Introduction to the Altera SOPC Builder
Using Verilog Design

This tutorial presents an introduction to Altera’s SOPCl@&el software, which is used to implement a system
that uses the Nios Il processor on an Altera FPGA device. Yo development flow is illustrated by giving
step-by-step instructions for using the SOPC Builder inwction with the QuartL@> Il software to implement a
simple system.

The last step in the development process involves configuhie designed circuit in an actual FPGA device,
and running an application program. To show how this is ditne assumed that the user has access to the Altera
DE2 Development and Education board connected to a comthaehas Quartus Il and Ni€® 1l software
installed.

The screen captures in the tutorial were obtained using treat@s 1l version 8.0; if other versions of the
software are used, some of the images may be slightly differe

Contents:

Nios Il System

Altera’s SOPC Builder

Integration of the Nios Il System into a Quartus Il Project
Running the Application Program

Altera’s Nios Il is a soft processor, defined in a hardwarecdpson language, which can be implemented
in Altera’'s FPGA devices by using the Qual@sll CAD system. To implement a useful system it is necessary
to add other funcional units such as memories, input/outgetfaces, timers, and communications interfaces.
To facilitate the implementation of such systems, it is ustf have computer-aided-design (CAD) software for
implementing a system-on-a-programmable-chip (SOPQGgr&k SOPC Builder is the software needed for this
task.

This tutorial provides a basic introduction to Altera’s SOBuilder, which will allow the reader to quickly
implement a simple Nios Il system on the Altera DE2 board. &duller treatment of the SOPC Builder, the
reader can consult théios Il Hardware Development TutoriaPh complete description of the SOPC Builder can
be found in theQuartus 1l Handbook Volume 4: SOPC Builddihese documents are available on the Altera web
site.

1 Nios Il System

A Nios Il system can be implemented on the DE2 board as showigime 1.

Host computer

USB-Blaster

interface
Cyclone II
JTAG Deb JTAG UART :
Nios II processor Tue . FPGA chip
module interface
Avalon switch fabric
. Flash .
On-chip SRAM SDRAM memo Parallel I/O Serial 1/0
memory interface interface . Y interface interface
interface
SRAM SDRAM Flash Parallel Serial
) . memory I/O port 1I/O port
chip chip . . .
chip lines lines

Figure 1. A Nios Il system implemented on the DE2 board.

The Nios Il processor and the interfaces needed to connethés chips on the DE2 board are implemented
in the Cyclone Il FPGA chip. These components are intercctedeby means of the interconnection network
called the Avalon Switch Fabric. The memory blocks in thelBye Il device can be used to provide an on-chip
memory for the Nios Il processor. The SRAM, SDRAM and Flashmoey chips on the DE2 board are accessed
through the appropriate interfaces. Parallel and serfltioutput interfaces provide typical 1/0O ports used in
computer systems. A special JTAG UART interface is used tmeot to the circuitry that provides a Universal
Serial Bus (USB) link to the host computer to which the DE2rdas connected. This circuitry and the associated
software is called thelSB-Blaster Another module, called the JTAG Debug module, is providealibw the host
computer to control the Nios Il system. It makes it possiblperform operations such as downloading programs
into memory, starting and stopping execution, settinghkpeants, and collecting real-time execution trace data.

Since all parts of the Nios Il system implemented on the FP@Gif are defined by using a hardware descrip-
tion language, a knowledgeable user could write such codmptement any part of the system. This would be
an onnerous and time consuming task. Instead, one can uSOIRE Builder to implement a desired system
simply by choosing the required components and specifyiagpirameters needed to make each component fit
the overall requirements of the system. In this tutorial,wiillustrate the capability of the SOPC Builder by
designing a very simple system. The same approach is usesigndarge systems.

Host computer

USB-Blaster
Reset_n Clock interface

| |

Cyclone II
JTAG Debug JTAG UART FPGA chip

module interface

Nios II processor

Awvalon switch fabric

On-chi Switches LEDs
memorl; parallel input parallel output
interface interface

/ \
SW7 SWO0 LEDG7 LEDGO

Figure 2. A simple example of a Nios Il system.

Our example system is given in Figure 2. The system realitegia task. Eight toggle switches on the DE2
board,STW7 — 0, are used to turn on or off the eight green LED#& DG7 — 0. The switches are connected to the
Nios Il system by means of a parallel I/O interface configuredct as an input port. The LEDs are driven by the
signals from another parallel I/O interface configured toeaan output port. To achieve the desired operation, the
eight-bit pattern corresponding to the state of the swidies to be sent to the output port to activate the LEDs.
This will be done by having the Nios Il processor execute gm stored in the on-chip memory. Continuous
operation is required, such that as the switches are togiggelights change accordingly.

We will use the SOPC Builder to design the hardware depicté&igure 2. Next, we will assign the Cyclone I
pins to realize the connections between the parallel inted and the switches and LEDs which act as 1/O devices.
Then, we will configure the FPGA to implement the designedesys Finally, we will use the software tool called
theNios Il Monitor Programto assemble, download and execute a Nios Il program thabipesfthe desired task.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to design a Nios ll-based system
¢ Integrating the designed Nios Il system into a Quartus ljgmio
¢ Implementing the designed system on the DE2 board

e Running an application program on the Nios Il processor

2 Altera’s SOPC Builder

The SOPC Builder is a tool used in conjuction with the QuatuSAD software. It allows the user to easily
create a system based on the Nios Il processor, by simplgtsejehe desired functional units and specifying
their parameters. To implement the system in Figure 2, we tminstantiate the following functional units:

e Nios Il processor, which is referred to as a Central Proogdshit (CPU)

¢ On-chip memory, which consists of the memory blocks in thel@ye 1l chip; we will specify a 4-Kbyte
memory arranged in 32-bit words

e Two parallel /O interfaces
e JTAG UART interface for communication with the host compute
To define the desired system, start the Quartus Il softwatgrarform the following steps:

1. Create a new Quartus Il project for your system. As showkidgare 3, we stored our project in a directory
calledsopc_builder_tutorigland we assigned the nartights to both the project and its top-level design
entity. You can choose a different directory or project nang be aware that the SOPC Builder software
does not permit the use of spaces in file names. For examplattempt to use a directory nansepc
builder tutorialwould lead to an error. In your project, choose the EP2C33E6hip as the target device,
because this is the FPGA on the DE2 board.

2. Selecflools > SOPC Builder, which leads to the pop-up box in Figure 4. Em@s_systeras the system
name; this will be the name of the system that the SOPC Buililegenerate. Choose Verilog as the target
HDL, in which the system module will be specified. CIliGiK to reach the window in Figure 5.

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] g|

‘what iz the working directory for this project?

|D hzope_builder_tutarial

‘what iz the name of this project?

]

|Iights

‘what iz the name of the top-level design entity for this project? Thiz name iz case senzitive
and must exactly match the entity name in the design file.

]

|Iights

| Usze Existing Project Settings ...

]

| Mest > | Finizh | Cancel

Figure 3. Create a new project.

¥ Create New System
System Mame:| nios_system

Target HOL: (3) Yerilog
() WHDL

X

Figure 4. Create a new Nios Il system.

3. Figure 5 displays the System Contents tab of the SOPC &uilehich is used to add components to the
system and configure the selected components to meet tlgndeguirements. The available components
are listed on the left side of the window. Before choosing@mponents, examine the area in the figure
labeledTarget. Check the setting for thBevice Family and ensure thatyclone Il is selected.

. The Nios Il processor runs under the control of a clock. thir tutorial we will make use of the 50-MHz

clock that is provided on the DE2 board. As shown in Figuret % possible to specify the names and
frequency of clock signals in the SOPC Builder display. If albeady included in this list, specify a clock
namedclk with the source designated Bgternal and the frequency set to 50.0 MHz.

= Altera SOPC Builder - nios_system.sopc® (D:\sopc_builder tutorial\nios system.sope)

B
File Edit Module System Yiew Tools Help
{System Conterts || System Generation |

(] Altera SOPC Builder
ortiroser || pevisFamy cyenet] [e
+-Bridges and &dapters
H-Interface Protocols

#-Legacy Companents
#-Memaries and Memary Cortrallers
- Peripherals

EPLL Use | .. | Module Mame
HUSE

[F-+idea and Image Processing

Target Clock Settings

Source hiHz

el External s0.0

Desctiption Clock Base End

| 3
Sl =S i Remove Eclit Doy [Address Map..] [Filter ... J

Ecitt a hove Lp W hic

@ Infio: *our system is ready to generste.

4 Frev [Mext |] [Generste]

Figure 5. The System Contents tab window.
5. Next, specify the processor as follows:

e On the left side of the window in Figure 5 selétibs Il Processor and clickAdd, which leads to the
window in Figure 6.

= Nios Il Processor - cpu @

Nios II Processor

Docurnentation

5 \}‘ Advanced Features \‘) MML and MPU Settings _) ITAG Debug Module \}‘ Custom Instructions _}

rCore Mios |l

Select a Nios Il core:

@Nios Il/e O Nios llIfs ONios lIf
A RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclane I Branch Prediction Eranch Prediction
Hardware Multiply Harhware ultiply
fsystem: 500 MHz ‘Hardware Divide Hardware Divide
- \Barrel Shifter
SRt Data Cache
_ Dynamic Branch Prediction
Performance at 50.0MHz];:l,':t-'io-is"riﬁvnﬁs 7 Up to 25 DMIPS Up to 51 DMIPS
Logic Usage G00-700 LEs 12001400 LE= 1400-1500 LE=
Memory Usage TV\‘GWS’(OI‘WJ?J - Twvo MKz + cache Thres Mdks + cache
Harchware Muttiply: | = oen o
Reset Yector: Metmary: | w |Offset | g |
Exception Yector: Memary: | v | Offset igyen |

Only include the MWL when using an opersting system that explicitly supports an MWL
Fast TLE Mizs Exception Vector: Memory: Offset: : [

‘Warning: Reset vector and Exception vector cannaot be set until memary devices are connected to the Mios |l processor

Figure 6. Create a Nios Il processor.

e Choose Nios ll/e which is the simplest version of the proaesSlick Finish to return to the window
in Figure 5, which now shows the Nios Il processor specifiethdisated in Figure 7. There may be
some warnings or error messages displayed in the SOPC BMlelesages window (at the bottom of
the screen), because some parameters have not yet bedredpdghore these messages as we will
provide the necessary data later.

= Altera SOPC Builder - nios_system.sopc® (D:\sopc_builder tutorial\nios system.sopc)

File Ecit Module System Yiew Tools Mozl Help
System Contents i System Generatml;i
|10 Attera SOPC Builder Target Clock Settings
Create new component... |
3 Device Famlly:w&yc\one Il v| | Mame Source fHzZ d
Bridges and Adapters |clke [External |5I].I] R
Interface Protocals
Legacy Components
Memories and Memory Contrallers
Peripherals s
Use | Con.. Module Mame Description Clock Base Encd IRG
E cpu Mios Il Processor
#-¥ideo and Image Processing instruction_tester |Avalon Memory Mapped Master |clk
chata_master Lwslon Memary Mapped haster Ing o0) InQ 31 3
ftag_debun_module | Avalon Memary Mapped Slave 0x00000800 |DxDDDDD fE£E
[Add..] =S | | Remove Eclit a hove Lp W hove Dover [Address Map..] [Filter ...
= ToDo: epu: Mo reset vector has heen specified for this CPU. Please parameterize the CPU to resalve this issue
L To Do: epu: Mo exception vector has been specified for this CPU. Please parameterize the CPU ta resolve this issue
o, Warning: epu; Reset vector and Exception vector cannot be set urtil memory devices are connected to the Mios | processor
Exit 4 Prev [Mext |] [Generste]

Figure 7. The defined processor.

6. To specify the on-chip memory perform the following:
e SelectMemories and Memory Controllers > On-Chip > On-Chip Memory (RAM or ROM) and
click Add

e In the On-Chip Memory Configuration Wizard window, shown igute 8, set the memory width to
32 bits and the total memory size to 4 Kbytes

e Do not change the other default settings
e Click Finish, which returns to the System Contents tab as indicated ur&ig

= On-Chip Memory (RAM or ROM) - onchip_mem

On-Chip Memory
(RAM or ROM)

~Mermory type

[Dual-port access
Read During Write Mode:

Elock type: At w

Initialize memary contert

Memary will be initislized from onchip_mem hex

(3) RAM (Wiitable) () ROM (Read-only)

rSize
Drata wvidth: |32 b
Total memory size: i4 ||KEMes w

Minimize memory block ussee fmay impsct fmesd

~Read |latency

Slave =1: |T " Slave =20

Memaory initialization

[] Enable non-default inttialization file

User-created intislization file:

|:| Enable In-System Memory Content Editor feature

Instance I0;

hex

Figure 8. Define the on-chip memory.

File Ecit Module System Yiew Tools Mozl Help

= Altera SOPC Builder - nios_system.sopc® (D:\sopc_builder tutorial\nios system.sopc) |:]@@

System Contents i System Generation |

|7 Altera SOPC Buider Al Target Clock Settings
Creste neyy component... N
Mios Il Processor Device Famlly.Eyc\one I _v_| | Hame Source hiHz Ad
- Bridoes and Adapters |etke [External fs0.0 Re
[#-Irterface Protocols
[#-Legacy Components
(=-Memaries and Memary Controller:
FH-DMA
B-Flash Use | Con.. Module Name Description Clock | Base Endl IRG
[=h-On-Chip B cpu ios || Processor
s Avalon-ST Dual Clac instruction_mester - |Svalon Memory Mapped Master |elk
» Avalon-ST Mutti-Char chata_master Lwslon Memary Mapped haster InQ o) IRQ 31 3
' Awvalon-ST Round Ro ftag_debug_madule |[Avalon Memary Mapped Slave 0300000800 |0x00000ffF
¢ Ayalon-5T Single Clo E enchip_mem On-Chip Memory (RAM or ROM)
i | =1 Awslon Memary Mapped Slave |elk 000002000 |0x00002££E
i Remove Eciit a hove Lp i [Address Map..] [Filter ...

= ToDo: epu: Mo reset vector has heen specified for this CPU. Please parameterize the CPU to resalve this issue
L7 To Do: epu: Mo exception vector has been specified for this CPU. Please parameterize the CPU o resolve this issue

G [renb] [omeme]

Figure 9. The on-chip memory is included.

7. Specify the input parallel I/O interface as follows:

e SelectPeripherals > Microcontroller Peripherals > PI1O (Parallel I/O) and clickAdd to reach the
P10 Configuration Wizard in Figure 10

o Specify the width of the port to be 8 bits and choose the doeaif the port to bénput, as shown in
the figure

e Click Finish to return to the System Contents tab as given in Figure 11

10

o]

w

™ PI0 {Parallel 10} - pio

PIO (Parallel I/0)

Wiidth

Input

irection

O Bidirectional (tristate) ports

@

() Both input and output parts

(O Output ports anly

Qutput Port Reset Value

Simula

Docurnentation

‘Warning: PIO inputs are not hardwired in test bench. Undefined values will be read from PIC inpu

< Back

% Altera SOPC Builder - nios_system.sopc* (D:\sopc_builder_tutorialinios_system.sopc)

Figure 10. Define a parallel input interface.

File Edit Module System Wiew

Tools Mios . Help

System Corterts | System Generation |

13 Altera SOPC Builder
F3 Creste new component...
Moz Il Processor
H-Bridues and Adapters
nterface Protocols
egacy Components
Memories and Memaory Cortrollers
eripherals
ebug and Performance
isplay
[£HFPGA Peripherals
icrocontraller Petipherals
Irterval Timer

-Multiprocessor Coordination

ftac_debug_moduls
E onchip_mem

=1
B pio

=1

Awealon Memary Mapped Slave
On-Chip Mematy (RAM or ROM)
Lvalon Memory Mapped Slave clk

FIO (Parallel 10

Lwslon Memary Mapped Slave |elk

Taraet Clock Settings
Device Family:Ec\one I Iame Source fiHz
= el External |50.0
Module Name Description Clack Base End IRG
E cpu Mios || Processor
instruction_master |Avalon Memory Mapped Master (elk
dlata_master Lyvalon Memary Mapped Master IRQ O IRQ 31 H

0x00000800 (Ox00000££¢F

0x00002000 0x0000ZffF

0200000000 |[0x0000000¢F

[Address Map..] [Fitter...

To Do: epu; Mo reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
! To Do: cpu: Mo exception vector has been specified for this CPL. Please parameterize the CPU {o resolve this issue
0, Warning: pio; PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation

[Next []

[Generate]

Figure 11. The parallel input interface is included.

11

8. In the same way, specify the output parallel I/O interface
e SelectPeripherals > Microcontroller Peripherals > PI1O (Parallel I/O) and clickAdd to reach the
PIO Configuration Wizard again
e Specify the width of the port to be 8 bits and choose the doeaif the port to béDutput
e Click Finish to return to the System Contents tab

9. We wish to connect to a host computer and provide a mearsfomunication between the Nios Il system
and the host computer. This can be accomplished by instiagtithe JTAG UART interface as follows:

e Selectinterface Protocols > Serial > JTAG UART and clickAdd to reach the JTAG UART Con-
figuration Wizard in Figure 12

e Do not change the default settings
e Click Finish to return to the System Contents tab

' JTAG UART - jtag uart

JTAG UART

Simulation
Wirite FIFC (Data fram Avalon to JTAG)

Buffer depth (bytes): | gq w IRG threshald: |5
|:| Construct using registers instead of memoary blocks

Read FIFQ (Data from JTAG to Avalon)

Buffer depth (bytes): | gq w IRG threshald: |5

|:| Construct using registers instead of memoary blocks

Figure 12. Define the JTAG UART interface.

10. The complete system is depicted in Figure 13. Note tleeS®PC Builder automatically chooses names for
the various components. The names are not necessarilyitegcenough to be easily associated with the
target design, but they can be changed. In Figure 2, we ussathes Switches and LEDs for the parallel
input and output interfaces, respectively. These namebearsed in the implemented system. Right-click
on thepio name and then seleRename. Change the name to Switches. Similarly, chapige 1 to LEDs.

11. The base and end addresses of the various componengsdadigned system can be assigned by the user,
but they can also be assigned automatically by the SOPC &ulde will choose the latter possibility. So,
select the command (using the menus at the top of the SOP@eBuwilindow)System > Auto-Assign
Base Addresses, which produces the assignment shown in Figure 14.

12

= Altera SOPC Builder - nios_system.sopc® (D:\sopc_builder tutorial\nios system.sopc)

File Ecit Module System Yiew Tools Mozl Help
System Contents | System Generation |
1] Aftera SOPC Buider - Target Clock Seftings
-] Creste nesy componert... T —
Mios Il Processor Device Famlly.E_c\one] Hame Source fHz
el External s0.0
Module Name Description Clock Base Encd IRG
E cpu Mios Il Processor
Avalon-ST JTAG Inte instruction_tester |Avalon Memory Mapped Master |clk
Avalon-5T Serial Per data_master Avalon Memoty Mapped Master Ina o IRQ 31
ftag_debun_module | Avalon Memary Mapped Slave 0x00000800 (0x00000ffF
SPI (3 Wire Serial) E onchip_mem on-Chip Memory (RAM or RO
o UART (RS-232 Serial =1 Asalon Memory Mapped Slave |clk 000002000 |0x0000Z£££
egacy Components B pio FIO (Parallel 100)
[Memaries and Memary Controller: =1 Awalon Memary Mapped Slave |clk 0300000000 |0x0000000 £
eripherals — = pie 1 PIO (Parallzl 1100
LL =1 Awslon Memary Mapped Slave |elk 000000010 |0x0000001 £
1UsE ko] B jtag_uart JTAG UART
| > avalon_ftag_slave |Avalon Memory Mapped Slave clk 0x00000020 [0x00000027
[(mga. | A | & Hiove Up v [mddresstan. | [Fifer.

To Do epu: Mo reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
L) To Dao: epu: Mo exception vector has been specified for this CPU. Please parameterize the CPU to resolve this izsue
0 Warning: pio; PIC inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

[Nex‘lp]

[Generste]

Figure 13. The complete system.

= Altera SOPC Builder - nios_system.sopc* (D:\sopec_builder tutorialinios system.sopc)

File Edit Module System “iew Tools Mos |l Help
System Corterts | System Generahm;i
J_é Altera SOPC Builder ~ Target Clock Settingds
3 Creste new component... _ 23—
Mios Il Processor Device Famlly.kE\f'c\one I | Mame Source hiHz
el External |s0.0
Con Madule Mame Clock | Bass Encl IRG

[=H-Serial
Avalon-ST JTAG Inte
Avalon-ST Serial Per

SP1(3Wire Serisl)

& UART (RE-232 Serial
egacy Components

temories and Memory Contraller:

etipherals =
LL
sl
= | >
[(mga. | 4 |

instruction_master - |Avalon Memory Mapped Master |clk

chata_master Awalon Memary Mapped hMaster InD O IRQ 31

ftag_debug_module | Avalon Mematy Mapped Slave 000002800 [0x0000Z££F

|E| E onchip_mem On-Chip Memory (RAM or ROM)

=1 Avalon Memory Mapped Slave clk 0x00001000 [0x00001f£F
B Switches PIC (Parallel 1100

=1 Lwvalon Memary Mapped Slave clk 000002000 (0x0000300fF
E LEDs FIO (Parallel 1T

=1 Avalon Memory Mapped Slave clk 0x00003010 |[0x0000301¢F
B jtag_uart ITAG UART

avalon_ftag_slave |Avalon Memory Mapped Slave clk 0x00002020 (000003027

. fove Lp [7 Move Down] [Address Map..] [Eilter...

To Do epu: Mo reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
5 To Do epu: Mo exception vector has heen specified for this CPU. Please parameterize the CPU to resolve this issue
0 Warning: Switches: PIO inputs are not hardwired intest bench. Undefined values will be read from PIO inputs during simulstion.

[Nex‘lp]

[Generate]

Figure 14. The final specification.

13

12. The behaviour of the Nios Il processor when it is reseefindd by its reset vector. It is the location in
memory device the processor fetches the next instructiamvittis reset. Similarly, the exception vector is
the the memory address the processor goes to when an interragsed. To specify these two parameters,
perform the following:

¢ Right-click on thecpu and then seleddit to reach the window in Figure 15

e Selectonchip_mem to be the memory device for both reset vector and exceptiotokeas shown in
the figure

¢ Do not change the default setting for offset
e Click Finish to return to the System Contents tab

™ Nios Il Processor - cpu

Nios II Processor .

Docurnentation

| [Core Mios FML and MP
~Core Mios ||
Select a Nios Il core:

|@'Nln's ife ONios lifs ONios lIf

A RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclane I Branch Prediction Eranch Prediction
Hardware Multiply Harcware Multiply
fsystem: 50.0 MHz ‘Hardware Divide Harechweare Divide
. Barrel Shifter
cd: 0
! Data Cache
Dynamic Branch Prediction
Petformance st S0.0MHz EI;:r-Io.SDMIF-‘S: “Upto 25 DMIPS Up to 51 DMIPS
Logic Usage £00-700 LEs 1200-1400 LEs 1400-1500 LEs
Memary Lsage Tuwvo Maks (ar squiv.] Tuwvo Maks + cache Three hdks + cache
Hardwware Multiply:
Reset Vectar: MEMOY: | onchip_mem v |[Offset 0y 0x00001000

Exception Vector: hemory: |

v |Otfset [pz0 | 0x00001 020

Only include the MWL when using an operating system that explicitly supports an MU
Fast TLE Mizs Exception Vectar: Memory: Oftset: | [

Figure 15. Define the reset vector and exception vector.

13. Having specified all components needed to implementeb@eatl system, it can now be generated. Select
the System Generation tab, which leads to the window in Figure 16. Turn &ffimulation - Create
simulator project files, because in this tutorial we will not deal with the simulatiof hardware. Click
Generate on the bottom of the SOPC Builder window. The generation ggeroduces the messages
displayed in the figure. When the message “SUCCESS: SYSTEMERENION COMPLETED" appears,
click Exit. This returns to the main Quartus Il window.

14

% Altera SOPC Builder - nios_system.sopc (D:\sopc_builder_tutorialinios_system.sopc)
File Edt Module Syst i

Tools Mios | Help

System Contents

Dptions
System module logic will be created in Verilog.

|:| Simulation. Create project simulstor files.

Mioz Il Toolks

Mics Il IDE

A e S L
Info: Peak virtual memory: 47 megabytes
Info: Processing ended: Fri Jun 20 14:32:558 2008
Info: Elspsed time: 00:00:00
Infa: Total CPU time (on all processors): 00:00:00
2008.06.20 1 4:32:59 (*) Completed generstion for system: nios_system
200506 20 14:32:58 (*) THE FOLLOWWNG SYSTEM ITEMS HAWE BEEM GEMERATED:
SOPC Builder database ; D:fsopc_huilder_tutorialinios_system ptt
System HOL Model : Dizope_builder_tutorialinios_system v
System Generation Script : D:isopc_builder_tutorialinios_system_generstion_script
200506 20 14:32:58 (*) SUCCESS: SYSTEM GENERATION COMPLETED.
'@ Info: System generation was successul. w |
£ | >

-, Warning: Switches: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulstion.

() (o] (dmm] vor

Figure 16. Generation of the system.

Changes to the designed system are easily made at any tine®jpgning the SOPC Builder tool. Any com-
ponent in the System Contents tab of the SOPC Builder canleetsd and deleted, or a new component can be
added and the system regenerated.

3 Integration of the Nios Il System into a Quartus Il Project

To complete the hardware design, we have to perform the/olp

Instantiate the module generated by the SOPC Builder imt@tinartus Il project

Assign the FPGA pins

Compile the designed circuit

Program and configure the Cyclone Il device on the DE2 board

3.1 Instantiation of the Module Generated by the SOPC Builder

The instantiation of the generated module depends on thgndestry method chosen for the overall Quartus |l
project. We have chosen to use Verilog HDL, but the approadinnilar for both VHDL and schematic entry
methods.

Normally, the Nios Il module is likely to be a part of a largersign. However, in the case of our simple
example there is no other circuitry needed. All we need tosdiostantiate the Nios Il system in our top-level
Verilog file, and connect inputs and outputs of the parallelports, as well as the clock and reset inputs, to the
appropriate pins on the Cyclone Il device.

The Verilog module generated by the SOPC Builder is in thenfibs_system.in the directory of the project.
Note that the name of the Verilog module is the same as thersysame specified when first using the SOPC

15

Builder. The Verilog code is quite large. Figure 17 depitts portion of the code that defines the input and
output signals for the moduld@os_systemThe 8-bit vector that is the input to the parallel pgwitchess called
in_port_to_the_SwitcheJhe 8-bit output vector is calleaut_port_from_the_ LEDsThe clock and reset signals
are calledclk andreset_n respectively. Note that the reset signal is added auteaibtiby the SOPC Builder; it

is calledreset_rbecause it is active low.

bl nios_system.v Q@@
z039 ”
2040 HEmodule nios_system |
2041 /4 1) global signals:

Z04& clk,

2043 reset_n,

2044

2045 /¢ the_LEDs

2048 out_port_from the LEDs,
2047

2048 /¢ the_Switches

2042 in_port to_the Switches
2050]

zZ051 ;

ZD5z2

2053 output [7: 0] out_port_from the LEDs:
z054 input clk:

2055 input [7: 0] in port_to_the_Switches;
2058 input reset_n;

2057

2058 wire [1: 0] LEDs_sl1_address;

2059 wire LEDs_s1_ehipselect;

2060 wire LEDs_=1_reset_n;

2061 wire LED=_=1_write n;

2062 Wire [7: 0] LED= =1 writedata;

Z063 wire [1: 0] Switches sl address;

2064 wire [7: 0] Switches sl readdaca; v
< >

Figure 17. A part of the generated Verilog module.

Figure 18 shows a top-level Verilog module that instantidbes Nios Il system. This module is namiaghts,
because this is the name we specified in Figure 3 for the tag-tkesign entity in our Quartus Il project. Note
that the input and output ports of the module use the pin ndarghe 50-MHz clock,CLOCK_5Q pushbutton
switches KEY, toggle switchesSW and green LEDd, EDG, that are specified in the DE2 User Manual. Type
this code into a file callelights.v. Add this file and all the *.v files produced by the SOPC Builbeyour Quartus
Il project. Also, add the necessary pin assignments on th2 fard to your project. The procedure for making
pin assignments is described in the tutofalartus Il Introduction Using Verilog DesigNote that an easy way
of making the pin assignments when we use the same pin namegtes DE2 User Manual is to import the
assignments given in the file call®&E2_pin_assignments.cavthe directoryDE2_tutorials design_fileswhich
is included on the CD-ROM that accompanies the DE2 board andlso be found on Altera’s DE2 web pages.

Since the system we are designing needs to operate at a 5CMtizfrequency, add the needed timing as-
signment in your Quartus |l project. The tutoriming Considerations with Verilog-Based Desigi®ws how
this is done.

16

/l Implements a simple Nios Il system for the DE2 board.
/I Inputs: SWZ-0 are parallel port inputs to the Nios Il system
1 CLOCK_50 is the system clock
I KEYO is the active-low system reset
// Outputs: LEDG70 are parallel port outputs from the Nios Il system
module lights (SW, KEY, CLOCK_50, LEDG);
input [7:0] SW,
input [0:0] KEY;
input CLOCK_50;
output [7:0] LEDG;

Il Instantiate the Nios Il system module generated by theGBlder:
I/l nios_system (clk, reset_n, out_port_from_the LEDsport_to_the Switches)
nios_system Niosll (CLOCK_50, KEY][0], LEDG, SW);

endmodule

Figure 18. Instantiating the Nios Il system.

Having made the necessary settings compile the code. Yowse®gome warning messages associated with
the Nios Il system, such as some signals being unused ordghawviong bit-lengths of vectors; these warnings can
be ignored.

3.2 Programming and Configuration
Program and configure the Cyclone Il FPGA in the JTAG programgmode as follows:

1. Connect the DE2 board to the host computer by means of a dBIB plugged into the USB-Blaster port.
Turn on the power to the DE2 board. Ensure that the RUN/PROG!svg in the RUN position.

2. Selecflools > Programmer to reach the window in Figure 19.

3. If not already chosen by default, select JTAG in the Mode Adso, if the USB-Blaster is not chosen by
default, press thelardware Setup... button and select the USB-Blaster in the window that pops up.

4. The configuration fildéights.sofshould be listed in the window. If the file is not already ldstéhen click
Add File and select it.

5. Click the box undeProgram/Configure to select this action.

6. At this point the window settings should appear as indidah Figure 19. PresStart to configure the
FPGA.

17

1 lights.cdi*

‘.E; Hardware Setup...| | USB-Blaster [USB-0] Mode: |ITAG | Progress: 0%
™ Enable realtime ISP to allow background prograrmming [for M 11 devices)
Wi Start File Checksum Usercade Eroonghrgazﬁr; Verify g:::rk Examine Seg?:nty Erast
672 00428789 FFFFFFFF
jFﬂ Auto Detect
w Delete
& 4dd File..
T Change File...
[Add Device
< >

Figure 19. The Programmer window.

4 Running the Application Program

Having configured the required hardware in the FPGA devide,How necessary to create and execute an appli-
cation program that performs the desired operation. Thisbeadone by writing the required program either in
the Nios Il assembly language or in a high-level languagé ssdC. We will illustrate both approaches.

A parallel I/O interface generated by the SOPC Builder iseasible by means of registers in the interface.
Depending on how the PIO is configured, there may be as mamuasdgisters. One of these registers is called
the Data register. In a PIO configured as an input interfdoe,diata read from the Data register is the data
currently present on the PIO input lines. In a PIO configuredraoutput interface, the data written (by the Nios
Il processor) into the Data register drives the PIO outmédi If a PIO is configured as a bidirectional interface,
then the PIO inputs and outputs use the same physical lindisisicase there is a Data Direction register included,
which determines the direction of the input/output trandfeour unidirectional PIOs, it is only necessary to have
the Data register. The addresses assigned by the SOPC Baii&léx00003000 for the Data register in the PIO
called Switches and 0x00003010 for the Data register in tecBlled LEDs, as indicated in Figure 14.

You can find a full description of the PIO interface by openihg SOPC Builder window in Figure 14 and
right-clicking on the module name of a PIO (either Switched BDs). Then, in the pop-up box selebtata
Sheet to open the documerRIO Core with Avalon Interfacevhich gives a full description of the interface. To
use this facility you need to be connected to the Internet.

4.1 Using a Nios Il Assembly Language Program

Figure 20 gives a Nios Il assembly-language program thatements our trivial task. The program loads the
addresses of the Data registers in the two PIOs into procesgigters-2 andr3. It then has an infinite loop that
merely transfers the data from the input PElyitchesto the output PIOL.EDs

The program includes the assembler directive

.include "nios_macros.s"

which informs the Assembler to use the Nios Il macros thati§péow the movia pseudoinstructions can be
assembled.

18

.include "nios_macros.s"

.equ Switches, 0x00003000
.equ LEDs, 0x00003010

.global _start
_start:
movia r2, Switches
movia r3, LEDs
loop: Idbio r4, 0(r2)
stbio r4, 0(r3)
br loop

Figure 20. Assembly language code to control the lights.

The directive
.global _start

indicates to the Assembler that the labstartis accessible outside the assembled object file. This labblei
default label we use to indicate to the Linker program thearb@gg of the application program.

For a detailed explanation of the Nios Il assembly languagéuctions see the tutorifitroduction to the
Altera Nios Il Soft Processor

Enter this code into a filéights.sand place the file into a working directory. We placed the fil® ithe
directorysopc_builder_tutorialapp_software The program has to be assembled and converted into an SeReco
file, lights.sreg suitable for downloading into the implemented Nios Il syst

Altera provides themonitor software, calledAltera Monitor Program for use with the DE2 board. This
software provides a simple means for compiling, assemlaimydownloading of programs into a Nios Il system
implemented on a DE2 board. It also makes it possible for #ee 10 perform debugging tasks. A description of
this software is available in th<era Monitor Programtutorial.

Open the Altera Monitor Program, which leads to the windowigure 21. This software needs to know the
characteristics of the designed Nios Il system, which arergin the ptf filenios_system.ptiClick theNios Il >
Configure system... menu item to display the Nios Il System Configuration windstwpwn in Figure 22, and
perform the following steps:

1. Select theJSB-Blasteicable from theCable drop-down list, which is used with DE2 board.

2. Click Browse... to display a file selection window and choose thes_system.pffle. Note that this file is
in the design directorgopc_builder_tutorial

3. The Altera Monitor Program also needs to know where to thadapplication program. In our case, this is
the memory block in the FPGA device. The SOPC Builder assighe nameonchip_mento this block.
As shown in Figure 22, the Monitor Program has already sedettte correct memory device.

4. Having provided the necessary information, cligk to confirm the system configuration.

Next, the source filéights.sneeds to be specified. Click tiNios Il > Configure program... menu item to
display the Nios Il Program Configuration window in Figure&8i perform the following steps:

1. Click Add... to display a file selection window and choose tights.sfile. Note that this file is in the
directorysopc_builder_tutorialapp_software

2. Click Ok to confirm the program configuration.

19

Next, to assemble and download fight.s program, click theActions > Compile & Load menu item. The
Altera Monitor Program will invoke an assembler prograntigised by a linker program. The commands used to
invoke these programs, and the output they produce, carebesgiin theinfo & Errors window of the Monitor
Program window. After the program has been downloaded dr@doard, the program is displayed in Dis-
assembly window of the Monitor Program as illustrated in Figure 24.s8tve thatnovia is apseudoinstruction
which is implemented as two separate instructions.

Click the Actions > Continue menu item to execute the program. With the program running,can now
test the design by turning the switch&3)'7 to SW0 on and off; the LEDs should respond accordingly.

4 Altera Monitor, Program [Nios II]

Monitor Configuration Actions Windows Help

AR B+4EB 2@l 0

Disassembly 4

Registers -

‘ Reg| Yalue!

[4]

[4] [»
Disassembly }‘ Breakpoints / Memory / Wakches / Trace |

Terminal - ¥ | Info & Errors ®

Info & Errors EM

Figure 21. The Altera Monitor Program window on startup.

20

Nios Il System Configuration E'
Cable

|USE-Blaster [USE-0] || Refresh |

System description file {(PTF)

Cn\sopc_builder_tutorialinios_system, pkf

Mios II Processor

jpu 7l

.text section

Mernory device: |n:-nn:hi|:|_mem,l'sl (2000h - 2fFFh) v|

Skart affset in device (hex: | IZI|

.data section

Mermary dewvice: ||:|n-:hi|:|_mem,l'51 (2000h - ZfFFh) v|

Skart offset in device (hex): | III|

Terminal device

jbag_uart v|

Refresh PTF File || (o] || Cancel |

Figure 22. The Nios Il System Configuration window.

#* Mios Il Program Configuration E]

Program type

|Assembly -

Files

First source file is used to determine ELF and SREC file name.

[:\sopc_builder_tutorialiapp_softwarellights.s Add...

Down

DOptions

Start symbal: |_start

Figure 23. The Nios Il Program Configuration window.

21

Altera Monitor Program [Nios II] - lights.srec [Paused]

Monitor Corfiguration Actions Windaws Help

HE B+E eEL M

Disassembly - ¥ | Registers s
Goto instruction | Address (hex) or symbol name:| | Go Lz EH;‘;EZDDD
L =i |11 kL =
Lefqu Switches, Ox00003000 |all lzeEn - 0x00000000
cequ LEDs, O0x00003010 £l Ox00000000
~global start 2 0x00000000
T £3 000000000
movia rz, Switches £ UUITUINO L 159
& 0x00000000 |-
start: 5
0x00002000 orhi rZ, zers, Ox0 . =00A00n0d.
000002004 ori r2, r2, 0x3000 || ‘:; g“gggggggg
: = e B
AEEe EdalEDs I |es 0x00000000
0x 00002008 i orhi r3, zero, Ox0 £l De00000000
O0x 00002000 1 ori r3, r3, Ox30l0 P11 000000000
rle Ox00000000
loop: ldbio rd, 0{r2) £13 0x00000000
Lloop: rl4 0x00000000
0x0000Z010 1dbio rd, 0(r2) rl5 0x00000000
gthio rd4, D(r3) —l |[£16 Ox00000000
O ANNNzA1A sthin __ rd 0ir3i i e17 0x00000000
K - . - [*] ||ris 000000000
Disassembly | Breakpoints [Memory | Wakches [Trace | rle 0x00000000 |
Terminal — % | Info & Errors =
JTAE UART link established using cable "USB-Blaster YEioradul
" . . Connection established to GDB server at localhost:239
[USB-0]", dewice 1, instance 0x00
Svwbols loaded.
dource code loaded.
INFO: Could not reset trace. Trace iz disabled.

Info & Errors | GDB server | I

Figure 24. Display of the downloaded program.

The Monitor Program allows a number of useful functions tgédormed in a simple manner. They include:

e single stepping through the program

e examining the contents of processor registers

examining the contents of the memory

setting breakpoints for debugging purposes

disassembling the downloaded program

A description of this software and all of its features is &ale in theAltera Monitor Programtutorial.

4.2 Using a C-Language Program

An application program written in the C language can be hathill the same way as the assembly-language pro-
gram. A C program that implements our simple task is giverigofe 25. Enter this code into a file callkghts.c

#define Switches (volatile char *) 0x0003000
#define LEDs (char *) 0x0003010

void main()
{ while (1)

*LEDs = *Switches;

}

Figure 25. C language code to control the lights.

22

Perform the following steps to use this program:

Disconnect from the current debugging session by clgkire Actions > Disconnect menu item.

Click theNios Il > Configure program... menu item to launch the Nios Il Program Configuration window.
SelectC as theProgram Type in the drop-down list.

Select thdights.sfile and clickRemove to remove it from the list of source files.

Click Add... and choose thkghts.cfile.

o o > w N PRF

Click Ok to confirm the new program configuration.

The steps to compile, load, and run the program are the safoe @s assembly language program.

Copyright(©2008 Altera Corporation. All rights reserved. Altera, Thregtammable Solutions Company, the
stylized Altera logo, specific device designations, anatder words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thenratts and service marks of Altera Corporation in
the U.S. and other countries. All other product or servicees are the property of their respective holders.
Altera products are protected under humerous U.S. andgiongatents and pending applications, mask work
rights, and copyrights. Altera warrants performance ofkémiconductor products to current specifications in
accordance with Altera’s standard warranty, but resefvesight to make changes to any products and services at
any time without notice. Altera assumes no responsibilitiiability arising out of the application or use of any
information, product, or service described herein excembaressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest versialeate specifications before relying on any published
information and before placing orders for products or s&Ewi
This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether expregdiguinor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fithessd particular purpose, are specifically disclaimed.

23

