
Using C with Altera DE2 Board

This tutorial explains how to communicate with IO devices onthe DE2 Board and how to deal with interrupts
using C and the Altera Monitor Program. Two example programsare given that diplay the state of the toggle
switches on the red LEDs. The first program uses the programmed I/O approach and the second program uses
interrupts.

Contents:

Setting up the DE2 Basic Computer
Input and Output Using C
Creating Interrupts Using C

1

Doing this tutorial the reader will learn about:

• Communicating with simple input/output devices (specifically the switches and LEDs) using the C pro-
gramming language.

• Dealing with interrupts within a C program for the Nios II processor.

All files needed for this tutorial are located in the Altera Monitor Program install directory. If the Nios II install
directory isC:/altera/80/nios2eds, then the sample files used in Section 1 are located at:

C:/altera/80/nios2eds/bin/monitor/samples/Programs/switches_to_LEDs.

The sample files used in Section 3 are located at:

C:/altera/80/nios2eds/bin/monitor/samples/Programs/pushbutton_interrupts.

Also, the DE2 Basic Computer is located at:

C:/altera/80/nios2eds/bin/monitor/samples/Systems/DE2_Basic_Computer.qpf.

These directories must be adjusted if the Nios II install directory is different on your computer. For this tutorial
Nios II was installed atC:/altera/80/nios2eds. You can find where you have installed nios2eds by looking at
the SOPC_KIT_NIOS2 windows environment variable. To do this, open a command prompt and typeset, and
observe the text after SOPC_KIT_NIOS2 in the list of environment variables that comes up.

PREREQUISITES
The reader is expected to have access to a computer that has Quartus II software installed. The detailed examples
in the tutorial were obtained using Quartus II version 8.0. The reader should be familiar with the basic operation
of the Altera Monitor Program including how to compile and load a program onto the DE2 board. To learn about
the Altera Monitor Program, consult theAltera Monitor Program tutorial available on the DE2 website and also
the Altera Monitor Program Help menu. Furthermore, the reader should have a basic understanding of the C pro-
gramming language.

1 Setting up the DE2 Basic Computer

This tutorial makes use of a circuit called the DE2 Basic Computer, which must be loaded onto the DE2 Board.
This system was created by using Altera’s SOPC Builder and isincluded with the Altera Monitor Program. It con-
tains memory, simple IO interfaces, and a JTAG UART for communication with the host computer. To learn more
about the DE2 Basic Computer, consult the documentBasic Computer System for Altera DE2 Board available on
the University Program website and also in the DE2 Basic Computer directory. In this tutorial we will use parallel
(PIO) interfaces that are connected to the toggle switches,pushbuttons, and red LEDs. A diagram of the system
that includes these elements is shown in Figure 1.

2

Red

LEDs

On-chip
memory

Toggle

switches

Avalon switch fabric

Nios II processor
JTAG UART

interface

USB-Blaster

interface

Host computer

Cyclone II

FPGA chipJTAG Debug

module

Pushbuttons

PIO

Interface

PIO

Interface

PIO

Interface
SRAM

Figure 1. The DE2 Basic Computer with the components used in this tutorial.

To configure the FPGA on the DE2 board with this circuit followthese steps:

1. Open Altera’s Quartus II software.

2. Click File > Open Project.

3. The location of the DE2 Basic Computer files will depend on where you have Nios II installed. For
this example, Nios II is installed atC:/altera/80/nios2eds. Locate in the Open Project window the file
C:/altera/80/nios2eds/bin/monitor/samples/systems/DE2_Basic_Computer.qpf and click OK.

4. Go toTools > Programmer and load the circuit onto the DE2 board.

3

2 Input and Output Using C

We will now discuss a program that continuously examines thestate of the switches and displays this state on the
red LEDs. Figure 2 shows the code used to do this. This code is included in the fileswitches_using_basic_system.c.

#defineSWITCHES_BASE_ADDRESS 0x10000010
#defineLEDR_BASE_ADDRESS 0x10001000

int main(void)
{

int * red_leds = (int *) LEDR_BASE_ADDRESS; /* red_leds is a pointer to the LEDRs */
volatile int * switches = (int *) SWITCHES_BASE_ADDRESS; /* switches point to toggle switches */
while(1)
{

*(red_leds) = *(switches); /* Red LEDR[k] is set equal to SW[k] */
}
return 0;

}

Figure 2.The application program that displays the state ofthe switches.

In the DE2 Basic Computer, IO devices are memory mapped. The PIOs connected to the red LEDs, switches,
and pushbuttons are located at addresses 0x10000000, 0x10000040, and 0x10000050, respectively. To access
these memory locations in C, a pointer must be used. To accessthe values stored in the location pointed to by the
pointer, the * character is used, as in the code:

*(red_leds) = *(switches);

This statement moves the value in memory location pointed toby switches to the memory location pointed to by
red_leds.

When the variableswitches is declared, the keyword volatile is used. A volatile variable is a variable that the
compiler assumes can be changed by an action outside the program. This prevents certain compiler optimizations
from occurring because the compiler must assume that the value pointed to by the variable could change at any
time. The statementvolatile int* switches indicates thatswitches is a pointer to a volatile integer value. This
value is volatile because it can be changed by the user flipping the switches.

To run the program, perform the following:

1. Make sure the DE2 Basic Computer is loaded on the DE2 board as described in Section 1.

2. Open the Altera Monitor Program, selectConfiguration > Configure System and locate thenios_system.ptf
file that is in the same directory as theDE2_Basic_Computer.qpf file loaded in Section 1. Make sure that
the memory device selected for the .data and .text sections is the onchip memory. If it is not, in the memory
box dropdown box selectonchip_memory resulting in the System Configuration window shown in Figure
3. Click OK.

4

Figure 3. Select the on-chip memory for .data and .text sections.

3. Click Configuration > Configure Program and add the fileswitches_using_basic_system.c and clickOK.
Then clickActions > Compile and Load. When the program is downloaded, the window in Figure 4 will
appear.

4. Run the program and then test the design by flipping some switches and observing the effect on the LEDs.

5

Figure 4. Sample program loaded.

3 Handling Interrupts Using C

This section explains how to create a program that enables interrupts and handles these interrupts in an interrupt
service routine (ISR). The reader is expected to understandthe Nios II interrupt mechanism as described in section
9 of theIntroduction to the Altera Nios II Soft Processor tutorial.

3.1 The Sample Interrupt Program

Consider a program that displays the state of the switches onthe red LEDs. The state of the LEDs can change
only when the pushbuttonKEY3 is pressed.

The sample program is implemented in two files:pushbuttons_interrrupt.c andisr_linkage.c. The fileisr_linkage.c
provides the framework for dealing with interrupts. It can be used to deal with interrupts in general. It adjusts
the program counter for the case of external interrupts, stores registers on the stack, and then calls the function
interrupt_handler. Upon completion ofinterrupt_handler(), the registers are restored from the stack and control
of the program is returned to the point where the interrupt was triggered. To use this function to create your own
program that can handle interrupts, simply copy the fileisr_linkage.c to your program directory and include it as a
source file in the program configuration window of the Altera Monitor Program. The filepushbuttons_interrrupt.c
contains the functioninterrupt_handler(), which can be modified to create different interrupt handlers. The text
of this file is given in Figure 5.

6

#defineSWITCHES_BASE_ADDRESS 0x10000040
#defineLEDR_BASE_ADDRESS 0x10000000
#definePUSHBUTTONS_BASE_ADDRESS 0x10000050

void switches_isr(void);
void interrupt_handler(void)
{

int ipending;
ipending = __builtin_rdctl(4); //Read the ipending register
if ((ipending & 0x2) == 2) //If irq1 is high, run pushbutton_isr, otherwise return
{

pushbutton_isr();
}
return ;

}

void pushbutton_isr(void)
{

int * red_leds = (int *) LEDR_BASE_ADDRESS;
volatile int * pushbuttons = (int *) PUSHBUTTONS_BASE_ADDRESS;
volatile int * switches = (int *) SWITCHES_BASE_ADDRESS;

*(red_leds) = *(switches); //Make LEDs light up to match switches

*(pushbuttons+3) = 0; //Disable the interrupt by writing toedgecapture registers of pushbutton PIO
return ;

}

int main(void)
{

volatile int * pushbuttons = (int *) PUSHBUTTONS_BASE_ADDRESS;

*(pushbuttons + 2) = 0x8; //Enable KEY3 to enable interrupts

__builtin_wrctl(3, 2); //Write 2 into ienable register
__builtin_wrctl(0, 1); //Write 1 into status register
while(1);
return 0;

}

Figure 5. Thepushbuttons_interrrupt.c text.

7

3.2 Initializing Nios II Control

System registers must be initialized to enable interrupts.This is done in the main program. In the Nios II processor,
there are 32 separate interrupt request bits,irq31−0. To enable thekth interruptirqk, the following needs to be true:

• The PIE bit (b0) in the status register (ctl0) is set to 1. The status register of the Nios II processor reflects
the operating status of the processor. If PIE=1, the processor may accept external interrupts. When PIE=0,
the processor ignores external interrupts.

• The corresponding interrupt-enable bit in theienable register,ctl3k, is set to 1. When the bitctrl3k=1, the
processor may accept external interrupts from devices connected toirqk. If ctrl3k=0, the processor will
ignore interrupts from devices connected toirqk.

• An interrupt-request input,irqk, is asserted.

The first two of these conditions must be set when the softwareis initialized. The third condition is satisfied
whenKEY3 is pressed. In the DE2 Basic Computer, the pushbutton PIO’s interrupt request line is connected to
irq1, as seen in Figure 6. This figure shows the base addresses assigned to various components in the DE2 Basic
Computer, and also theirqk bits that the components in the DE2 Basic Computer are connected to.

Component Address irq bit
SRAM 0x08000000
on-chip_memory 0x09000000
red_leds 0x10000000
green_leds 0x10000010
HEX3-HEX0 0x10000020
HEX7-HEX4 0x10000030
toggle_switches 0x10000040
Pushbuttons 0x10000050 1
Expansion_JP1 0x10000060 11
Expansion_JP2 0x10000070 12
JTAG_UART 0x10001000 8
Serial port 0x10001000 10
Interval timer 0x10002000 0
sysid 0x10002020

Figure 6. Base addresses and interrupt assignment of components in the example system.

The values in the control registers can be changed by using the built-in functions used by the NIOS II com-
piler. In the sample program, the line __builtin_wrctl(3, 2) writes the value 2 intoctrl3. This corresponds to
writing 2 (binary 10) into theienable register, causingirq1 to enable interrupts. In the sample program, the line
__builtin_wrctl(0, 1) writes the value 1 intoctl10. This corresponds to writing a 1 into the PIE bit of the status
register.

3.3 Initializing PIO Registers to Enable Interrupts

The parallel port connected to theKEY3−0 pushbutton switches on the DE2 board comprises three 4-bit registers,
as shown in Figure 7. These registers have addresses0x10000050 to 0x1000005F and can be accessed using
word operations. The read-onlyData register provides the values of the switchesKEY3, KEY2 andKEY1. Bit 0
of the data register is not used because the corresponding switch KEY0 is reserved for use as a reset mechanism
in the DE2 Basic Computer. TheInterruptmask register allows processor interrupts to be generated when akey is
pressed. Each bit in theEdgecapture register is set to 1 by the parallel port when the corresponding key is pressed.
The Nios II processor can read this register to determine which key has been pressed in response to receiving an

8

interrupt request, if the corresponding bit in the interrupt mask register is set to 1. Writing any value into the
Edgecapture register deasserts the Nios II interrupt request and sets all bits of theEdgecapture register to zero.

Address 02 14 331 30 . . .

0x10000050

0x10000058

0x1000005C

Unused

KEY3-1

Edge bits

Mask bits

Unused

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Figure 7. Registers used in the pushbuttons parallel port.

The following code included in the main program will setb3 of the pushbutton PIO interrupt mask register to
1, allowingKEY3 to trigger interrupts:

*(pushbuttons + 2) = 0x8;

Note that a standard C compiler recognizes thatpushbuttons is a pointer to a variable of type int, which is 4 bytes
long. Thus, the C compiler interprets the value 2 as denoting2*4 = 8 bytes. Hence, the above instruction will
write the value 0x8 into the adressable location 0x10000058, which is the interrupt mask register.

3.4 The Interrupt Handler

In the sample program, when an interrupt occurs the functionthe_isr is run. This function is included in the file
isr_linkage.c.

Upon receiving an interrupt request, the processor stops executing its current instruction and begins executing
the first instruction of the interrupt handler, which must belocated at address 0x90000020 in the DE2 Basic
Computer. Ifisr_linkage.c is included in a program that uses interrupts,the_isr will automatically be placed at the
correct location by the Nios II compiler. The functionisr_linkage will the call interrupt_handler which then must
determine what caused this interrupt. To determine the cause of the interrupt, theipending (ctl4) register must be
read. If thekth bit of theipending register is 1, this indicates that theirqk interrupt has occurred. In the sample
program, we need to testb3 of this register. Ifb3 of the ipending register is 1, then the switches_isr() should be
called. This is done as follows:

int ipending;
ipending = __builtin_rdctl(4)
if ((ipending & 0x2) == 2)
{

switches_isr();
}

When an interrupt is raised in the sample program, the corresponding bit in theEdgecapture register of the
pushbutton PIO is 1. Upon completion of the ISR, if theEdgecapture register is left alone, this bit will still be 1
and the interrupt will be raised again, even though the pushbutton was not pressed again. Thus, in the function
pushbuttons_isr theEdgecapture register must be set to 0 which is achieved by:

*(pushbuttons + 3) = 0;

9

Again note that sincepushbuttons is a pointer to a variable of type int, the addition of 3 will beinterpreted as
the addition of 3*4 = 12 bytes.

The state of the switches is displayed on the red LEDs as explained in Section 2 using:

*(red_leds) = *(switches);

3.5 Loading the Sample Interrupt Program

1. Load the DE2 Basic Computer onto the DE2 board as describedin Section 1.

2. Open the Altera Monitor Program, clickConfiguration > Configure System and locate the filenios_system.ptf
in the same directory as theDE2_Basic_Computer.qpf. Since the ISR must be located at location 20 in the
memory and the main program is much bigger than 20 bytes, the main program must be located at an offset
that gives enough room for the ISR to fit. We chose in this example the offset of the .text and .data sections
to be 1000 and 2000 respectively. Set these parameters and click OK.

3. Next, clickConfiguration > Configure Program and select Program Type C. ClickAdd... and browse
for the filespushbutton_interrupt.c andisr_linkage.c. Ensure that the filepushbutton_interrupt.c is on the
top of the list of files as in Figure 8. The filepushbutton_interrupt.c must be on top because the top file
determines the name of the generated .elf and .srec files produced by the compiler.

4. SelectActions > Compile and Load to compile the program and load it onto the DE2 board.

5. SelectActions > Continue to run the program. Flip some switches and pressKEY3 on the DE2 board to
observe that the red LEDs display the state of the switches whenKEY3 was pressed.

Figure 8. Placepushbutton_interrupt.c on top.

10

Copyright c©2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and allother words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service namesare the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time
without notice. Altera assumes no responsibility or liability arising out of the application or use of any informa-
tion, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of devicespecifications before relying on any published infor-
mation and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

11

