Using C with Altera DE2 Board

This tutorial explains how to communicate with IO devicestba DE2 Board and how to deal with interrupts
using C and the Altera Monitor Program. Two example progranesgiven that diplay the state of the toggle
switches on the red LEDs. The first program uses the prograhf@eapproach and the second program uses
interrupts.

Contents:

Setting up the DE2 Basic Computer
Input and Output Using C
Creating Interrupts Using C

Doing this tutorial the reader will learn about:

e Communicating with simple input/output devices (specificthe switches and LEDs) using the C pro-
gramming language.

e Dealing with interrupts within a C program for the Nios Il pessor.

All files needed for this tutorial are located in the Alteraihtor Program install directory. If the Nios Il install
directory isC:/altera/80/nios2eds, then the sample files used in Section 1 are located at:

C:/altera/80/ni os2eds/bin/monitor/samples/Programs/switches to LEDs.
The sample files used in Section 3 are located at:
C:/altera/80/ni os2eds/bin/monitor/samples/Programs/pushbutton_interrupts.
Also, the DE2 Basic Computer is located at:
C:/altera/80/ni os2eds/bin/monitor/samples/Systems/DE2_Basic_Computer.gpf.

These directories must be adjusted if the Nios Il instakcliory is different on your computer. For this tutorial
Nios Il was installed aC:/altera/80/nios2eds. You can find where you have installed nios2eds by looking at
the SOPC_KIT_NIOS2 windows environment variable. To ds,tbpen a command prompt and tyget, and
observe the text after SOPC_KIT_NIOS2 in the list of envinemt variables that comes up.

PREREQUISITES

The reader is expected to have access to a computer that hasiQl software installed. The detailed examples
in the tutorial were obtained using Quartus Il version 8.Be Teader should be familiar with the basic operation
of the Altera Monitor Program including how to compile anddioa program onto the DE2 board. To learn about
the Altera Monitor Program, consult thidtera Monitor Program tutorial available on the DE2 website and also

the Altera Monitor Program Help menu. Furthermore, the eeatiould have a basic understanding of the C pro-
gramming language.

1 Setting up the DE2 Basic Computer

This tutorial makes use of a circuit called the DE2 Basic Cotap which must be loaded onto the DE2 Board.
This system was created by using Altera’s SOPC Builder aimtisded with the Altera Monitor Program. It con-
tains memory, simple 10 interfaces, and a JTAG UART for comimation with the host computer. To learn more
about the DE2 Basic Computer, consult the docunsastc Computer System for Altera DE2 Board available on
the University Program website and also in the DE2 Basic Gaaerglirectory. In this tutorial we will use parallel
(PIO) interfaces that are connected to the toggle switgheshbuttons, and red LEDs. A diagram of the system
that includes these elements is shown in Figure 1.

Host computer

USB-Blaster

interface
Cyclone II
JTAG Deb JTAG UART :
Nios II processor M . FPGA chip
module interface
Avalon switch fabric
SRAM On-chip PIO PIO PIO
memory Interface Interface Interface
Red Toggle
LEDs Pushbuttons switches

Figure 1. The DE2 Basic Computer with the components usdusrtutorial.

To configure the FPGA on the DE2 board with this circuit folltwese steps:

1. Open Altera’s Quartus Il software.
2. Click File > Open Project.

3. The location of the DE2 Basic Computer files will depend dmere you have Nios Il installed. For
this example, Nios Il is installed a:/altera/80/nios2eds. Locate in the Open Project window the file
C:/altera/80/nios2eds/bin/monitor/samples/systems/DE2_Basic_Computer.qgpf and click OK.

4. Go toTools > Programmer and load the circuit onto the DE2 board.

2 Input and Output Using C

We will now discuss a program that continuously examinesstate of the switches and displays this state on the
red LEDs. Figure 2 shows the code used to do this. This codelisded in the fileswitches using basic_system.c.

#defineSWITCHES_BASE_ADDRESS 0x10000010
#defineLEDR_BASE_ADDRESS 0x10001000

int mainfvoid)

{
int * red_leds = nt *) LEDR_BASE_ADDRESS; /* red_leds is a pointer to the LEDRs *
volatile int * switches = {nt *) SWITCHES_BASE_ADDRESS; /* switches point to toggle swiés */
while(1)
{
*(red_leds) = *(switches); /* Red LEDRIK] is set equal to SWfk
}
return O;
}

Figure 2.The application program that displays the stateeswitches.

In the DE2 Basic Computer, IO devices are memory mapped. T®s Eonnected to the red LEDs, switches,
and pushbuttons are located at addresses 0x10000000,dDa4IM and 0x10000050, respectively. To access
these memory locations in C, a pointer must be used. To atleesslues stored in the location pointed to by the
pointer, the * character is used, as in the code:

*(red_leds) = *(switches);

This statement moves the value in memory location pointd) tawitches to the memory location pointed to by
red_leds.

When the variablewitches is declared, the keyword volatile is used. A volatile valgais a variable that the
compiler assumes can be changed by an action outside theproghis prevents certain compiler optimizations
from occurring because the compiler must assume that thwe yadinted to by the variable could change at any
time. The statementolatile int* switches indicates thaswitches is a pointer to a volatile integer value. This
value is volatile because it can be changed by the user ftithim switches.

To run the program, perform the following:

1. Make sure the DE2 Basic Computer is loaded on the DE2 baadéscribed in Section 1.

2. Open the Altera Monitor Program, sel@muinfiguration > Configure System and locate theios_system.ptf
file that is in the same directory as tBb&2 Basic_Computer.gpf file loaded in Section 1. Make sure that
the memory device selected for the .data and .text sectahg ionchip memory. If it is not, in the memory
box dropdown box selecinchip_memory resulting in the System Configuration window shown in Figure
3. Click OK.

Mios Il System Configuration @

Cable
|USE-Blaster [USE-0] || Refresh |

System description file {(PTF)
itorlsamples) Systems\DEZ_Basic_Computerinios_swstem, pkf

Mios II Processor

jpu 7l

.text section

Mernary device: |Onchip_memn:nrw'52 (9000000hR - 9007FFFR) v|

Skart affset in device (hex: | IZI|

.data section

Mernary device: |On|:hi|:|_mem|:urw'52 (2000000h - 2007FFFh) v|

Skart offset in device (hex): | III||

Terminal device

ITAG_UART |

Refresh PTF File || (o] || Cancel |

Figure 3. Select the on-chip memory for .data and .text@esti

3. Click Configuration > Configure Program and add the filswitches_using_basic_system.c and clickOK.
Then clickActions > Compile and Load. When the program is downloaded, the window in Figure 4 will
appear.

4. Run the program and then test the design by flipping sontelssg and observing the effect on the LEDs.

Monitor MWiosII Actions Windows Help
MW G ¢ E 0k W By b Dscommec o
Disassembly — ¥ | Registers A
= % Tl Reg Walue
Goto instruction | Address (hex) or symbol name: Go Hide: RSO S e
| e i H—I |—_| pc 0x09000000 |
_start: |~ [zexa: 0x00000000
O0x05000000 06c24074 orhi sp, zero, OxS501 rl Oxz00000000
009000004 § addi sp, sp, -0x8000 rZ 0x00000000
0x09000008 nor 3p, sp, B r3 Oxoo0goaoo
0x0900000c 3 ori ap, sp, Ox7 rd 0x00000000
Ox090000L0 nor sp, 5P, Sp £3 Oxa00a0000
0x00000014 0552407 orhi gp, zero, Oxo0l Ig g"gggggggg
0x09000018 dfalsdl. addi op, gp, -0x7970 ra uxuuuuuuuu
- : r e
EKEEEEEE;; uRlE ek Zemé EXEDU I |xo 0300000000
e e T il e 10 0300000000
Ox09000024 nrh:} r2, zero, 0x900 rll 0x00000000
0x09000028 addi 12, rz, Ox34 12 000000000 ||
Ox0900002c 10006833 Jme r2 r13 Ox00000000
rld Ox00000000
_ fake init: rls 0300000000
0x05000030 EE00EE 3 ret rle Ox0ooooooo
rl? Oxz00000000
start Z: rla Ox00000000
0x09000034 010240354 orhi rd4, zero, 0x300 w|f [£19 Oxo0ogooon
(4] [»] ran 0x00000000
Disassembly | Breakpaints | Memary / Watches J Trace | ral 0x00000000
Terminal — ¥ | Info & Errors =
0F
JTAG TART link established using cable "U3E-Blaster [U3E-0]17, 1=
device 1, instance 0x00
Dovmloading 00000000 | O%)
Dommloaded 1EE in 0.0s
Verifying 00000000 { 0%)
Werify failed between address 0Ox0 and OxSE
Leaving target processor paused EE|
3
]]

Info &Errors f"" GDE server |

Figure 4. Sample program loaded.

3 Handling Interrupts Using C

This section explains how to create a program that enablesupts and handles these interrupts in an interrupt
service routine (ISR). The reader is expected to undergteniios Il interrupt mechanism as described in section
9 of thelntroduction to the Altera Nios Il Soft Processor tutorial.

3.1 The Sample Interrupt Program

Consider a program that displays the state of the switchéh@ned LEDs. The state of the LEDs can change
only when the pushbuttokEY; is pressed.

The sample program is implemented in two filpgshbuttons_interrrupt.candisr_linkage.c. The fileisr_linkage.c
provides the framework for dealing with interrupts. It canused to deal with interrupts in general. It adjusts
the program counter for the case of external interruptsesteegisters on the stack, and then calls the function
interrupt_handler. Upon completion ofnterrupt_handler(), the registers are restored from the stack and control
of the program is returned to the point where the interrup tsiggered. To use this function to create your own
program that can handle interrupts, simply copy theiéilelinkage.c to your program directory and include it as a
source file in the program configuration window of the Alteraritor Program. The filpushbuttons interrrupt.c
contains the functiomnterrupt_handler(), which can be modified to create different interrupt harlérhe text
of this file is given in Figure 5.

#define SWITCHES_BASE_ADDRESS 0x10000040
#defineLEDR_BASE_ADDRESS 0x10000000
#definePUSHBUTTONS_BASE_ADDRESS 0x10000050

void switches_isroid);
void interrupt_handlex(oid)

{
int ipending;
ipending = __builtin_rdctl(4); //Read the ipending regist
if ((ipending & 0x2) == 2) //If irgl is high, run pushbutton_,istherwise return
{

pushbutton_isr();

}
return;

}

void pushbutton_iskoid)

{
int* red_leds =ifit*) LEDR_BASE_ADDRESS;
volatile int * pushbuttons =it *) PUSHBUTTONS_BASE_ADDRESS;
volatile int* switches =it *) SWITCHES_BASE_ADDRESS;
*(red_leds) = *(switches); //Make LEDs light up to match tehies
*(pushbuttons+3) = 0; //Disable the interrupt by writinggdgecapture registers of pushbutton PIO
return;

}

int main{oid)

{
volatile int * pushbuttons =it *) PUSHBUTTONS_BASE_ADDRESS;
*(pushbuttons + 2) = 0x8; //Enable KEY3 to enable interrupts
__builtin_wrctl(3, 2); //Write 2 into ienable register
__builtin_wrctl(0, 1); //Write 1 into status register
while(1);
return O;

}

Figure 5. Thepushbuttons_interrrupt.c text.

3.2

System registers must be initialized to enable interruftss is done in the main program. In the Nios Il processor,
there are 32 separate interrupt request biidg; _o. To enable théth interruptirgy, the following needs to be true:

Initializing Nios Il Control

e The PIE bit f) in the status registecy|0) is set to 1. The status register of the Nios Il processoraefle
the operating status of the processor. If PIE=1, the pracesay accept external interrupts. When PIE=0,
the processor ignores external interrupts.

e The corresponding interrupt-enable bit in fleaable registerctl3, is set to 1. When the bitrl3;=1, the
processor may accept external interrupts from devicesemad toirq,. If ctrl3;=0, the processor will
ignore interrupts from devices connectedry, .

e Aninterrupt-request inputrqy, is asserted.

The first two of these conditions must be set when the softigaretialized. The third condition is satisfied
whenKEYs; is pressed. In the DE2 Basic Computer, the pushbutton Pi@srupt request line is connected to
irg;, as seen in Figure 6. This figure shows the base addressgsetbsd various components in the DE2 Basic
Computer, and also thieg; bits that the components in the DE2 Basic Computer are coahéc.

Component Address irq bit
SRAM 0x08000000
on-chip_memory| 0x09000000
red_leds 0x10000000
green_leds 0x10000010
HEX3-HEXO0 0x10000020
HEX7-HEX4 0x10000030
toggle switches | 0x10000040
Pushbuttons 0x10000050| 1
Expansion_JP1 | 0x10000060| 11
Expansion_JP2 | 0x10000070| 12
JTAG_UART 0x10001000| 8
Serial port 0x10001000| 10
Interval timer 0x10002000| O
sysid 0x10002020

Figure 6. Base addresses and interrupt assignment of canioin the example system.

The values in the control registers can be changed by usanbuttt-in functions used by the NIOS Il com-
piler. In the sample program, the line __builtin_wrctl(3, ites the value 2 intatrl3. This corresponds to
writing 2 (binary 10) into theenable register, causingrg; to enable interrupts. In the sample program, the line
__builtin_wrctl(0, 1) writes the value 1 intttl1,. This corresponds to writing a 1 into the PIE bit of the status
register.

3.3

The parallel port connected to tK&Y;_(pushbutton switches on the DE2 board comprises three £digters,

as shown in Figure 7. These registers have addréssd¥00050 to 0x1000005F and can be accessed using
word operations. The read-onData register provides the values of the switchdsYs, KEY, andKEY;. Bit 0

of the data register is not used because the corresponditchd¢EY, is reserved for use as a reset mechanism
in the DE2 Basic Computer. THaterruptmask register allows processor interrupts to be generated wiey &
pressed. Each bit in tHedgecapture register is set to 1 by the parallel port when the correspankiey is pressed.
The Nios Il processor can read this register to determinehvkéy has been pressed in response to receiving an

Initializing P10 Registers to Enable Interrupts

interrupt request, if the corresponding bit in the intetroqask register is set to 1. Writing any value into the
Edgecapture register deasserts the Nios Il interrupt request and ddigsabf the Edgecapture register to zero.

Address 31 30 . 4 3 2 1 0

0x10000050 Unused KEY; Data register

Unused Unused

0x10000058 Unused Mask bits Interruptmask register
0x1000005C Unused Edge bits Edgecapture register

Figure 7. Registers used in the pushbuttons parallel port.

The following code included in the main program will $gtof the pushbutton PIO interrupt mask register to
1, allowingKEYj to trigger interrupts:

*(pushbuttons + 2) = 0x8;

Note that a standard C compiler recognizes gushbuttonsis a pointer to a variable of type int, which is 4 bytes
long. Thus, the C compiler interprets the value 2 as dendidg= 8 bytes. Hence, the above instruction will
write the value 0x8 into the adressable location 0x10000@5&h is the interrupt mask register.

3.4 The Interrupt Handler

In the sample program, when an interrupt occurs the fundhierisr is run. This function is included in the file
isr_linkage.c.

Upon receiving an interrupt request, the processor stopsutixg its current instruction and begins executing
the first instruction of the interrupt handler, which mustlbeated at address 0x90000020 in the DE2 Basic
Computer. Ifisr_linkage.c is included in a program that uses interrupie, isr will automatically be placed at the
correct location by the Nios Il compiler. The functin_linkage will the call interrupt_handler which then must
determine what caused this interrupt. To determine theecafithe interrupt, thépending (ctl4) register must be
read. If thekth bit of theipending register is 1, this indicates that tivg), interrupt has occurred. In the sample
program, we need to tes} of this register. Ifv; of theipending register is 1, then the switches_isr() should be
called. This is done as follows:

int ipending;

ipending = __builtin_rdctl(4)
if ((ipending & 0x2) == 2)

{

switches_isr();

}

When an interrupt is raised in the sample program, the casrelipg bit in theEdgecapture register of the
pushbutton PIO is 1. Upon completion of the ISR, if tidgecapture register is left alone, this bit will still be 1
and the interrupt will be raised again, even though the putstib was not pressed again. Thus, in the function
pushbuttons isr the Edgecapture register must be set to 0 which is achieved by:

*(pushbuttons + 3) = 0;

Again note that sincpushbuttons is a pointer to a variable of type int, the addition of 3 will inéerpreted as
the addition of 3*4 = 12 bytes.

The state of the switches is displayed on the red LEDs asiesgglén Section 2 using:

*(red_leds) = *(switches);

3.5 Loading the Sample Interrupt Program
1. Load the DE2 Basic Computer onto the DE2 board as desdirilfe€elction 1.

2. Open the Altera Monitor Program, cli€onfiguration > Configure System and locate the fileios_system.ptf
in the same directory as th2E2_Basic_Computer.gpf. Since the ISR must be located at location 20 in the
memory and the main program is much bigger than 20 bytes, #ie pnogram must be located at an offset
that gives enough room for the ISR to fit. We chose in this exarie offset of the .text and .data sections
to be 1000 and 2000 respectively. Set these parametersiak®.

3. Next, clickConfiguration > Configure Program and select Program Type C. Cliédd... and browse
for the filespushbutton_interrupt.c andisr_linkage.c. Ensure that the filpushbutton_interrupt.c is on the
top of the list of files as in Figure 8. The fifshbutton_interrupt.c must be on top because the top file
determines the name of the generated .elf and .srec filesigeddy the compiler.

4. SelectActions > Compile and Load to compile the program and load it onto the DE2 board.

5. SelectActions > Continue to run the program. Flip some switches and pi#€E¥; on the DE2 board to
observe that the red LEDs display the state of the switchenWkY; was pressed.

Nios Il Program Configuration @

Program type
lc

Files

First source file is used ko determine ELF and SREC file name.

[rsample_programsipushbukton_interropk,c

[rhsample_programstist_linkage.c
Rernove

Up

Dy

1=
o
EE
I I 1

Options

Additional compiler Flags: |-01 -ffunction-sections -Fverbose-asm -Fro-inline

Ise small C library: [Emulate unimplemented instruckions:

Figure 8. Placg@ushbutton_interrupt.c on top.

10

Copyright(©2008 Altera Corporation. All rights reserved. Altera, Thegtammable Solutions Company, the
stylized Altera logo, specific device designations, anatder words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, theniaks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service naareshe property of their respective holders. Altera
products are protected under numerous U.S. and foreigntsatad pending applications, mask work rights, and
copyrights. Altera warrants performance of its semicomgluproducts to current specifications in accordance
with Altera’s standard warranty, but reserves the right ikenchanges to any products and services at any time
without notice. Altera assumes no responsibility or lidpiarising out of the application or use of any informa-
tion, product, or service described herein except as esiyragreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of degeeifications before relying on any published infor-
mation and before placing orders for products or services.

This document is being provided on an “as-is” basis and ageonamodation and therefore all warranties, rep-

resentations or guarantees of any kind (whether expregdieiinor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fithesssd particular purpose, are specifically disclaimed.

11

