MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROTECT MAC

Computation Structures Group Memo 90

A Semantics for Structured Programs
by

D. Austin Henderson, Jr.

October 1973

This research was Ssupported in part by the National Science Foundation under

Tesearch grant GJ-3467L, and in part by the Advanced Research Projacts Agency
of the Department of Defense under ARPA Order No. 433 which was ménitored by

ONR Contract No. NOQ014~70-A~0362-0001.

The major idea underlying much of the work on both structured programming
and structured programs is that of expressing programs in terms of abstractions
and then either finding or creating programs which support (implement) those
akstFactions,

Scme work concerns methodology for choosing and specifying cperations
[e.g. Dijkatra, Parnas]. More recently others have concentrated on the
abstraction of data types [Simula 67, McKeag, Zilles, Liskov and Zillesd .

Abstractions appear in programs as identifiers. Support for abstraction
appear as programs. Hence the use of abstractiom must be supported by a
§ystem capable of implementing associations between abstraction-denoting
identifiers and their supporting programs.

This note discusses an abstract’computation system in terms of which
the sbatractims of structured programing shd 'the wssdcfstions which that
metbolnlogy implies are expressible. This system 1is explafined by defining
a class of expressions, and an interpeeter for them which comverts a system
"state" into some set of alternative reswltant states. (The set of outcomes
explains possible non-deterministic behavior of the interpreter.) That is,
d¢ is explained by defining an abstract machige.

This machine is offered as a functional specification of computing
hardware augmented by a software nucleus.which will support structured
programming. It therefore also offers a set of semantics for the system
support of structured programming; that is, 1t offers a set of concepts

adequate to define the creation and meanings of structured programs.

The machine has seven primitive data types . every value it computes is
either a boolean, integer, string, structure, cell, functional.or object.
Each type has associated with 1t a collection of machine "instructions" with
which inetmyges of 4t wan ‘he wamipulated. This machine's action iz desecribed
by defining the effect of each instruction on the machine's state. An informal
description of these effects is given in the following paragraphs,

Boolean, integer, and string values are constant: no "instructions"
("operators” will be used synonymously) can effect the results of ocher
operations on them. Thus

not (true)

yields false, but does not change true in any way. Apart from this, the
operators on values of these types are intellectually uninteresting, and so
" will not be described here.

Structures are also constant values. A structure has a set of selectorg——
values of type string, each of which "selects" a component.which ame a amlate of
any type. The select operator accesses component values. The augment opetator
constructs a new structure with an additonal component; Informally, 411 components
but the additional one share with the components of the "old" structure where
it makes any difference {see below). Augment leaves the "o0ld" structure
unchanged.

Cells are the changeable memory of the machine. These values have state
information associated with them. That state is any other value of the machine.

A cell is created with newcell; its state is accessed with contents and changed

with update.

=4=

More formslly, the semanfiics of cells are described by having a "memory

section" of the machine state,

A value of type cell is a "reference" to some

part of the memory section; that part is by interpretation the contents of

the cell valye,

rectizsey

!

L.“ e l'-‘-‘ e

value of cell 10

Usually the memory section of the interpreter state ig not explicicly

mentioned and cellsvalueg are envisioned as enclosing their contents.

[.# tt“ "

Augmenting a structure with a cell value as a component duplicates the
reference to the cell, but does not "copy" the cell. Thus "value sharing"
can be intreduced by using cells.

Program text is introduced into the machine as string values havinog

the special form:
”'{&iiéﬁdsl operations]"

"Operations” 1s Interpreted as an expression specifying a sequence of
primitive operations to be performed. Sequencing is provided by syntactic
forms indicating sequential, conditional, and iterative control strategles.
The primitive operators are indicated by a set of reserved identifiers
(see Appendix 1). The operands of the primitive operators are either other
expressions (this ylelds nested applicative forms), literals (e.g.
true, -4, 'WLS3P'}, or identifiers.

Identifiers are user-doined names. Identifiers may be coined "locally"
using the declare operator, in which case the value they denote is amn
argument to that operator. Otherwise, the value of an identifier must be
determined by external action, in which case it must appear in "externals",
the list of external identifiers of the text.

For example

fx)
declare('y', multiply(x,x))

resultiss (plus(y,x))

18

A value of type functional resulcs from the action of the install primitive
on a string which has the form of program text. The action of insetall may he
thought of as including some sort of compilation process so thac the resulting
functional may be more efficlently interpreted. Smmanticslly,, hoewever, install
simply "changesa" a String to an wmimound Fymatdonal., The external identiffers
of this functional do not denote any values.

New functionals can be created by msaing the bind primitive to give one of
those externals meaning.

bind(functional, identifer, value)

Like, apgment, bind does not alter its argument; it yields a new functional
with another of its externals bound. Functionals are "partially closed” fuugrans..

A functional may be evaluated using the eval operator to compute a value,

- These mechanismg are sufficient to describe abstract operatora. The
"Eﬁosmaud"supporting a particular gbstraction is described as a functional, It
may be partially bound, and then bound as the meaning of an external of another
funetional. That functional binds the Temaining externals and evaluates the
result,

Notice that the usugl déstinction between free (non-local) variables and
parameters is not made in the machine. This distinction is reintroduced by
lntempretstton of where, with respected to evaluation, the external in question
is bound: parameters are bound by the eualodbimg Sunctional, free variables

by some other functional.

Notice also that the structured programming concept of supporting an
abstract operation with a program has been extended in the machine; finentionale-
partially closed programs——support abstract operations. This permits abstract
operations which use other abstractions on data bases. These needed supporting
values are bound into the program to create a functional which supports the
desired abstraction.

The last primitive data type of the machine is the object. These are
non—-primitive values (cf. functionals are non-primitive operators). They
can be used to support abstract data types and data values.

Recent work by Liskov and Zilles has crystalized the notiom that a data
type 1s characterized by the operators which manipulate instances of that type.
In fact, they define a data type by giving a cluster of functions (operators)
which support it. The machine given here carries this idea one step further:

a data type is characterized by the collection of operators which implement it,
described mathematically. A cluster of functionals 1s identified with a single
abstract non-primitive value: the members of the cluster are the cperations for
manipulating that particular value. The value is considered to be a correct
instance of some type if the cluster of functionals satisfy the mathematical
deseription required of operators for that type.

An object is created with the construct operator

construct{name: functional, name: function, w¥+s)

The functionals are associated with their names, and the whole is returaed
as a new non-primitive value having primitive type object. It is also

regarded by interpretation as a value of some noo-primitive type.

pod o

An object may be manipulated by employing the functionals whiech make

up the object. Thesge functionals are dccassed through the operator operator,
operator(object, name)

Many representations of the same data ﬁype na2y be present in the machine at
the same time, By judicious choire of abstractions, they may be made to
interact quite successfully. This 1g because every correct object meets the
{mathematical) requirements of the dgta type of which it is an Instance;
programs using the abstraction rely on the definition, and not an the
implementation., For example, accessing the Push operator for a stack gets
different functionals for different stacks; perhaps even the text of the
functionals is different because the stacks are differently Tepresented,

It seems that the concept of type should be assoclated with each object
of the system. This ¢reates syntactic and semantic problems, not least of
which is figuring a way (like bind}) to associate the abstraction with the
'program’ which supports it. Another level of binding for types seems indicated.
To do that, a primitive type type is being considered for inelusion in the machine.
It 13 not easy; but it does seem strange not to have dynamically~cn-putatad
types. 1In the machine, data types are not Synonymous with the cluster which
Support them (ef. Liskov and Zilles); instead, many objects with different
representations which are all instances of the same data t¥ypa can be

defined. The data type 1s independent of the ¢luster(s) supporting ic.

This machine is adequate to model both abstract operations (functionals)
and abstract walues (objects). To support this claim, in the face of the difference
(outlined above) between objects in this wmachine and the clusters of Liskov and Zilles,
evidence 1Is now offered that the piece of text which is a functloni: cluster cam
be modelled in the machine. A cluster is a fumctiomal which takes the cluster
parameters as its arguments, generates approprilate functiomals (usually sharing
the denctations of some of thelr externals) using those arguments, constructs
from these functienals an object and returns it to its caller. This functional
can be evaluated at run time to create objects.

In such object-producing functionals when the functionals used to create
4 cluster are given as literals, and the ldentifiers of the functiomal are used
to bind externals of the operators, a syntactic shorthand can be used. This
shorthand is called a template, becanase of its intent. When templates are used
to create objects, implementations of this more general definition of data types
can be reduced to one quite similar to that suggested by Liskov and Zilles.

I now include two examples. One 1s text for non-primitive coperator which
converts an integer to a string. The other is text of a template for objects
of type rational; a rationmal in this cluster is represented as a pair of integers,

a fact which should be of no interest to a user of the template.

5

integer-to-atring

k:[i]

t=(']

if i eq @ do
resultis{‘g*}

f i 1s B do
HETE

{ tett IOtk pem radix)safl)

keCtk}+radix } repeatuntil tk eq 8
if | Is # do

t#Tt o~
ua‘’]
nslengih{tt)
for =8 to n-l do

u+Tuﬂ{get—chavacter(Tt,(n-l))l
resultis ty

{ I, radix |
=(A]

template for rationals

{ n, 4, rate-tenp, gcod | ’
retwrn
numerator { | resultistn))
deroninator { | resultis(d))
inteser-part { | pesultis(ned) }
fv?ctional-part
|

Tuzn-{(n+dlxd)
resultis{(trat-tenp)(*n’=fn, *d’ =d])

equal
{ v |
vivzve ‘numepator’ [
velsve ‘denominator’ [
resultis{{nevilecg{davnl)

greater-than
{ v
viiave ‘numerator’ [
vdss ‘denominator’ [J
resultis{(navd)gridsvn))

pius
{ v i
L viizve ‘numeratop’ {1

o vidaye ‘denominator’ [1
spanevd+vedn
EAN e, e
czgollta’ ssn, =5
re%ultIs((rrat-lemp]ﬂ‘n'zsn+k,‘d'-sd+k])

minus
{ v I

vinzv- ‘numerator’ [

vdsve ‘denominator’ [

snEnsved = vedn

Sdgdiﬁq , - 1

kzgedl*a’ ==n =8¢

Pegultls([Trat-temp}ﬂ‘n'=sn+k,‘d'-sd+kB)

} ‘ '

maltiply
A 2 O ‘ . . o
Cwvnzve ‘pumerator’ (1. o0 TN
vdzvas ‘denominator 83 K
sSNENAVH : o o
sdad-Ed P
ksgodi*a’ »sn x50
Pegultis((fvﬁl-temp)ﬁ‘n‘ssn+k,‘d‘-sdokﬂl
}
di\('idei

v - .
viizvo ‘numerator’ [l
vdeve ‘denominator’ I
shznavil
5d=d-EQ , b =sd]
ksdodla’=ssn, =54
pe;ultls((Trat-temp)K‘n’-sn+k,‘d'asd+kh)

ged is an integer greatest—common-divisor functional. It is used to keep

the representation of a rational in "lowest terms".

rat-tem» is a cell containing a template for creating rationals - a template

created from this very code perhaps. That is, this template 1Is recursive: the

functionals impiementing a raticnal must be able to create other rationals - the

sum and fractional-part, for example.

=11~
~-1h-

Just to complete the picture, the following operations would produce a template
for rationals, assuming ged denotes the needed integer gecd routine. The use

of the cell and updating here is raequired to achieve the desired recursion.

rat-codes' the code just Aiven *
trat~t =instafle(rat-code} -
rat-ti shinde(rat-t, ‘ged’, ged) -
rat~-t2 =[§] , ”
rat-t2 ﬁhindc(vat-tl,‘rat-temp prat-12)
rat-tempsTpat-t2
The machine as described ig not complete; it doesg not provide an adequate -
semantics for a complete computation system (a.g, a-time sharing system). Tt
needs primitives for creating and co-ordinating processes (a fork operator, and a
primitive type semaphore (7)), and for talking to the outside world (a primitive
- . ’ -
type stream and z number of instances already implemented when the machine
"starts" modelling its input and output devices).
Despite this incompleteness, the machine does provide a semantics for structured
programming and programs, with explicit means {(binding) for discussing the association

of abstraction-denating identifiers in srograms (functiomals) with the values supporting

those abstractions {functionals, templates, and Dbjects).

-3 2;_

APPENDIX 1

Primigive Operators

This is a list of the primitive operators of the machine. The domains of
each is given. U is the domain of all values. At the right is the special

characters used in examples to shorten the expresgions.

1. booleans (B): and (B,B)}-* B A
or (B,B)=# B v
not (B)=®B ~

2. integers (Z): Plus((Z,Z) == 2 -+
minus (Z,Z) =02 -
multiply (Z,Z)=—#Z bl
divide (Z,Z)-*Z ’
remalnder (Z,Z) =a.7 Tem

_ equal (Z,Z)=bpg eg
4 not equal (Z,Z)=# B re
less than (Z,Z)=+§g ls
less than or equal (Z,Z)-+ B le
greater than (Z,Z)=PB BT
greater than or equal (Z,Z)=F B ge

3. strings (8): extend (5,Z) =#3 ‘
equal string (S,5)=# %

'length (S)=b 2
get characrar (5,2)=p 2

4. structures (¥): augment (N,S,U) =w :
select (N,S)=p i -
length (N) =i 7
selactor (N.Z) =¥ 3
is geliecter (N,5)=p3
equal structure (N,N) =# B

5. cells (C): newcell (U) =» C €3]
update {(C,J) =T -—
contents (C) =w1r 1

same (C,C) =P 3B

=13-_

6, functionals (F}: install (5)=e F
bind (F,5,0) =e F
eval (Flew [
declare (S, =eU =
undeclare (8)ep I o
7. objects (0): construct (S:F) B:F, ce,SiF)=p O
operator (0,5) —aF .
Some other notations used in the examples:
nil the empty structure
{35=1, 8=U,...,8=0> 2 Btructure with the indicated selectors
rls=u, S=U,...,5¢0] functional application: indicated Bindings
In the functional followed by evaluation
{ o begin
oo end

ol lecter - the integer character code of letter

