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The IEM 1130 is a small, synchronous, third-ggneration
"midi" computer first marketed in the 19560's. It was to serve
the scientific community but has been sucessfully used for
~commerical applications. A similar computer, th IBM 1800, has a
modified interrupt structure and has been used for real-time

process control. This research has attempted to develop an

- asynchronous model of the 1130 which uses the same data paths and

internal reglsters of the original design, and follow the fcycle
steal" and interrupt strategy dictated by IBM documents (1]. The
medel is based on the Kolte arrary [6, 8} ispleaentation of

[ et [5] a graphical representation of conhurrent systems
that show contro} dependency (2, 3, 4, 7I. We have amade
estinates and suggestlons on the necessary slze and possible
internal structure of the actual array which could possihly be

realized in current L5[ technology.
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follow:

D:

A Basjc Overview of the IBM 1130 Sttucture
Major Registers

The 1130 has seven major registers whose "name" and use

MEMORY BUFFER- holds the data strobed out of asmory on
a read cycle or the data to be strobed in on a write.

-

cycle.

MEMORY ADDRESS- holds the address to be used for a

memory read or write.

INSTRUCTION ADDRESS- holds the address of the next

instruction to fetch.

ARITHMETIC FACTOR- holds one operand of all logical and
aritheetic operations performed in the machine. It ls
also used as a buffer for loading other registers fros

RBeRory.

ACCUMULATOR- holds the second operand of all 1logical
and arithmetic operations perforaed in the machine as

well as receiving the result of all such operations.
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Q ACCUMULATOR EXTENSION- used for double precision data
manipulation in conjunction with the accumulator (A).
It is also used to hold the results of a multiply
operation, 4s wall as the low qrder word and fem&inder

of divide operations.

Us TEMPORARY ACCUMULATOR- as its name suggests, this
register is used for holding the contents of the
accumulator while 1t is being used in address

preparatibn or other internal data movement,

There are six other ninor reglsters used for holding
the current instruction along with its modifiers, a carry and
overflow indicator register, and a cycle control counter used for

shift counting and general instruction cycle timtng.

The registers .are apperently of the master/slave
flip-flop class in design, allowing many non-cunfiicting register
operations to be done in parallel (including register exchanging

without an intermediate buffer),

The architecture assumes three psewdo-index registers
which can be used for address modification and loop control.

These registers actually appear in memory as locations 1, 2, and
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3, requiring extra memory cycles each time they are used. (1)

chine and Memory Cycles

Machine and memory cycles are derived from the basic
CPU clock running at 2,25 MC. There are seven major CPU cycles
all of which are composed of at least eight minor T cycles, TO
through T7, (2)

Thare ares four "Iv cycles, enterad for instruction
fetch (I1- always entered) and address preparation where

necessary. (3)

The resaining three cycles are "E" cycles that are used
for instruction execution, depending on the time and number of

memory references required. (4)

(1) The 1800 has "real™ index registers within the control unit

‘allowing faster indexed instruction execution.

(2) The term “at least" is used because in some Iinstances T7
cycles are "extended" (repeated) to allow proper major cycle
completion (add operations take a variable number of cycles, due
to the interesting speed-up algorithm used). This is the first
indication of the need for some asynchronous structure within the
CPU. Certain interlocking strategles for interrupt and "cycle
steal" control hiat at others.

{3) 12 - Double word imstructions, IX - Indexed instructions, and
IA - Indirect addresses.

(4) Some instructions may actually complete their execution in
the I cycle perlod - e.g. Shift iastructions, since nc memory
refernces are required.
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As may have beeﬁ guessed, memory cycles are concurrent
With major CPU execution cycles. A read or write may take place
at TO or T4 respectively with results expected two T cycles
later., All memory reads are destructive hence all data read must
be re-written to retain them 1In meémory as well as maintain

correct memory parity, (5)

Cycle Stealing

Direct memory access ability, called "cycle sfeallng",
(6) is a feature supported by the 1130 system, A cycle stealing
device requests the operation, and upon receiving an
acknowlédgenent, places its address on the ¢ycle steal addresss
lines and puts or receives data on the /0 bus which is loaded
. into or derived from the B (storage buffer) register. As can be
8uessed, the CPU instruction sequence pust be aware of the
problem that the B register a4y be de;troyed between any of the

Bajor cycles, (7) Since the system requires dealing with this

(3) A memory word consists of eighteen bits. Sixteen Dbits are
used for actual data and the remaining two are ysed for parity
check bits- one for each eight bits of data.

(6) It is interesting to take note of the term used for this
operation. Apparently the system designers felt that the CPU
should be in charge of memory and other memaTy users must "steal®
cycles froa it.

(7) The cycle steal address lines are fed directly tao Remory
While the M register lines are inhibited at this time- another
locking scheme 1s obviously nesded here. :



Harold J. Goldberg , Page 6

problem it dictates that no instruction cycle may execute
concurrently with a cycle Stealing operation. Hence there exists
a second clock outiet, the X clock, which when enabled, 1inhibits
the T clock from advancing (enabling is only done before TO

begins). Memory, however, can rua on either clock.

Instruction Execution
The basic instruction cycie is as follows:

The I1 cycle loads the memory address register (M) with
the cunteﬁts of the instruction address register (I). An
instruction word is fetched, the accumulator (A) is saved in the
temporary accumulator (U), and the instruction addfess is
increpented, Depending on various bits in the instruction,
address preparation begins leading into possible 12, IX, and IA
cycles. The c¢ycle control counter is loaded appropriately and
actual execution of the instruction begins. E;ecution of the
instruction causes the CPU to enter necessary El, E2, and E3
¢ycles finally leaving the cycle control counter tero and when

the next TO begins a new I1 cycle is entered.

Interrupts

By design, interrupts can only occur before an

instruction begins execution. Due to the implementation memory
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cycles are inhibited at the tige of the interrupt resulting in
another seemingiy asynchrbnuus pracess. (B} A "Branch and Store
Instruction Address" instruction is iorced ﬁo be executed,
causing the execution polnt at the tine of the interrupt to be

saved.

There are six interrupt levels (0 through 5) of |
decreaﬁing priority (S 1o§est}. Each level may interrupt any
lower level. Six words of REMOTY are reéserved for the "interrupt
vectors™ which are addresses of routines to be antered upan
detection of that lavel interrupt. Due to the nafure of the
"Branch and Store Instruction Address™ iastruction, as well as
the lack of interrupt wmasking, (9). re-entrant procedures are

difflcplt if not impossible to write.

(8) The I/0 bus Is used to gate the proper instruction for
execution into the B register. :

(9) The 1800 has this feature.
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The Model

Petrl nets and the Xolte Array:

Petri nets consist of places and iransitions connected
by directed &rcs. These arcs are only ailoved_ te connect
dissimilar items (no arc conpects a place to anuther place or a
transition to another transition). In the class of nets modeled
by the Kolte array, (10) a place may elther have a token or be
empty. Placés vwhich have a&rcs nrtglnathg at them and
terminating at & transition are known as 1nput'p1aces to the
transition. Places having arcs directed at them from transitions
are called output places of the corresponding transitions. A
transition is sald to be firable when all of its input places
have tokens. The firing procedure entails first repoving tokens
from all of the input places of the transition to be fired, then

placing tokens in all of its output places.

Two or more transitions are said to be in conflict when
they share at least one input place. This obviously becones
important when both transitions are firable at the same time. In
such situations an arbiter of some kind is used fo choose the

proper transition to fire. (11}

(10) The class modeled is all safe nets. What this means is that

at any time we say only have one or no token in any given place
at any time.
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Petri nets can easily be represented in matrix fora
(12} with rows representing transitions and columns representing
the places. At the 1nter§ection of rows and coluans appropriate
marks are placed to indicate the interconnection of the places
and transitions. A dot () Is used to represent an input place
to & transition, whiie 4 cross (x) 1s used to represenf an output
place of a transition, Pati] (6] extended the notation to allow
binary testing of places to enable transition firings. One could
test whether & place had a token (1) or not (0} without actually
using up the token when firlng, This extension allows the
testing of logic lévels that we may introduce to our net. We
extend the notation to allow setting of DC logic levels with the
SET (s) and RESET () positions.

The Kolte array is the Petri net matrix realized. Even
the new additions are easily implementable, The array basically
consists of a diode matrix with appropriate terslnating circuitry
for simulating operation of places and transitions. All
transition circuits are similar, but there are now four place
Ccireuits: input placas, output places, internal places, and OC

output places. We do not intend to give a full explanation of

(1) Since we are dealing with ssfe nets, one of the conflicting
transitions wusually disables all others from iamediately firing
due to the removal of the Input tokens at the time of firing.

(12) Patil (6] suggests that it was Holt who first used the
satrix notation to vepresent large Petri nets on sma]] pleces of
graph paper. ' )
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the operation of the array but suggest that the unfamiliar reader
see [6, B8] for details. We believe that the extended Petrl net
matrix is fully realizeable, aperating in parallel fashion, in
the revised Kolte array. Cur DC place extensions are realizeable

using the existing input place circuit, and our own output place

circuit shown in figure 1.

l

C

- | F
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5 T1
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. & '] »
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R k- T2
_ Ealiy

-Figure 1, Implementation of the L[C output place.
Here T1 can "set" F, while TZ can "reset™ F.

We do not allow using any output places £or input nor input

places for autput.

The use of the DC places is clear in conditional

branching applications just'as Patil has demonstrated in [6].
However we do not wish to be bothered with using up tokens when

presented, nor clearing only ‘those places whare we have put
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tokens for output. We are not forced to reset tested bit
positions when we are done with them. [In using these places we
Must trust that the source of the DC lsvel has set it accordingly
and send acknowledge signals back only after these signals are
made availble. Similarly we transmit these signals, possibly
status or results of intenal operations, (13) by use of these DC
output places. We must believe that the acknowledge aignals
arrive after, or at worst the same time as, the DC levels that
they apply to do. This can be insured by appropriate cabling

{use same cable paths) or appropriate delay module insertions.

Details

We have attempted to produce a faithful model of the
internal control of the 1130 but must obviously stray from an
exact modeling for certain reasons. We wanted to develop an
agznchroggus model hence clock pulse dependencies have been left
out, We have gllowed {nstruction execution to procead during
tycle steal operations Up to a point where they wouid reference a
possibly modified valye (fhe B register). We did not attempt to
model] immediate stop, single cycle execution, single step

execution, or other hardware debugging controls (14) (although

{13) #e are assuming multiple array chips with interconnections
in all of this discussion.

(14) Patil’s [6] use of 4 programmable place would allow stops to
be inserted at any point, however, :
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single 1 cycle execution would not have been too difficult with
the current model). Our main purpose was to determine the
approximafe slze of an array necessary to perform the functions

of the CPU.

Register/Arithmetic Unit

For purposes of the model we have assumed that there

exists a register and arithmetlc unit whose capabllities follow:

The unit contains all the major and minor registers of
the 1130. 1t provides parallel register transfer uperatibns
(those allowable by the 1130 design)}, register reset, and certain
arithmetic and logic capabilities., We are not saying that we
have a full ALU, but we do have the ablility to perform six
operations specifically between the D and A registers, leaving

the result in the A

(1) transfer

(2) logical ANDing

(3) loglcal ORing

(4) logical EXCLUSIVE ORlng

(5) ADDing (resulting 1in a possibie "temporary
carry™ |

(6) SUBTRACTing  (resulting .in a possible

"temporary borrow")
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We have not really modified the system structure by this grouping
and {in fact not changed any controls by including the
ADD/SUBTRACT logie in the unit, We have simply centralized the
point where the "set arith loglc", “perform add/substract cycies”
loop, and "reset arith logic" functions are done. (15) We
similarly gllow the register/arithaetic unit to handle left and
right shifts af tha A, and the A and Q combined,

When rékurned to  with the "reglster operations
complete” token we can ASsume that tests on OC levels like "tenp
carry/borrow”, A bit 0, Abit 15, Q bit 0, Q bit 15, etc. are
val id.

Use of this unit {s accomplished by setting appropriate
DC output places tq one to indicate the desired operation and
- then placing a token in "register do". We assume that upon
receiving "register operations complete”, all the DC contrel
lines are reset (possibly by 4 transition that has a field full
of resets (r's) for all those places. Some operations are binary
coded to add density to the control lines, but'this technique has

not been fully taken advantage of. (16) We have taken the

(15) Thesge functions are always done whenever an add or subtract
aperation is done within the Cpu, .

(16) To do so would require a study of which functions could
never be done ip paraliel, and then assign a unique binary
quantity to all other possible combinations of functions.
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l1iberty to allow a control 1line that moves the TAG register to
the M (the TAG rgsister holds the index register number which 1is
equal to its storage address). In the real 1130 this is done by
inhibiting M register output and ORing the TAG lines onto the
memory bus. We have not specified how this Ls done in out model
and in fact we could relabel that control llne to "TAG to memory

address bus"™ to be correct.

Memory Control

We have developed an interesting priority aemory

control scheme for use by our cpu modules:

Each module has five control 1lines for - meaory

control.... |

(1) Read

(2) Read Acknowledge

(3) Write

{(4) Walting Write Acknowledge

(5) Write Acknowledge
We dictate use of wemory by assigning the Write Acknowledge token
the job of being the memory locking "semaphore”. Once a module
has acquired the Write Acknowledge token it may issue a read and
subsequently a4 write request without worrying about other module
interfernce. The key to the success of the inter-soduie control

is in the Waiting Write Acknowledge line which gets carefully



|
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arbitrated by the :Memory Interface Module (MIM) - g module
specifically  designed far this task. Hence 1nter-nndu1e
commuitication about memory use is essentially eliminated and the
task of supporting cycle stealing is easily accomp{ished by
correct arbitration by the MIM, A plctorial dlagram of two

competing modulas connected to the MIM is shown in figure 2.

User 1 waiting ' ) user 2 walting

user 1 write ack uzer 2 write aok

User 1 Memory MIM

Figure 2. The write acknowledge interlock scheme,

Read and Read Acknowledge 1is siaply handled by the MIM by its
nating who asked for the request {only one moduls could legally

ask at any time) ang sending him the dckrowledge upon receiving

it from neaory.

-

User 2
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We again point out that a&all reads are destructivs,
hence the Write Acknowledge scheme is sufficient since once a
read has been done by a module, it is committed to doing a write

(with possibly changed data). (17}

(17) In modern systems memory handles write-backs internally and
thus has functions such as read only, write only, and read alter
write, in which case extended arbitration is necessary.
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Results

We must first point out that a complete modal was not .
designed due to tige considerations. We have however looked
ahead, and tried to supply enough Information in the form of
control lines and DC levels to support all unimplemented
1nstruct10ns.and functions of the CPU that we have not modejed,
By specifying memory interface controls, we hﬁve essentially
deait with the cycle stealing aspect. The Interrupt policy 1s
also easily dealt with by our standard use of the "NEXT 11" place
(18) which can be arbitrated in favor of the interrupt logic

control module.

We have & complete and detajleq sodel for the full
instruction fetch, decode, and address preparation cycles, all in
Gne module. (19) We have also modeled seven instructions
completely (20) which when viewed 1n conjuncfion with the
aformentioned | cycle wodule, exercise almost all lipes of our

register/arithmetic unit.

We have pPresumably accomplished our go0al in determining

(18) Signifying that the next instruction should begin. This is
the tine that an interrupt may occur in the real 1130,

(19) Our module siza was chosen solely by available graph paper
s5ize, but proved to be excellent do to the grouping of all the [
¢ycles in one moduie, .

(20) At the time of the writing of this paper.
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the approximate size of the required array. We have found that
the waajor potlon of the array places were consuied by DC input
and output places. (21) This is so because of Patil's (8]
suggestion of breaking up and staggering place columns. The idea
here is to break up one coiusn (a single place} into many smaller
places. This Ls done to a few columns which are then vertically
arranged go that the new pléces averlap., Patil had suggested
using small places of length three. We have found these to be
adequate for sequential control and possibie double "branching”
but have also found the need for longer places (though not as
long as the entire column). We have chosen places of length
eight in addition to those of length three, and overlapped these
places as well. (22) The use of these longer places was found to
be low in the instruction execution module but proved to be
invaluable in the [ c¢ycle module, In fact thls technique had cut
down the. nuaber of internal place columns from about fifty for
the 11 cycle alone, to about six for all I cycles -together— a
marked lmprovement. For this reason we were not very careful
about how many full length places we had used but found that we
only had used six, and even ther use might have been aveided. Of

course there exilsts disadvantages with using these “close-packed"

{21) An expected result do to the Yplace mnultiplexing" scheme
described further on.

(22) Qur choice was made by examining an initial version of the
model and determining what size place could best suit its needs.
Eight was chosen but is by no means the only size that would have
worked.
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places. Patll has described the use of position independence in
overcoming chip defects, and control flow modification. It is
these probiels which concern us now, We have found that we can
still gain some of the independence by wusing enough free long
columns and splicing in "branches" to other parts of the module
with subsequent "returns". (23) We can even maintain the
"inmediate stop" capability by wutilizing Patil;s scheme of a
programmable place: I[n this place we could modify any transition
to have it as an input place. Then with appropriate settipg or
resetting this place we have the programmable "breakpoint®

effect,

" We have found need for about twenty input places and
approximately forty-five outﬁut places (many for the
reglster/arithmetic unit). This is obviously high compared to
the number of pins we find on conventional LSI chips today [about.
40). However, sultable technique$ for splitting transitions can,
and have been found. I[n fact With proper control aorganization,
modules can be designed to only contaln a subset of input and |
output places, having only those transitions which mdke use of
these lines present, This of course leads to a tradeoff that we
have not studied: input and output places for the system as a
whole, versus those used solely for inter-sodule cnnlunicatiun

due to module separation.

(23) Note the similarity between this tecﬁnique. and "patching”
program object code.
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We shouid mention that in our model the largest size
arbiter required was a three-input arbiter. We believe this was
malniy do to the addition of binary testing to the array, In
fact, in many cases, abiters were eliminated entiraly{ We found
them to be most useful in the "IF (SPECIFIC TEST) THEN DO .....

ELSE DO ....." case, and for tfrue priofity gueing.
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SURDATY

We have found that our model was net difficult ta
construct due to the a#ailabillty of appropriate documents. We
saw how ' the 1130 atempted parallel walt functions by clock

manipulations and inhibit 1ines.

We believe that with appropriate nodulartiation of the

CPU functions, the model could in fact be realizeable.

[t was was learned that the "close-packed" places could
be enournéusly helpful in cutting down the total number of
internal place columns used, hence reducing the overall width of
the array. It was shown that the size primarily depended on
fnput and output connections, a seemingly universal result when
one atteapts to mo@uiarize 4 system, We also saw how the use of
binary testing reduced the size and number of arbiters needed.
Our model required approximsately 30 place columns in all:
Approximately 20 input, 45 output, 8 full length internal, and 6

staggered internal place columns were used.

We believe that in using the array one can reap all the
advantages of nicro-prdgrammins, yYet have the system run at top

speed. using speed independent modules.
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