MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 129

Structure Processing in a Daka-Flow Computer
by

David P, Misunas

(A paper Lo be published in the Proceedings of the 1975
Sagamore Computer Conference on Parallel Computatiom)

This research was supported by the Advenced Research Projects
Agency of the Department of Defenge and was monitored by the
Office of Naval Research under contract number N00014-75-C-0661.

Auguat 1975

) ' *
STRUCTURE PROCESSING IN A DATA-FLIM COMPUTER

David P. Misunas
Project MAC
Mapsachusetts Institute of Techmology
Cambridge , Massachusetts 02139

Abstract -- A data-Flow computer uses & pack-
et commnlcation syetem te achieve highly parali-
lal execution of programs expressed in data-Elow
form. . The mechine is composed of two secrtions
which perferm Lunstruction preocessing and structure
processing and share a couwmmon auxiliary memory.
The atructure processing sectiom of the processor
maintaing data structures represented as acyclic
directed graphs and is viewed as a functional unit
by the Lostruction processing section; that is,
{instructions specifying structure operations are
gent to the section, and the resulting values are
raturned to the instruction procegsing section.
The organization of the structure processing sec-
tion as & packet communication system permits the
simultaneous processing of many structure opera-
tions, while avoiding the deadlock and synchrani-
gation problems often associated with syscems that
BUPPOCL concurrenl mMEmMOTY transactions. :

Introduction

The data-flew form of program represeuntation
hag been developed as & method of expressing par-
allael metiviey {1, 2, 3, 5, 8, %, 11]. The at-
tractivenecss of this form of represenration lies
in the fact that it is data-driven; that is, an
instructicn is epahled for execution when each te-
quired operand has been pravided by the execution
of a predecespor inscruccion.

The simplicity of this method of representa-
tion has led to the development of a number of
computer architecrures capable of executing pro-
grans expressed in data-flew form. Elementary
forms of the data-flew language are utilized as
the base language of a series of machines devel-
oped by Dernis and Misunas [, 7). The implemen-
racion of more complete data-flow ‘languages, in-
corporating data structures and procedures, has
been invesCigated by Misunes {10] and Rumbaugh

Tf1e, 13-

In the machines degecribed hy Dennis and
“Migumas [6, 7], the processing of imstructions of
8 program is cavried oub in an indcruction pro-
cessing section which is atructured as 2 packat
commynicarion system [~1. Sections of 8 machins
are cornnecled by interconnection networks which
have a grest deal of inoherent parallelism, amnd the
pecions communicate by means of fixed size infor-
mation packetm. Tach section is degigned so that
it never has to wait for a responee to & packet !t
hen tranemltimd 1{ other nackeotu are watting tor
fre actuntion. The extenalon 2l thia ¢ancept to
the organization of Lhe structure procesaing sec-

‘This research was aupportad by the Advanced Ke-
search Projects Agency of the Department of De-
fense and was monitored by the Office of Naval
Research under contract number NOOO14-75-C-0661.

tion of a computer, described herein, proves very
actractive, elicinating many of the deadlock and
synchronization problema eurrently associated with
gystems chat support councurrent GAmOLY trangac=
cions.

pata-Flow Structure Valuves

A program expressed in the dacta-flow lan-
guage is conastructed of two kinds of s#lementcs,
calied gctars and links. An setor has a number of
input arcs which supply values necessary for its
execution and one output are wpon which resulrs
are placed. A small dot repreaents a link which
hag one input are upon which ir receives resulcs
from an operator and a number of cutput arcs
over which ir distribuces copies of the vesults
toc other actars.

Values are conveyed over the ares of a pro-
gram by tokens, reprssented as large salid docs.
An actor with a token on each of its input arcs,
and no tckenm om its output arc, is enabled ard
sometime later will fire, removing the tokens from
its {nput arcs. computing a resulc using the val-
uea carried by the (nput tokens, end asaociating
the result with a token placed on Ltz output arc.
In a4 9imiler manner, a link {a enabled when & to-
ken is present on its Input are, and no token is
present on any of ics output arcs. [t fires by
removing the token from ita input arc and associ-
ating coples of the value carried by the inpuk
token wirh cokens placed on Lts output arcs.

A value conveyed by a tokan is either an
elementary valug or a atructure value. 4n ela-
mentery value is & single integer, real, string.
or Boolean value. A structure value in a daca-
flow progran is composed of A number of eleman-
tary values and is repregented as an acyclic di-
rectad graph having one root node with che prop-
erty that each node af the graph can be reached
by 8 directed path from the root nede. A node
of thea graph ix eithar & atruccure node or an
elementayy node. A strueture node serves ag the
root node for a substructure of the structure and

rapresents 3 value which La a set of selecror-
value pairs

{(81, vl) W e (su, vn')}

where
1 3 {integezs}!J {atringa}

v, E {olemuntary valusa} U {etructure values}

U {aiL}

and 84 {8 the gselector af nade ¥y. An alemantary
node has no emanating arcs; father, an elementary
value {8 agyocimred with the node. A node with
na emanating ares and no asdcclaced slemencary
value has value Taill,

-
m—.-
=

L R

An exawple of two structures sharing
a common substructuras.

Figure 1.

To illustrate the operation of the structure
processing section of the processor, we shall
limit our considerarion to structures reprecented
&8 bBinary trees. A selector of such a structure
can have one of two values, L (left) and R (right),
degignating the left and right branches of the
tree.

A structure value 13 represented by a dara
token carrying a pointer to the root node of the
structure. In Figure 1 the structure o conteins
three elementary values a, b, and ¢, designated
by the simple selector L and the compound selec-
tors R-L and R-R respectively. Structure nade
¥ of atrucrure & le shared with structure B and
is designaced by a different selector in £ than
in w.

The data-flow program of Figure 2 transposes
the elements of the four-element structure pre=
sanred on its input., Initially, the input link
of the program is enabled and, upon firing, cre-
ates four copies of the token conveying a pointer
to structure o and places the copies on the Lnputs
of the four select actors. CEFach select actor re-
trieves the valua (eirher an elementary value or
4 gtructure value) at the end of the path speci-

L
BEIncTL-i asiect 'R select R melect R-A |

JRE S S B
)
gg_n_:im;ﬂ construet
construct

4

A simple data-flow program to transposa
a four-element structure.

R E_;_}
364

Figure 2,

UL e

Figure 3. Operatian of the append actor.

fied as its argument. The resulting value ia
associated with a token placed on the output arc
of the actor.

Each construct actor is enabled whem it has
a token on each input arc and, upon firing, cre-
ated a new structure of the values agsociated
with the input tokena. In the program of Flgure
2, the pomition of each input indicates the seilec-

_tor to be associated with the {nput in the resul-

ting structure.

Strueture values in a data-flow progrem are
aot modified:; rather, new atructure values are
created which are modifications of the original
values, while the original values are preserved.
The append and dalete actors provide the megnsg of
creating these new structure values.

The atructure produced by the firing of an
append actor 13 a vergsion of rhe Inpot structure
which containg a new or modified component (Figure
3). 1f the specified node of the input srructure
has a selector corresponding te the gelector argu-
ment of the actor, the value designated by that
selector in the new structure is the inpur wvalue.
Otherwise the specifjed selector-value pair is
added to the node of the new structure. Tdencizal
elementz of the input end output structures are
shared betweern the two structures.)

In a similar manner, the structure appearing
on the putput arc of a delefte actar is a version
of the input structure in which the specified
node in the uew structure ia missing rhe melecror-
value pair designated by the seleclor argument
{Figure 4). As with the append actor, idencical
elements are shared between the input and cutput
ptTuctures.

~t

&b

1
5%
&b

Operstion of tha delere actor.

-

Figure 4.

Etructure Representation

The gtorage of structures and the execution

of instructions representing atructure ectars

"occurs Lln the structure processing sectionm of a
data-flow processor, The struecture procesaing
gection conzigts of & Structure Operation tmitb
and 4 Structure Memory and artendant Arbitrarion
and Distribution Networks, This section of the
processor 13 viewed as a functional unit by the
instruceion processing section; that is, oparation
packets specifying structure operations are senk
to the section, and data packets are Teturned,
The organization of the structure processing sec-
tfon is shown in Figure 5.

Operation packets contgining instructions
representing structure actors are transmitted to
the Structure Operation Uniet by the instruction
processing eection. The Structure Operation Unit
controls the execution of the instructisn speci-
fied in each cperation packet through instruction
packets sent to the Structure Memory. The Struc-
ture Memory holds all struccure values of the
data-~flow program, and all structure operations
are performed in the Mewory. Hpon complecion of
& structure operation, the Structure Memory trans«
mits a daca packet containing the resulting ele-
mantary or structure value to the instruccion
processing section. .

A node of a structure is contained in a two
register Cell Wnown as a4 Structure Cell and desig-
nated by a Cell identifier. The two reglsters of
the Cell contain the left and right components of
the structure, respectively; and hence no salector
need be stored in a register. The first fleld of
a reglacer is & use vode which indicaces whether
the item stored in the second field is the iden-
tifier of another Cell or an elemenrary value,
or if the ragister im empty. A memory represenc-
ation of the simple structure of Figure 1 is
glven in Figure §.

The Structure Memory iz composed of a mumber
of Structure Cells, Fach Structure Cell i& cap-

able of holding one node of a structure, and the
identifier of the Cell specifies a path through
The Struc-

the Distribution Network to the Cell.

Structure

Call o
Structura .
Memory . -

Distribution
Neltworh

instruction
packets

command
packats

ingtruction
packeis

Structure
= Qparalipn
unit =

data commond | oparation
pachats | pockais packats

r

| 1

Instruction Procesaing
Saction

Figure 5. Orgenization of the artrwcture processing

aection of the data-flow precessor.

-3

ture Memory recelves lustruction packets from the
Structure Cperation Unle comuanding a specific
Structure Cell to execute aome structure opera-
tion apon the node located in the Cell. (fpon
completion of the operation specified in an in-
struction packet, a Structure Cell presents any
reault am & data packet to the Arbitration Net-
vork for conveyance to the inmtruction processing
eection. Any further structure operations are
spacified in instruction packets returned to the
input of the Structure Memory.

A Structure Cell within the Structure Memory
performe one of three operacions uwpon the struc-
ture node contained lo the Cell. The pamsihble
oparationa gra:

L. select. Upon teceipt of an instruction packer
specifying & melect operation

select dest
]

a Structure Cell follows onme of two. procedures,

controlled by whether the sslector g is a

simple mslactor or a compound selector.

a. If » is a simple selector, L or R, the
comtent ¢ of tha Cell reglater designated
by 8 ia used ta form & deta packet

{deut}

c
which is presented to the Arbitration Net-
work for transmimsion ta the specified
demtination desc in the instruetionm pro-
cessing section of rhe processor.

b. If s L{s & compound selector 8,8, -9,
5 € {L, R}, the content B of :ﬁe register
designated by 3. is rche identifier of a
Structure Cell dnd ie used to form the
insetruction packet

B
4 aelect dasr
By- o8y
which is presented to the Arbitratiom Net-
work far transmission to the imput Discri-
bution Network of the Structure Memory.
The procesa ia then repeated with the se-
lecror s, ac Strunture Cell B.

2. alter. The vreceipt of an alter instruction

CeIIB

Calia
elem a atruc 7
struc elam d
Cell y
elam b
strus
Figure 6. Mesmory representation of the

atructure of Figure 1.

alter dest

[

'
indicates that the contenta of the Structure
Cell are to be mpdifted sc the component des-
Lgneted by the gelegtar 5 ig set to x. Since
atructures values are not medified, e Strue-
ture Cell that receives an alter instructlion,
aust receive two alter imstructions, one for
each register. When beoth have been recelved,
a dats packet comtzining the Celi idenczifiaer
B ia returned to the ingtruction processing

section:
deat
B

A copy instruction

copy B
deat
[]

3. copy.

ppecifien that the contenl of the register
designated by s I8 to be transmitted to Struec-
ture Cell B. An insbruction packet

g
alter deat
|
c

is‘formed of the reglater comtent ¢ and ia
presented to the Arbitration Network for trans-
misaion to the input Distributien FNetwork.

Instructiong are trangmitted to the Structure
Memory as instruction packets, each conpisting of
8 Cell identifier and an instruccion. The Cell
identifier specifies a path through the Distribu-
ticn Betwork to the Cell, and the packet received
by 4 Cell conmistg of merely the imstruction por-
tion of the insfuction packet.

The Struccure Opergtion Unic maintains the
reference count of each node in the Structure Mem-
ory, mpecifying the number of arcs terminating on
the node and the number of references to the node
exigting in the instruction processing Rection of
the processor. When a node becomes inaccessibla
due to the executien of some instruction of the
program, the Teference count of the node becomes
zero, and the node is placed on a2 free node list
which 18 used for the &2llocation af new nodes
during program execution. i

The processing of all gtructure operation pack-
ets by the Structure Cperation Unit permits the unit
to properly decrement reference counts as references
to items are deleted through inetruction exevction.
Rafearences to items are creeted In the Structure
Memory by execution of & select instruction if the
pelected item iz 2 structure value and in the in-
struction processing sectlion through executiom of
an imstruction repregenting & link of a data-flow
program. We musk require that in either case,
command packets of the form

node identifier
up

are gent te the Structwre Operation Unit, causing
the reference count of the designaled node to be
properly incremented. :

Fow that we have congldered the operation of
a Structure Cell within the Structure Memary, we
cen deseriba the execution of each of the struc-

- ture actors werely by listing the procedure fol-

lowed by the Structure Operatiom Unit in process-
ing the ipnstruction. For the purposes of this
discussion, it is assumed that ell selecrors are
elmple selectors,

The processing of 2 select instruccion by the
Structure Operation Unit merely causes the refer-
ence coent of the designated mode to be decremenced.
The content of the operation packet is then sent
as an instruction packet to the specified node of
the Structure Memory for execution of the melect
pperation.

A conatyuct ingctrucrion

" [sonsgtruct dest
L: a .
R: ¥y

specifies that a new node is ta be created with
components @ and y, designated by the selectors
L and R. The instruction is implemented by tha
Structure Operation Unit &= two alter aperations

“in the following manner:

1. Accept an identifier B from the frea node

z. ;::;;mtt to the Structure Memory che instruc-
tion packets
B B
alter dest and alteerest
a Y

transferring the values < and v to the correct
ragiscars of B.

An operation packet containing an append in-
struction is of tha following farmat

,[append dest
L: o
x

where L {8 the selector of the element in Struc-
ture Cell @ which is to bhe replaced by x in the
new structure. ‘The procedure followed by the
Stcruecture Opevation Unit in execution of the
ingbruction is as follows:

1. Accept an identifier B from the free node

list. :
2. Tranemit the inetruetion packetg
o #
Lopy B alrer dagt
dest and L
R x

to the Structure Memory te capy the register

of node < designated by the selector R tnuto

Cell B and set the L-componeat of A to x.

An operation packer specifying a delates in-
struction is processed in 4 similar manner, caus-
ing the use code of the desigpated register to be
aet Eo enphy.

To assure maxisum use of the Structure Cells
af the processor, the structure pracessing sectian
utilizes a multi-level memory, so that only active
atructure nodes occupy the Structure Cells. The

2. Bahrs, A.

Srructure Memory acts as a cache for structure
nodes; individual nodes are retrieved from the
auxiliary memory 83 they become required for com=-
putation, and scructure uodes are sent co the anx-
1liary memory upom ¢reation through execution of
an eppend , deleta, or coustruct ingtruction. The
atruccure of the auxiliary memory as & packet com-
munication system is described by Demuis {41, and
ttg uge in conjunctlon with the strusture process=
ing sesction is presented in [10%-

Concluaion

The described techniques for the implementa-
tion of data structures can be reddily extended to
larger and more complex structures. In order ta
igplement structures with a fixed maximum number
of arcs emanating from each node, the size of &
Seructure Cell is increaged to accommpdate the new
node eiza. The use of arbitrary (Lo a fixed max-
imum size) integers or charscter strings as selec-
tors 1% sccommodated through the additien of a
selector £fie1d to each register. A Structure Cell
must then have the capshility to choose from the
node contained in the Cell an item whose selector
matches & speclfied selector. These extensions
allow the representacion of a wide variety aof
structures, including the programs af the data-
flow language [107].

STCEE

1. Adams, D. A. A Computation Moudel With Data
Flow Sequencing. Technical Report CS 117,
Computer Science Department, Schoel of Human-
ities apd Sciences, Stanford University, Stan-
ford, Calif., December 1968.

Operstion patcerns (An extensible
model of an extensible langusge). Symposium
on Theoretical Progracming, Novosibirsk, USSR,
August 1972 {preprint).

3. Denois, J. B. First version of a daca flow
pracedure language. Lecture Nores in Computer
Science 19 (G. Geos mnd J. Hartmanis, Eds.),
Springer-Verlag, New York. 1974, 362-376.

10.

11.

12.

13.

-5

permnis, J. B. Packat communication archifec-
ture. Proceedipngs of the 1975 Sagamore Com-
puter Conference on Parallel Processing, IREE,
New York, August 1975.

Dennis, J. B., and J. B. Fosseen. Introduc-
tipn to Data Flow Schemas. HNovember 1973
(aubmitted for publicatiom).

Demnis, J. B., and 0. P. Migunas. A computer
architecture for highly parallel eignal pro-
cesaing. Progeedings of the ACM 1974 National

Conference, ACM, New York, Hovember 1974, 402-
409.

Depnla, J. B., end B, P, Misunas. A prelimin-
ary architecture for & basic data-flow proces-
por. Proceedings of the Second Annual Sympo-
sium on Computer Architecture, IEEE, New Yorx,
Junuary 1975, 126-132.

¥arp, R. M., and R. E. Miller. Properties of
a model for parallel computationa: determin-
acy, termination, queueing. SIAM Journal af
Applied Mathemacics 14 (November 1986), 1340-
1611,

Kosinski, P. R. A data flow language for op-
erating aystems programming. Proceedings of
ACM SIGFLAN-SEGOPS Intepface Meeting, SIGPLAY
Notices 8, 9 (Svptember 1973), 89-94.

Misunas, D. P. A Computer Architecture for
Data-¥low Compuration. 5M Thesis, Departcenc
of Eleccricel Engineering ind Computer Sclence,
M.L.T., Cambridge, Masgs., June 1975,

Hodriguez, J. E. A Craph Model for Parallel
Computation. Report TR-6k, Project MAC,
M.1.T., Cembridge , Mags., Septeamber 1969.

REumbaugh, J. E. A Parallel Asvnchromous tam-
puter Architecture for Data Flow Progzraca.
Report TR-150, Project MAC, M.T.7T., fambrilgza.
Mags., May 1975 :

Rumbaugh, J. E. A date flow wultiprocessor.
Proceedings of the 1975 Ssgamore Comouter Con-
ference on Parallel Processing, IEEE. Few vors,
August 1973, :

