
Bit# (1) cO0);

Define add32, add3 .. using addN

// concrete instances of addN!
function Bit# (33) add32 (Bit#(32) x, Bit#(32) vy,
Bit# (1) c0) = addN(x,y,cO0);

function Bit# (4) add3 (Bit#(3) x, Bit#(3) vy,
Bit# (1) c0) = addN(x,y,c0);

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-18

valueOf (w) versus w

Each expression has a type and a value and
these come from two entirely disjoint worlds

#® win Bit# (w) resides in the types world

Sometimes we need to use values from the
types world into actual computation. The
function valueOf allows us to do that
= Thus

i<w is not type correct
i<valueOf (w)is type correct

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-19

TAdd# (w, 1) versus w+l

Sometimes we need to perform operations in
the types world that are very similar to the
operations in the value world

= Examples: Add, Mul, Log

We define a few special operators in the types
world for such operations
= Examples: TAdd# (m,n), TMul# (m,n), ..

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-20

10

A w-bit Ripple-Carry Adder

corrected

function Bit# (TAdd# (w,1))) addN (Bit# (w) x, Bit# (w)
Bit# (1) c0);
Bit# (w) s; Bit# (TAdd# (w,] c[0] = c0;

let valw

types world
for (Integer i=0; i<valw; i=i+1)

Yr

equivalent of w+l1

begin
let cs = fa(x[i],yI[i],cl[i] LﬁTH@(JType
clitl] = cs[l]; s[i] = cs[0]; into the value
end world

return {cl[valw],s};
endfunction

Structural interpretation of a loop — unfold it to
generate an acyclic graph

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC

L01-21

Static Elaboration phase

A
When BSV programs are compiled, first type
checking is done and then the compiler gets
rid of many constructs which have no direct
hardware meaning, like Integers, loops
for (Integer i=0; i<valw; 1i=i+l) begin
let cs = fa(x[i],y[i],c[i]);
c[i+l] = cs[l]; s[i] = csl[0];
end
csO0 = fa(x[0], yI[O], [01); [1]=cs0[1]; s[0]=csO[0];
csl = fa(x[1], yI[1], [11); [2]=cs1[1]; s[1l]=csl[0];
csw = fa(x[valw-1], ylvalw-1], cl[valw-1]);
cl[valw] = csw[l]; s[valw-1l] = csw[0O];
December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-22

11

Integer Versus Int# (32)

In mathematics integers are unbounded but in
computer systems integers always have a
fixed size

BSV allows us to express both types of
integers, though unbounded integers are used
only as a programming convenience

for (Integer i=0; i<valw; i=i+1)

begin
let cs = fa(x[i],y[i],cli]);
cl[i+l] = cs[l]; s[i] = cs[0];
end
December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC

L01-23

Shift operators

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC

L01-24

12

Logical right shift by 2

abeq

| L2 J

00
|
0OOab

Fixed size shift operation is cheap in hardware
- just wire the circuit appropriately

Rotate, sign-extended shifts - all are equally
easy

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC

L01-25

Conditional operation:
shift versus no-shift

P

s N 7

We need a mux to select the appropriate wires: if
s is one the mux will select the wires on the left
otherwise it would select wires on the right

(s==0)?{a,b,c,d}:{0,0,a,b};

December 30, 2013

http://csg.csail.mit.edu/6.s195/CDAC

L01-26

13

December 30, 2013

log n steps of fixed-length shifts
of size 1, 2, 4, ...
= Shift 3 can be performed by doinga S+
shift 2 and shift 1
We need a mux to omit a
particular size shift

Shift circuit can be expressed as
log n nested conditional
expressions

Logical right shift by n

4 Shift n can be broken down in

0
o
|
“—o
)/I._o / ::O_..

http://csg.csail.mit.edu/6.s195/CDAC

L01-27

A digression on types

Suppose we have a variable c whose values
can represent three different colors
= We can declare the type of c to be Bit#(2) and say
that 00 represents Red, 01 Blue and 10 Green

A better way is to create a new type called
Color as follows:

typedef enum {Red, Blue, Green}

Color deriving (Bits, Eq);

Types prevent
us from mixing
bits that
represent
color from raw
bits

December 30, 2013

/

The compiler will automatically assign some bit
representation to the three colors and also provide a
function to test if the two colors are equal. If you do
not use “deriving” then you will have to specify the
representation and equality

http://csg.csail.mit.edu/6.s195/CDAC

L01-28

14

Enumerated types

typedef enum {Red, Blue, Green}
Color deriving (Bits, Eq);

typedef enum {Eg, Neqg, Le, Lt, Ge, Gt, AT, NT}
BrFunc deriving(Bits, Eq);

typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu,
LShift, RShift, Sra}
AluFunc deriving(Bits, Eq);

Each enumerated type defines a new type

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-29

Combinational ALU

A
function Data alu(Data a, Data b, AluFunc func);
Pafa: res. = case(func) Given an implementation of
Add @ (a + D)y the primitive operations like
Sub : (a - Db)s addN, Shift, etc. the ALU
And : (a & b); can be implemented simply
or : (a | b); by introducing a mux
Xor : (a ~ b); controlled by op to select the
Nor : ~(a | b); appropriate circuit
S1t : zeroExtend(pack(signedLT(a, b)));
Sltu : zerokExtend(pack(a < b));
LShift: (a << b[4:0]);
RShift: (a >> b[4:0]);
Sra : signedShiftRight(a, b[4:0]);
endcase;
return res;
endfunction
December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC L01-30

15

Comparison operators

Bool brTaken = case (brFunc)
Eg : (a == Db);
Neqg : (a != b);

Le : signedLE(a, 0);
Lt : signedLT(a, 0);
Ge : signedGE(a, 0);
Gt : signedGT(a, 0);
AT : True;
NT : False;

endcase;

return brTaken;

endfunction
December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC

function Bool aluBr (Data a, Data b, BrFunc brFunc);

L01-31

ALU including Comparison
operators

Eq LShift| - | Add

\? J]i,— func
mux /
L brFunc

December 30, 2013 http://csg.csail.mit.edu/6.s195/CDAC

L01-32

16

