MASSACHUSETTS INSTITUTE OF TECHNCLOGY

FROJECT MAC

Computation Structures Group Memo 135

Mathematical Semantics and Data Flow Programming
by

Paul R. Kosingki

(A paper to be presented at the ACM Symposium on Principles
of Programming Languages, Atlanta, January 1976)

This work was supported by a Pellowship from I.B.M. and was
done in the Computation Structures Group of Project MAC, MIT.

December 1975

,HATHEHﬁTICBL SEMANTICS and DATA FLOW PROGRAMMING

Paul R. Kosinski

Project MAC
Massachusetts Institute of Technology
Cambridge, Massachusatts 02139

- Thomas J. Watsen Research Center
Yorktown Heights, Wew York 10598

Abstract

A Data Flow program [1,2] is a flow-
chart like network of operators which
compute concurrently, dependant cnly on
the availability of thea data which flow
alcng the paths. ERach operator has only a
local effect, transforming input data to
cutput data. Although operators may ex-
hibit memory and thus not be functional
from an input to an output, all operators
are functions from input saguences to
autput sedguences. This plus the strong
locality of effect allows mathemztization

@7 gemantics more veadily than traditional

Programming languages which are burdaned
with omnipresent storage and accasional
GOTO's. This paper proves the semantie
behavior of seme elementary Data Flow pro-
grams and proves that certain optimization
transformations preserve other bahaviors,

Background

In the past several years, the mach-
ematical specification of programming
language semantics has been much investi-
gated. There have been twe main lines of
attack on this problem, the axiomatic ap-
preoach taken by Hoare {3], and the func-
ticnal approach taken by Scott {4] and
Strachey.

In the axiomatie approach, each
primitive operation in the programming
language has assigned to it one or more
axioms which formallv specify the effect
that the operation has upon the state of
the abstract machine when that operation
is executed. That is, the axioms describe
the mathematical relationship between the
"before" state and the "“after” state. A
sequence of operations have an effect
which is the composzition of t!; individual
relations for the component operatiaons.
Thas, given a program together with a
putative set of axioms, one can determine
by theorem proving (manual or automatic)
whether the program does indeed satisfy '
its axiomatizaticn. Alternatively, one
can derive a thecrem which describes
the program's behavior.

In the functional approach, each
primitive operation is assumed to comptite
a particular function. Thus, a seguence
of operations computes the function which
13 the compcsition'of cthe component op-
arations' functicns. If the operations
are performed rapeatedly, as in a WHILE
leop, the composite function is not so
2asily determined (in the axinmatic ap—
praoach, an inductive proaf is needed).

Setting up the funetional equation correas-
ponding to the 1oop, ora gets

F(X)}) = IF Test(X) THEN F{Body(X]} ELSE X
where Test ia the predicate of the WHILE,
Body is the fumction computed by the bady
of the loop, and F is tha function com-
puted by the loop as a whole.
recurgive definition, but it ig hard to

This is a

solve because the unknown is the function
F. Such equatiens can be gsolved in certain
circumstances by mezns of the Y or fixed
point operator. Scott's cantribution has
been to show that thaere exist lattices
called reflexive domains in which the ¥
CPerator can always apply te give the
uniigue minimal fivedpoint solution of such
equationsg, and that scch domains adeguately
character}ze programming languages.

This apprcach can be applied to ap-
plicative languages with relativae aage
since such languages are bassd on tha idea
of functiens and Funcrion camposition.
Unfortunately, applicative lanquages are
seldom used for programming, even LIsp W
has nonapplicative operators such as the
GO, SETQ and RPLACD. The effect of such
operéﬁcrs is to make the functional char-
acterization of the Program depart vonsid-
erably from the syntactic structure of the
pregram. This occurs for twe reasons,
First, since scome Qperators, such as
agsignment (eg, SETQ or wors2, RPLACD),
change the state of the whole abstract
machine, the functionp corvesponding ko
such an oparator must transform states
into states, Then, in order to be com-
posable, all cperators must transform
gtates whereas the program is written as
if most operators transforrm variahles.
Second, control flow operators (of which
LISF's GO is a mild example) can cause
both the conditional and the loop structure
of the program to becoms arbitrarily com-
plicated. Structured Programming, wieh
insistenze on a limited disciplined set
of control cperators (IF-THEN-ELSE and

DO-WHILE) prevents the seecnd problem

-

from occurring, that-is, one recurrive
The first
problem remains however, since most existing

équation corresponds to one loap,

languages have state transferming assignment
oparators,

Data Flow Eemantics

DFPL, a Data Flow Programming Langquage
[2] . has the basic mathematical simplicity
of applicative languages without most of
their drawbacks. Gperators in DFPL func-
tionally transform their inputs to their
outputs without evar affecting the stare of
Sinca there is no
control flow, there ia na GOTO; in spite of
this, loops may ke programmed as well as
recursion.

the rest of the program.

Most significant though, ig the
fact that unlike crdinary applicative
languages, programs may sxhibit-memory
behavior, that is, the current output may
depend on past inputs as well as the current
input. Memory in pFpL is not primitive but
is programmed like other nonprimitive
ceperators. Thus its effects are local like
those of gther cperators and it does not

Permeate tha semantics of programg,

A DFPL program is a directed graph
whose nodes are operatorss and whose arcs
are data paths., Data in DFFL are pure
values, either gimple liks numbers or com-
pound like arrays or recards. There are no
addresses in D?PL, although certain apera-
tors may ke pragrammed to interpret input
values in a manper veminiscent of addresses.
An operatcr "Sires" when its required inpu:sg
After
a variable amount of time, it sends icg

are available on itg incoming paths.
Qukputs eon its Qutgoing paths. It is not
Recessary that all inputs ke present before
an onerator fires, it depends on the partic-
ulzr operator, Similarly, not all outputsg
may ba produced by a given firing. synchre-
ncus oparators tire only when all thair
inputs are preszent, and produce their
ocutputs all at once, they are analagous to
subroutines. Some eperators preduce a time

Sequence of output valyes from ane input

value or conversely, they are analogous to
coroutines. The operators in a DFPL pro-
gram thus gperate in parallel with one

another subjact only to the availability

of datz on the paths.

An operator may either be primitive
or defined. An operator is defined as a
network of ather operators which are
connected by data paths such that cartain
paths are connectad en one end only. These
Paths are the parameters of the defined
aperator. A defined operator oparates ag
if its node wera replaced by the network
which defines it and the parametar paths
apliced to the paths which were connhected
ta that node,
may ba defined.

Thus, racursive oparators

Suffieient synchrenization signalg
ara passed with the data an the paths sa
that oparatora do not fire prematurely,
and sc that the operation of the program
a8 a whole is independent of tha timingsa
of ~he componant operators (at least in
basic DFPL, full DFPTL allows timing
dependent programz in order ta cope with
thereal world, but it is not yet possible
Lo mathematize the semantics). Fortunately,
the synchronization mechanism ig implicit
in the mathematization presented here.

There are six primitive operators
in DFPL shcwn in Figure l. Qf thess,
three are simple in their behavior: the
Constant, the Fork and the Primicive
computational function (Pef). This latter
is really a whole class of cperators in-
cluding the usual aritkmatie, logical and
8ggregate coperators (eg. construct and
gelect}. These three ocparators all have
the property that they demand all their
inputs to fire, wheresupon thev produce all
their gutputs (the constant is a degenerate
case having no inputs). Furthermore, each
firing is independent of any past history,
that is, the operator is a function from

current input to current cutput.

-3

The functicnal equations for the cperators
in Figure 1 ara thus;

C for the Primitive canstant,
Fx{u,V.W) & ¥ = Fy{l,V,wW)

for the Pef p,
X=U&Y=0U42Z="U for tha Fork.

= ox
o

The next most cemplicated operators
are the Switch operators, also shown in
Ffigure l. These two aperators also hava
the property that each firing is indepen-
dent of previous firings, hut not all
inputs/outputs are demanded/produced upaen
each firing. The Outbound Bwitch, for -
example, demands C and U ax inputs for each
firing, but only cne of X, Y and Z receives
output. Which one is determined by tha
The ovutput
value iz just the value of U. The Inbound
Switch operatas conversely, only ona of tha
inputs X, ¥ and 2z ig accepted upon firing
(C is demanded}, and its value is always
&ent out on U,

value recaived on input <.

Since these operators sometimes do not
accept/produce inputs/outputs, we can not
describe their functicnal behavior by such
simple equations as before (not producing
an output is not the same as rrodueing a-
null output}. Buk we can describe their
behavior if we view ther as functions from
Sequences of inputs ke seguences of outputs,
Now the functional equations for both kinds
of Switches are (one origin indexing is
assunmad} ;

ar = Inswitch(C*,X*,¥*,2*) and
X* = Qutswitchx (C*,0*) &

¥Y* = Gutswitchy(C*,U*} g

2* = Qutswitchz (C¥,u*} yhare

" uj if cj=1 & kza{i:fjjciﬂl
Uy if cj.:z & k=¥{.i.$.jlci=2}
7, = o, if Cy=3 & k=#(izj|c =13

Fal
]

whi
[

The notation #fiSjiCi=q} means the numbaxr
of times the length j prefix of C* takes
on the value q.

Thus, roughly speaking, the Inbcund
Switch margas two or mora sequences into
one sequence the same length as the contrel
Q&nvq:saly, the Outbound Switch .
splits a data segquence inte two ar morme

sgguence.

gsequences dependent on the values in the

control saquence. In all cases, the order

-

of the input segquence(s) is preserved in
the output sequence(s].

The most complicatad primitive opera-
tor is the Loop, shown in Figure 1 also.
The Loop provides the DFPL analog of tha
standard, leading test, WHILE loop of
The Loop
operator also has the property that it

ordinary programming languages.

dces not accept/produce all of its inputsy
outputs each time it fires, 1Its Eiring,
however, is a two staga procass that
introduces a “"phase shift" of one unit
in mapping input sequences to output
saquences, thus allowing conatruction of
iterative loops and even an analog to
memory or storage in conventional

languayges. ®

The four paths ¢onnecting ta the Loop
ifn Figure 1 can be characterized as fol-
lows: ¥ is the initialization value, Y is
the current iteration value, % is the
feedback value which becomes current on
the next itera*ion, and C 1s the control
value which tells the Loop whether to
Although
other Loops can be imagined, such as one

stop or take apcther iteration.

having a final output value, they can all
bae programmed from this minimal Loop plus
the primitives above. The precise func-

tional aquation for this Leoop is:

X Loop{X*,C*,3") where
Yl = X
Y. =

1
Zy) %_f Cp_y=Ll & k31

k = Xypy 1 € 1=0 & k3L &
i=#Ci<k|c;=0)

I
&
1}

Viewed over "time" (the columns); the Loop
cperates as follcws [the value carried cna

-1

path appears undar its name 1f appropriate}.

xl .. ‘e N Xa v .
.- Il Yz Y3 - Y4 YS
.- =X1 =Zl =32 ‘e =X2 =2y
. Zl Zz 33 - 34 25
. Cl Cz C3 e By C5

- =1 =1 =() .. =] m}

Now the first three operators can be

- racast as funetions from sequences of inputs

to seguences of outputs:

xl = C for the Primitive constant.
xi = Fx{Ui,Vi,Wi) E

Y, = Fytui,vi,ﬂi) ¥i for the Pcf F,
xi = Ui & Yi = Ui 5 zi = Ui ?1_

for the Fork,

A synchroncus operator 5 is defined aa
ane whose Function is such that Yj = sgx;)
where x; = first j elements of X*, ie.
there is one output for each input but that

cutput may depend on past inputs also.

This property of synchronous nperators
allows us to aveid the tedium cf'using a
separate index for the seguence of values on
aach data path., All patihs in a subnetwork
of synchronous oparators may share-thé same
sequence index since that subnetworkx behaves
like a singlz synchronous aoperator. In
ganeral, any operator constructed entirely
out of synchronous coperators 15 itself
synchrunous and the Fork and all Pcf cper-

ators are synchronous,

All primitive operators are causal in
the sense that an output canpot be affected
by future inputs, that is, once an output
is produced, it cannot be changed. Mora
pracisely, if Y* = F{X*} & Yi = F(Kzl &

YI = F(K;} & j>i then 12k.
Cptimization

One can prove that natural adaptations
cf optimization transformations [5] preserve
the functicnality of certain DFPL programs.

For example, in Figure 2 we see the appli-
cation of common subexpression alimination,
Tha Before and After program compute the
same function fQr any operator F.

Referring to the "Befora” operator
definition in Figqura 2, we see that
¥i: X = Xi = x; &Y, =Y = ¥: &
Z; = z{ = z; by the definition of
the Fork operator. Hence, X* = X'#* = Xne,
Y* = Y'* = ¥"* and I* = 2th = Z2"*, so
VY = Fy(X*, Y%, Z*), W = TW(X™, Y% 2%},
V¥ = Py{X*, Y*, 2*) and W'* = Fw{X*,¥Y*, 2%},
Therefore, V* = V'% and WY = W'+, gy
similar reasoning, in the "After" operator
definition of Flgure 2, Vv* = v+ =
Fv(X*,¥*,2*) and W» = {'* = Fw(X*®, Y™, 2%),
Thus, the two operators are aquivalent for
any operator F.

Since Forks have such simple function-
al properties, we will henceforth omit
them as aexplicit operators in our proafs
and just label all paths connected toc a
Fork with the same symbol.

- In Figure 3, we see the application
of "hoisting", that is, moving a Comoy -
tation out of a conditional expression.
The operator P is moved to the front of the
conditjonal, and the operator G is moved
to the rear. For this optimization to
apply, it is sufficient for F and € to be
simple fungtions of their inputs {eg,
Pof's), that is Vi: Hi = F(Ai’Bi} &
Zi = G(Li)-

To prove this optimizaticon, we
shall assume that D and E are synchro=-
nous operators and that A, B, C and M
are mutvally synchronized input paths
so that we can use the same index for
all of them. IF thesa assumptions were
not valid, the natwerk would hang up.
The proof consists of thres parts, first
show that R = R' & 5 = §', second show
V=V & W=W using the obviocus result
that U =U' & T = T', and third shew

-5

that 2 = Z2', We will prove the first part
in fair detail: tha second part iz ahvious
and the third is just like the first,
1. Hj F(Aj,Bj) by assumption.
Z. Ry = Hj if C,=1 & k-#[i$j|ci=1}
by definition of Cutswitch.
3. Ry = F(Aj,Bj) if Cj-l & k=#{i£j|ci=1}
by 1 and 2 abova,
4. P = Ej if Cjzl & k-!{isa|ci=l}
Ay ig cj=1 & k=&{i$jici=l}
both by definition of Cutswitch.
5. R = F(Aj.Bj) if Cy=1 & k=#{1 jici=L}
by assumption for F and 4 above.
6. Rk = Ri QED.
Similarly, we can prova Sk = SE. thus
concluding the first part of the proof
rthat hoisting preserves the seﬁantica.
The first and third parts of this proof
staad as separate theorahs in themselves.
They would not cften be used howevar,
because unbalanced Switch operators (ie.

=
[l

an Inswitch withoub an Qutswitch or vica-
versal would rarely be used in programs.

Memory L4
The most interesting kind of DFDL
cperatar is one which behaves like a mem-
ory cell. A trivial kind of memory cell,
which serves as the building block for
fancier ones, is shown in Pigure 4. It ig
Just a holding station, that is, the out—
Put is what the input was on the previcus
firing. More precisely, it can be shown to
satisfy the following eﬁuations:
¥) =08y =X, . visl,
The prcof is straightforward:

1. .Wl E]

by definition of the Primitive constant.
2. Yl = Wl by definition of the Loop.
k™ Xgap By =

by definiticn of the Loop operator.
4. %, = Trueix, } = 1 vk

by definition of the Pcf True.
5. Yl =3 by l and 2 above,

Yk = xk—l ¥k>l by 3 and 4 abave, QED.

A fancier memory call ia shown in 14. Bj+k—m = Xk if cj+k-tu=l &
Figure 5. When a 0 value is presented on k=#{i£j+k|ci=1] by 6 and 7 above.
the crntrol path C, the current contents is 15. ¥, = ¥ if cj+k—mﬂl 5 [v0 1 m: cj+k—i’°]
read cut on.patlr ¥, when a 1 value i3 pre=- & j=#{i5j+klci=0} & k=!{ifj+klci-l}
sented on ¢ and a data value is prasented by 13 and 14 above.
on the input path X, the cell is updated 15, Y, = X it Cyp=0 & j-!{iSj+k|Ci-0} [
to contain that new value. The call has an k=#{i$j+k|ci=1} from 15 above, by
initial contents of Q. Viewed over tine, simplifying the if condition, making
the Mem operator behaves as follows: use of the fact that m is arbitrary
in the range 1 to j+k-1. -

C, € €3 € Cg Cp Cq 17, Yy = X 1E.C, =08 k=#{i<3+klci=l}

=) =f =] =) =] =1 = from 16 above, since Cj+k-0 &

Yy ¥y .. ¥y o .. Y, k=#{i£j+k}ci=l) implies that

=Q =0 .. =R =T k=#{icj+k]C =1} & j=k{iSj+k|c =0).

. ‘e xl s Xz Xs .- .

ee .. =R. .. =8 =T .. : Steps 10 and 17 above are the desired

results for the hehavior af the.memary cell.
The precise formulaticn of this behavior

" may ba proved to ﬁe: More complicated memorizs may ba
programmed by substituting other operators
Yj = g if ¥i=j: Ci=0 for the Fork and cparators in Figqure 4.
Y5 = Xy if Cj+k=° & k=#[i=< j+klci=1] For examole, by replacing Ehe Fork by a
Dequeue operator, and tha ! by an Enguaue,
e proof of this follaws: a gueue memory results. To program a
random access memory, another input path,
1. Al = Q by definition of Hold. to carry the "address", must be atdded, as
2.‘A£’= B!—l ¥e>l by definicion of Hold, se¢ll as replacing the operators.
3.8, =¥, if =0 & J=#{ise[c =0}
by definitien of Qutswitch.
4. B, = W if C =1 % k=plisz|C =1} Latticework
by definition of Outswitech. To make our domaing and codowmains
5. B, = Yj if €,=0 & j=#{i££}ci=0} of data value segquences into lattices,
by definition of Inswitch. we have to Qefine a partial order on them.
6. B, = 2, if C ;=1 ¢ k=#{i£zici=l} Following G. Kahn [6], we say that a
by definition ¢f Inswitch. sequencea A* ig "bigger" than a sequence B¥
7. Zk = Kk by dafinition af H ocperator. if and only if B* i3 a prefix of A*.
8. B, =B, _; if C£=0 The set of sequences [includirg countably
by 2, 3 and 5 abova. infinite anez) form a lattice under this
9. Al ” Al if c, =0 partial order. The "bottem" of this lattice
by 8 and 2 above. is the empty sequence. This lattice doss
10. Yj = Q if ¥isji: ci=° not encompass the Scott notion of value
by induction on 1, 3 and 9 abave. approximation, that requires further
11. Yj = Bj+k if cj+k=o & j=#[i$j+klci-0} investigation.
by 5 above.
12. Bj+k = Bj+k-m if vo<isSm: cj+k-i'° The operator obtainad by conrecting
by induction on 8 above. the ocutput of the Hold operator to a two
13. Yj = Bj+k-m if [¥0<iZm: C.+k_i-0} & way Fork, connecting eone Fork output back

j-*{iSj+k|Ci=0} by 11 and 12 above. ta the Hold input, and making the second

Fork output the output parameter of the
defined operator, is the Repeating con-
stant operator. It is characterized by the
egquation: Xy a Q Vi. That it satisfies
this equation can be proved inductively ax
above. Another way of proving it is to use
the lattice fixed-point approach. Te do
this, we note that our earlier notien of
caugality exactly corresponds to mono-
tonicity in the lattice. We make tha fur-
ther assumption of continuity, which cor-
rasponds to the reasonakble assumption that
an operator will produce output after a
finite sequence of inputs or not at all.
Then, referring to our previocus description
of the Hold ocperator as a function which
transforms any input sequence to an output
sequence which is the initial constant
prefixaed to that input sequencae, we sege
that the minimal fixed-point of this fung-
tion is the infinitae saquence of that
constant value. A more detailed proof cf
an almost identical situation appears in
G. Rahn [6].

DFPL cuxrently does not allow operator
valued data and thus does not regquira the
existence of Scotts reflexive demains,

In spite of this, DFPL allows iterative

and recursive programs, both in the prac-
tical and mathematical senses. It ig hoped
that DFPL can be extended to allow aparator
valued data in the near futurs, and that
this extension can be mathematized with
Scott's technigques.

Conclusicns

We have shown that it is possibla to
develop a mathematical semantics of DFPL
in terms of functions from Eequences of
inputs te¢ sequancas of cutputs. This
mathematization is not complicated by the
omnipresence of memory, because memary ig
local like all other operators, nor by the
presence of control flow, which leads to
"continuations". The necessity for deaiing
with input and cutput sequences i3 not all
bad: many programs ([such as database Sys-

-7

tems) are inherently non-terminating, and
cannot be reasonable viewed as simple Func-~
tions from an input to an output.,

Ad it currently stands, DFPL has a
primitive operator which is indeterminate,
or timing dependent, in its operation,

It would be extremely desiranle if it

could be characterizaed as a mathematical
function alsc. To do this would probably
require redefining the functions to take
Catum/time paira as values, thus compli-
cating the antire syatem of axioms, theo-—
tems and proofs. The theorems of particular
interest in this new system would be thasa
which show that certain defined operators,

"although indatefminate in their, internal

operation, are completely detarminate when
considered as atomic cparators, Then, those
parts of a program which have te be in-
determinate in order to deal with the ocut-
s8ide world could be =a, whersas other parts
of the program could be determinate and
thus simpler ‘p analyze.

This duality of determinate operators
and indeterminate cperators suggests the
need for a convenient transformation he-
tween tpem. If DFPL programs ara viewed asg
an algebra, khen mofphiamé between such
algebras might be defined. In fack, the
process of compiling one DOFPL program into
ancother [(with simpler operators) can be
analyzed as a particular morphism.

Hopefully, the approaches set forth
in this paper will yield a practical
applicability of mathematical semantics to
more realistic programs than heretofore
peogsible.

Rafarencesg

1. J.B. Dennis, "First Version of a Data
Flow Procedura Language”. MIT Preject
MAC, Computation Structures Group,
Memo 93 (1973).

2. P.R. Rosinski, "A Data Flow Prcqramminq

Languagae®, [BM Research Report RC 4264

(March -1973) .

C.A.R. Hoare, "An Axiomatic Basis for 6.

Computer Programming”, Comm ACM 12,

pp 376=583 (Cctober 1963).

. D. Scott, "Outline of a Mathematical

Theary of Computation", Proceedings of

the Fourth Annual Princeton Confarence

on Information Sciences and Systems,

pp 163-176 (1970).

-¥

5. F.E. Allen and J. Cocke, "A Catalog of

Cptimizing Transformations", IBM Ressarch
Report RC 3548 (September 1971).

G. Kahn, "A Preliminary Thecry for
Parallel Programs", LRIA Laboratory
Report 6§ (January 1973).

PRIMITIVE CONSTANT

#

LOGP

XX 7.
OUTBAUND SWITCH

U

INBCUND SWITCH

FIGURE 1

¢ 914 ¢ JWN9Ld

ﬂ. 3 .l_ _I.z .wl_lilil.z H.,IJ
| _

_

_

_

|

) .-> -x

== k}’*\

....*II,,..I
— ——— L _

i _5:.._4_ , _

| _Ill,lL_l..lxw. .l_

- T . !

|

_ T 9 i 3 S 4 1= 5 f _

_ _ . “ _

S) [y BN Sy Y _ _

L | |
_

i I 0)

| XD o |

L | _ LI X _ |

_, b - | — = T
| 3yo438 |, | 30438 |

L L

—/0

5 9t

1NdNI 1NdLno
N .H.MN - =]
. ! _
| : 41|||m|
| _
| .z | _ |
_ T WUﬁwﬁ T0YLINOD

, m_xopmxzu._.wm
_ 1 ¥ | _
fan)

i 3914

LNdNs indino

_* ‘

CO)

NOILVIAIYaay .

gl

T Smm—— e s et en

